Bayesian Learning of Generalized Board Positions for Improved Move Prediction in Computer Go

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Learning of Generalized Board Positions for Improved Move Prediction in Computer Go Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence Bayesian Learning of Generalized Board Positions for Improved Move Prediction in Computer Go Martin Michalowski and Mark Boddy and Mike Neilsen Adventium Labs, 111 3rd Ave S, Suite 100, Minneapolis MN 55401 USA {fi[email protected]} Abstract one of the corners of the board), Cortigo learns a set of distri- butions which can be shown to provide effective move pre- Computer Go presents a challenging problem for machine diction for both human and computer gameplay. learning agents. With the number of possible board states es- timated to be larger than the number of hydrogen atoms in the It is important to