Central Mechanisms of Osmosensation and Systemic Osmoregulation

Total Page:16

File Type:pdf, Size:1020Kb

Central Mechanisms of Osmosensation and Systemic Osmoregulation REVIEWS Central mechanisms of osmosensation and systemic osmoregulation Charles W. Bourque Abstract | Systemic osmoregulation is a vital process whereby changes in plasma osmolality, detected by osmoreceptors, modulate ingestive behaviour, sympathetic outflow and renal function to stabilize the tonicity and volume of the extracellular fluid. Furthermore, changes in the central processing of osmosensory signals are likely to affect the hydro-mineral balance and other related aspects of homeostasis, including thermoregulation and cardiovascular balance. Surprisingly little is known about how the brain orchestrates these responses. Here, recent advances in our understanding of the molecular, cellular and network mechanisms that mediate the central control of osmotic homeostasis in mammals are reviewed. osmolality Osmolality Changes in extracellular fluid (ECF) cause changes in ECF osmolality can cause severe neurological A quantitative measure of the water to flow across cell membranes to equilibrate the symptoms in these species owing to the effects of altered total solute concentration in osmolality of the cytoplasm with that of the ECF1. By electrolyte concentrations on neuronal excitability12,13 and a solution expressed in moles altering cell volume and intracellular ionic strength, the physical trauma that can be caused by such condi- per kilogram of solution. large changes in ECF osmolality can affect the physical tions14,15 (BOX 1). In this Review I address the mechanisms Osmolality is not the same 2 as osmolarity, which is the integrity of cells and tissues and the biological activity by which mammals defend against large changes in ECF number of moles of total of life-sustaining macromolecules3. This is a threat that osmolality. Following a brief overview of the processes solutes per litre of solution. most animals face as they interact with their habitat. that are involved in systemic osmoregulation as a whole, Some aquatic animals, termed osmoconformers, seem- I focus on the location and function of the osmoreceptors Osmolyte Any dissolved substance that ingly make little effort to resist osmotic forces and adopt that mediate osmosensation and on the neural pathways contributes to the osmolality ECF osmolality values that are comparable to those of through which relevant homeostatic responses can be of a solution. their external environment4,5. Osmoconformers tolerate modulated by these unique sensory elements. such conditions because they have evolved molecular Hypertonic conditions and biochemical mechanisms that optimize cell volume Systemic osmoregulation in mammals Conditions in which the ECF 1,6,7 contains a higher concentration regulation and minimize increases in ionic strength by Although mammals strive to maintain a constant ECF of membrane-impermeant synthesizing osmolytes under hypertonic conditions8–11. By osmolality, values measured in an individual can fluctu- solutes than is observed at rest contrast, animals termed osmoregulators have evolved ate around the set-point owing to intermittent changes in in that particular species. mechanisms that maintain ECF osmolality near a stable the rates of water intake and water loss (through evapo- value. These animals engage physiological responses ration or diuresis) and to variations in the rates of Na+ that actively oppose osmotic perturbations and serve intake and excretion (natriuresis). In humans, for exam- to restore ECF osmolality towards a seemingly fixed ple, 40 minutes of strenuous exercise in the heat16,17 or osmotic ‘set-point’. Although it is not known whether 24 hours of water deprivation18,19 causes plasma osmolal- Centre for Research in this value represents a true singular physical entity or ity to rise by more than 10 mosmol kg–1. In a dehydrated Neuroscience, Research whether it is a balance point between different feedback individual, drinking the equivalent of two large glasses Institute of the McGill University Health Centre, systems that participate in the control of body fluid of water (~850 ml) lowers osmolality by approximately –1 20 Room L7-216, Montreal balance, the term set-point is retained to designate the 6 mosmol kg within 30 minutes . Analogously, inges- General Hospital, 1650 value that is observed at rest. As a class, the mammals tion of 13 g of salt increases plasma osmolality by approx- Cedar Avenue, Montreal, stand out because they maintain a common ECF osmotic imately 5 mosmol kg–1 within 30 minutes21. Although Quebec, H3G 1A4, Canada. set-point (near 300 mosmol kg–1) (FIG. 1; Supplementary osmotic perturbations larger than these can be deleteri- e-mail: [email protected] information S1 (table)). This is important because, as ous to health, changes in the 1–3% range play an integral doi:10.1038/nrn2400 it is encased in a rigid cranium, the mammalian brain part in the control of body-fluid homeostasis. In fact, Published online 29 May 2008 can be damaged by shrinking or swelling. Indeed, large differences between the ECF osmolality and the desired natUre reVieWS | NEUROSCIENCE VOLUME 9 | JULY 2008 | 519 REVIEWS Shark Homeostatic responses to hypo-osmolality. ECF hypo- Desert frog (aestivating) 22 Desert beetle osmolality suppresses basal VP secretion in rats and Drosophila 45,46 Lizard humans . Because renal water reabsorption is partly Dolphin stimulated by VP levels at rest45, this inhibition of VP Chicken Cat release effectively stimulates diuresis (FIG. 2). Intravenous Trout Whale infusion of hypo-osmotic solutions reduces thirst in dehy- Seal drated humans47. Moreover, the threshold for osmotically Fresh water Mouse Ocean Manatee modulated thirst in water-replete individuals seems to lie Marmot 48 Camel a few milliosmoles below the osmotic set-point . Thus, Dog Sheep ECF hypo-osmolality can also promote homeostasis by Monkey inhibiting any desire to drink that might prevail under Goat Pig basal conditions (FIG. 2). As mentioned above, natriuresis Rat 31,34 Human is stimulated by systemic release of oxytocin in rats . Horse Rabbit Interestingly, the basal electrical activity of hypothalamic Cow oxytocin-releasing neurosecretory neurons is inhibited Catfish 36 Lamprey by hypo-osmolality . It is therefore possible that a reduc- River eel Flatworm tion in basal circulating oxytocin levels might reduce Turtle natriuresis under these conditions (FIG. 2). Analogously, Snail Tadpole Clam a decrease in central oxytocin release might enhance salt appetite during ECF hypotonicity (FIG. 2). Whether 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 ECF hypo-osmolality specifically inhibits natriuresis or Extracellular fluid osmolality (mosmol kg–1) stimulates salt appetite has yet to be determined. Figure 1 | Extracellular fluid osmolality in animals. The plot shows values of Nature Reviews | Neuroscience extracellular fluid (ECF) osmolality observed in various animals. The values, organized in Osmoreceptors in the brain and the periphery ascending order along the y-axis, were taken from published studies (Supplementary The fact that there is feedback control of osmoregulatory information S1). Although different types of organisms (empty circles) can display values that span the full range of environmental osmolalities, mammals (filled circles) display responses implies the existence of a sensory mechanism 49–52 osmotic set-points that cluster around 300 mosmol kg–1. Aestivating frogs spend the that can detect osmotic perturbations. Early studies summer in a state of dormancy. provided clear evidence that “cellular dehydration” (that is, cell shrinking) was required for thirst and VP release to be stimulated during ECF hyperosmolality: these set-point induce proportional homeostatic responses responses could be induced by infusions of concentrated according to the principle of negative feedback (FIG. 2). solutions containing membrane-impermeable solutes, Functionally speaking, therefore, it would seem that which extract water from cells, but not by infusions of sensory osmoreceptors actively generate a basal signal solutes that readily equilibrate across the cell membrane at the desired set-point and have the ability to modulate (such as urea). Verney coined the term osmoreceptor to this signal in a manner that encodes both the polarity designate the specialized sensory elements. He further and the magnitude of a change in osmolality. showed that these were present in the brain50,53 and pos- tulated that they might comprise “tiny osmometers” and Homeostatic responses to hyperosmolality. Studies in “stretch receptors” that would allow osmotic stimuli to mammals22–24, including in humans25–27, have estab- be “transmuted into electrical” signals50. Osmoreceptors lished that ECF hyperosmolality stimulates the sensa- are therefore defined functionally as neurons that are tion of thirst, to promote water intake, and the release endowed with an intrinsic ability to detect changes in of vasopressin (VP, also known as antidiuretic hor- ECF osmolality. As such, it is reasonable to posit that mone), to enhance water reabsorption in the kidney. the osmotic set-point is encoded by the resting electri- Hyperosmolality resulting from infusions of either cal activity of these cells, and that the magnitude and NaCl or non-NaCl hypertonic solutions into the carotid polarity of ambient osmotic perturbations is signalled artery also increases the rate of natriuresis from the to downstream neurons by proportional changes in the kidney in various mammals28–32, including man33. In action-potential firing rate (or firing pattern). Although
Recommended publications
  • How Does the Brain Sense Osmolality?
    SCIENCE IN RENAL MEDICINE www.jasn.org How Does the Brain Sense Osmolality? Joseph G. Verbalis Professor of Medicine and Physiology, Georgetown University School of Medicine, Washington, DC ABSTRACT For nearly 60 years, we have known that the brain plays a pivotal role in regulating sponses to hyperosmolality in experi- the osmolality of body fluids. Over this time period, scientists have determined the mental animals3 and in human subjects structure and function of arginine vasopressin and its receptors, the role of the with brain damage that infarcts the re- posterior pituitary as a storage site, and the determinants of vasopressin release. gion around the OVLT, who typically are The cellular mechanisms by which the kidney responds to vasopressin are also well unable to maintain normal plasma os- understood. One area that remains unclear is the neural mechanisms underlying molalities even under basal conditions.4 osmoreception. New findings have implicated the TRPV family of cation channels as In contrast to the effects of such lesions osmo-mechanoreceptors that may mediate the neuronal responses to changes in to eliminate both osmotically stimulated systemic tonicity. This topic is reviewed here. thirst and AVP secretion, diabetes insip- idus caused by destruction of the magno- J Am Soc Nephrol 18: 3056–3059, 2007. doi: 10.1681/ASN.2007070825 cellular AVP neurons in the supraoptic (SON) and paraventricular (PVN) nu- clei eliminates dehydration-induced Body fluid homeostasis is directed at WHERE ARE OSMORECEPTORS AVP secretion but not thirst, clearly in- maintaining the stability of the osmo- LOCATED? dicating that osmotically stimulated lality of body fluids (osmotic ho- thirst must be generated proximally to meostasis) and the intravascular blood The pioneering investigations of Verney the AVP-secreting cells themselves (Fig- volume (volume homeostasis).
    [Show full text]
  • Hyperosmotic Hyposmotic Isosmotic Hypertonic Isotonic Hypotonic
    Taking care of business Go to this page and enter room SJ123: http://tinyurl.com/PhysClicker Take 2 minutes to complete this survey: http://tinyurl.com/PhysDis Online quiz this weekend: Released Thursday night or early Friday morning and will be due Monday morning at 9am. Lab next week: We will meet in the first floor lobby of the Tech building (right next to Science Complex) for lab next week. We’re going to try to apply some of the stuff we’ve learned so far in a simulated clinical environment. It’ll be cool. Online discussions: Reminder-please post ANY questions you might have about anything related to the class to the weekly discussion. Happy to help! Homeostasis Recap Membrane Dynamics Chapter 5 Super duper Super duper hyper osmotic hyper osmotic What will happen to cell? A. Swell up B. Shrivel C. Stay the same D. I don’t know Our patient for the day https://www.youtube.com/watch?v=w3uWg4KjX4Y Name: Matilda Age: 78 In hospital for severe dehydration Staff puts her on IV of pure water Soon after IV: Severe fatigue Dizzy Yellow eyes Iced tea analogy On board Describing how concentrated a solution is: Molarity= moles solute / Liters solution Osmolarity= osmoles solute / Liters solution 1) NaCl dissociates into Na+ and Cl- 1 mole of NaCl = 2 osmoles of NaCl 2) Glucose does not dissociate in water Diffusion, osmosis, concentration.... WHO CARES?!?!? Hippotonic (hypotonic) solution makes cell swell like a hippo Table 5.3 Tonicity of Solutions Tonicity describes the volume change of a cell Differences between osmolarity and tonicity Differences between osmolarity and tonicity •Osmolarity = concentration of particles in a solution.
    [Show full text]
  • Ionic Basis of Axonal Excitability in an Extreme Euryhaline Osmoconformer, the Serpulid Worm Mercierella Enigmatic a (Fauvel) by A
    f. exp. Biol. (1977). 67, 205-215 205 With 6 figures Printed in Great Britain IONIC BASIS OF AXONAL EXCITABILITY IN AN EXTREME EURYHALINE OSMOCONFORMER, THE SERPULID WORM MERCIERELLA ENIGMATIC A (FAUVEL) BY A. D. CARLSON* AND J. E. TREHERNE Department of Zoology, University of Cambridge (Received 10 October 1976) SUMMARY Despite the extreme fluctuations in blood concentration experienced by this marine osmoconformer, essentially 'conventional' ionic mechanisms are involved in conduction by the giant axons in isosmotic conditions. The resting axonal membrane approximates to an ideal potassium electrode, + with a 58-8 mV slope for decade change in [K ]o above 10 mM. The action potential overshoot shows a 55-8 mV decline with decade reduction in [Na+]0 and the action potentials are blocked by tetrodotoxin at around 5X io~7 M. The rising phase and overshoot of the action potential remain constant at potassium concentrations up to the relatively high level of 30 mM found in the blood, indicating an unusual absence of sodium inactivation over a wide range of resting potentials. Relatively rapid, symmetrical movement of potassium ions between the bathing medium and the axon surface is deduced from the potential changes induced by alterations in [K+]o. Outward movement of sodium ions (*Q.B = 33-5 s) occurs at a similar rate to that of potassium, but inward movement of Na+ is relatively slow and complex. It is con- cluded that the ability of axons to function in dilute media must involve specific adaptations to osmotic and ionic stress. INTRODUCTION Unlike most nerve cells which have been studied, those of marine osmoconformers may experience large fluctuations in osmotic and ionic concentration.
    [Show full text]
  • Resting Metabolic Rate, Critical Swimming Speed, and Routine Activity of the Euryhaline Cyprinodontid, Aphanius Dispar, Acclimated to a Wide Range of Salinities
    590 Resting Metabolic Rate, Critical Swimming Speed, and Routine Activity of the Euryhaline Cyprinodontid, Aphanius dispar, Acclimated to a Wide Range of Salinities Itai Plaut* salt marshes, intertidal pools, etc.) show physiological adap- Department of Biology, University of Haifa at Oranim, tations that enable them to tolerate and survive extreme salinity Tivon 36006, Israel levels and ¯uctuations. Most studies on the physiological and behavioral effects of Accepted 6/5/00 euryhalinity and salinity have been done either with a narrow range of salinity, usually subranges between freshwater and full- strength seawater (Igram and Wares 1979; Nelson et al. 1996; Young and Cech 1996; Morgan et al. 1997; Kolok and Sharkey ABSTRACT 1997; Morgan and Iwama 1998; Plaut 1998, 1999a, 1999b; Shi- Specimens of the euryhaline cyprinodontid ®sh, Aphanius dis- kano and Fujio 1998) or under acute exposures to salinity par, collected in salt ponds, were acclimated to salinities of ¯uctuations (Davenport and Vahl 1979; Moser and Miller !1 (freshwater), 35 (seawater), 70, 105, and 140 ppt for 4 wk 1994). Data on the effects of long-term acclimation to extreme before measurement of oxygen consumption, critical swim- salinities (above seawater) on ®sh are rare. Recent studies have ming speed, and routine activity level. Oxygen consumption included only two species, the milk®sh, Chanos chanos (Swan- was similar in !1, 35, and 70 ppt (0.18 5 0.07 , 0.17 5 0.06 , son 1998), and the sheephead minnow, Cyprinodon variegatus and0.16 5 0.04 mL h21 g21, respectively [ mean 5 SD ]) but (Haney and Nordlie 1997; Haney et al.
    [Show full text]
  • The Effect of High Salt Intake on Osmoreceptor Gain in Salt
    The Effect of High Salt Intake on Osmoreceptor Gain in Salt-Sensitive Hypertension David Levi Integrated Program in Neuroscience McGill University Montreal, QC August 2018 A thesis submitted to McGill University in partial fulfillment of the requirement of the degree of Master of Science. © David Levi 2018 Table of Contents Abstract ....................................................................................................................................... i Resumé ....................................................................................................................................... ii Acknowledgements .................................................................................................................. iii Preface and Contribution of Authours .................................................................................. iv Symbols and Abbreviations ..................................................................................................... v 1. Introduction ............................................................................................................................... 1 1.1 General Introduction to Hypertension .............................................................................. 1 1.1.1 Epidemiology of Hypertension ...................................................................................... 1 1.1.2 Risk Factors of Hypertension ......................................................................................... 2 1.2 Homeostasis of Blood Pressure
    [Show full text]
  • Using Water Balance Models to Approximate the Effects of Climate Change on Spring Catchment Discharge: Mt
    USING WATER BALANCE MODELS TO APPROXIMATE THE EFFECTS OF CLIMATE CHANGE ON SPRING CATCHMENT DISCHARGE: MT. HANANG, TANZANIA Randall E. Fish A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 © 2011 Randall E. Fish UMI Number: 1492078 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 1492078 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 This thesis, “Using Water Balance Models to Approximate the Effects of Climate Change on Spring Catchment Discharge: Mt. Hanang, Tanzania,” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY. Department of Geological and Mining Engineering and Sciences Signatures: Thesis Advisor _________________________________________ Dr. John Gierke Department Chair _________________________________________ Dr. Wayne Pennington Date _________________________________________ TABLE OF CONTENTS LIST OF FIGURES ...........................................................................................................
    [Show full text]
  • ZOOLOGY Animal Physiology Osmoregulation in Aquatic
    Paper : 06 Animal Physiology Module : 27 Osmoregulation in Aquatic Vertebrates Development Team Principal Investigator: Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator: Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator: Prof. Rakesh Kumar Seth Department of Zoology, University of Delhi Content Writer: Dr Haren Ram Chiary and Dr. Kapinder Kirori Mal College, University of Delhi Content Reviewer: Prof. Neeta Sehgal Department of Zoology, University of Delhi 1 Animal Physiology ZOOLOGY Osmoregulation in Aquatic Vertebrates Description of Module Subject Name ZOOLOGY Paper Name Zool 006: Animal Physiology Module Name/Title Osmoregulation Module Id M27:Osmoregulation in Aquatic Vertebrates Keywords Osmoregulation, Active ionic regulation, Osmoconformers, Osmoregulators, stenohaline, Hyperosmotic, hyposmotic, catadromic, anadromic, teleost fish Contents 1. Learning Objective 2. Introduction 3. Cyclostomes a. Lampreys b. Hagfish 4. Elasmobranches 4.1. Marine elasmobranches 4.2. Fresh-water elasmobranches 5. The Coelacanth 6. Teleost fish 6.1. Marine Teleost 6.2. Fresh-water Teleost 7. Catadromic and anadromic fish 8. Amphibians 8.1. Fresh-water amphibians 8.2. Salt-water frog 9. Summary 2 Animal Physiology ZOOLOGY Osmoregulation in Aquatic Vertebrates 1. Learning Outcomes After studying this module, you shall be able to • Learn about the major strategies adopted by different aquatic vertebrates. • Understand the osmoregulation in cyclostomes: Lamprey and Hagfish • Understand the mechanisms adopted by sharks and rays for osmotic regulation • Learn about the strategies to overcome water loss and excess salt concentration in teleosts (marine and freshwater) • Analyse the mechanisms for osmoregulation in catadromic and anadromic fish • Understand the osmotic regulation in amphibians (fresh-water and in crab-eating frog, a salt water frog).
    [Show full text]
  • Excretory Products and Their Elimination
    290 BIOLOGY CHAPTER 19 EXCRETORY PRODUCTS AND THEIR ELIMINATION 19.1 Human Animals accumulate ammonia, urea, uric acid, carbon dioxide, water Excretory and ions like Na+, K+, Cl–, phosphate, sulphate, etc., either by metabolic System activities or by other means like excess ingestion. These substances have to be removed totally or partially. In this chapter, you will learn the 19.2 Urine Formation mechanisms of elimination of these substances with special emphasis on 19.3 Function of the common nitrogenous wastes. Ammonia, urea and uric acid are the major Tubules forms of nitrogenous wastes excreted by the animals. Ammonia is the most toxic form and requires large amount of water for its elimination, 19.4 Mechanism of whereas uric acid, being the least toxic, can be removed with a minimum Concentration of loss of water. the Filtrate The process of excreting ammonia is Ammonotelism. Many bony fishes, 19.5 Regulation of aquatic amphibians and aquatic insects are ammonotelic in nature. Kidney Function Ammonia, as it is readily soluble, is generally excreted by diffusion across 19.6 Micturition body surfaces or through gill surfaces (in fish) as ammonium ions. Kidneys do not play any significant role in its removal. Terrestrial adaptation 19.7 Role of other necessitated the production of lesser toxic nitrogenous wastes like urea Organs in and uric acid for conservation of water. Mammals, many terrestrial Excretion amphibians and marine fishes mainly excrete urea and are called ureotelic 19.8 Disorders of the animals. Ammonia produced by metabolism is converted into urea in the Excretory liver of these animals and released into the blood which is filtered and System excreted out by the kidneys.
    [Show full text]
  • Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996–2010
    Prepared in cooperation with the Minnesota Pollution Control Agency Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996–2010 Scientific Investigations Report 2015–5038 U.S. Department of the Interior U.S. Geological Survey Cover. Map showing mean annual potential recharge rates from 1996−2010 based on results from the Soil-Water-Balance model for Minnesota. Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water- Balance Model, 1996–2010 By Erik A. Smith and Stephen M. Westenbroek Prepared in cooperation with the Minnesota Pollution Control Agency Scientific Investigations Report 2015–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Smith, E.A., and Westenbroek, S.M., 2015, Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996–2010: U.S.
    [Show full text]
  • IRRIGATION WATER BALANCE FUNDAMENTALS Charles M. Burt
    “Irrigation Water Balance Fundamentals”. 1999. Conference on Benchmarking Irrigation System Performance Using Water Measurement and Water Balances. San Luis Obispo, CA. March 10. USCID, Denver, Colo. pp. 1-13. http://www.itrc.org/papers/pdf/irrwaterbal.pdf ITRC Paper 99-001 IRRIGATION WATER BALANCE FUNDAMENTALS Charles M. Burt1 ABSTRACT Water balances are essential for making wise decisions regarding water conservation and water management. The paper defines the essential ingredients of water balances, and distinguishes between farm and district-level balances. An example of a hypothetical district-level balance is provided. The importance of listing confidence intervals is highlighted. Classic errors in water balance determination are noted. CONCEPT OF A WATER BALANCE A "water balance" is an accounting of all water volumes that enter and leave a 3- dimensioned space (Fig. 1) over a specified period of time. Changes in internal water storage must also be considered. Both the spatial and temporal boundaries of a water balance must be clearly defined in order to compute and to discuss a water balance. A complete water balance is not limited to only irrigation water or rainwater or groundwater, etc., but includes all water that enters and leaves the spatial boundaries. Fig 1. A Water Balance Requires the Definition of 3-D and Temporal Boundaries, and All Inflows and Outflows Across Those Boundaries As Well As the Change in Storage Within Those Boundaries. 1 Professor and Director, Irrigation Training and Research Center (ITRC), BioResource and Agricultural Engineering Dept., California Polytechnic State Univ. (Cal Poly), San Luis Obispo, CA 93407 ([email protected]). Irrigation Training and Research Center - www.itrc.org “Irrigation Water Balance Fundamentals”.
    [Show full text]
  • Water Balance and Evapotranspiration Monitoring in Geotechnical and Geoenvironmental Engineering
    Geotech Geol Eng DOI 10.1007/s10706-008-9198-z ORIGINAL PAPER Water Balance and Evapotranspiration Monitoring in Geotechnical and Geoenvironmental Engineering Yu-Jun Cui Æ Jorge G. Zornberg Received: 21 July 2005 / Accepted: 19 September 2007 Ó Springer Science+Business Media B.V. 2008 Abstract Among the various components of the Keywords Evapotranspiration Á Water balance Á water balance, measurement of evapotranspiration Cover system Á Unsaturated soils Á has probably been the most difficult component to Measurement quantify and measure experimentally. Some attempts for direct measurement of evapotranspiration have included the use of weighing lysimeters. However, 1 Introduction quantification of evapotranspiration has been typi- cally conducted using energy balance approaches or The interaction between ground surface and the indirect water balance methods that rely on quanti- atmosphere has not been frequently addressed in fication of other water balance components. This geotechnical practice. Perhaps the applications where paper initially presents the fundamental aspects of such evaluations have been considered the most are evapotranspiration as well as of its evaporation and in the evaluation of landslides induced by loss of transpiration components. Typical methods used for suction due to precipitations (e.g., Alonso et al. 1995; prediction of evapotranspiration based on meteoro- Shimada et al. 1995; Cai and Ugai 1998; Fourie et al. logical information are also discussed. The current 1998; Rahardjo et al. 1998). Yet, the quantification trend of using evapotranspirative cover systems for and measurement of evapotranspiration has recently closure of waste containment facilities located in arid received renewed interest. This is the case, for climates has brought renewed needs for quantification example, due to the design of evapotranspirative of evapotranspiration.
    [Show full text]
  • Osmosis and Osmoregulation Robert Alpern, M.D
    Osmosis and Osmoregulation Robert Alpern, M.D. Southwestern Medical School Water Transport Across Semipermeable Membranes • In a dilute solution, ∆ Τ∆ Jv = Lp ( P - R CS ) • Jv - volume or water flux • Lp - hydraulic conductivity or permeability • ∆P - hydrostatic pressure gradient • R - gas constant • T - absolute temperature (Kelvin) • ∆Cs - solute concentration gradient Osmotic Pressure • If Jv = 0, then ∆ ∆ P = RT Cs van’t Hoff equation ∆Π ∆ = RT Cs Osmotic pressure • ∆Π is not a pressure, but is an expression of a difference in water concentration across a membrane. Osmolality ∆Π Σ ∆ • = RT Cs • Osmolarity - solute particles/liter of water • Osmolality - solute particles/kg of water Σ Osmolality = asCs • Colligative property Pathways for Water Movement • Solubility-diffusion across lipid bilayers • Water pores or channels Concept of Effective Osmoles • Effective osmoles pull water. • Ineffective osmoles are membrane permeant, and do not pull water • Reflection coefficient (σ) - an index of the effectiveness of a solute in generating an osmotic driving force. ∆Π Σ σ ∆ = RT s Cs • Tonicity - the concentration of effective solutes; the ability of a solution to pull water across a biologic membrane. • Example: Ethanol can accumulate in body fluids at sufficiently high concentrations to increase osmolality by 1/3, but it does not cause water movement. Components of Extracellular Fluid Osmolality • The composition of the extracellular fluid is assessed by measuring plasma or serum composition. • Plasma osmolality ~ 290 mOsm/l Na salts 2 x 140 mOsm/l Glucose 5 mOsm/l Urea 5 mOsm/l • Therefore, clinically, physicians frequently refer to the plasma (or serum) Na concentration as an index of extracellular fluid osmolality and tonicity.
    [Show full text]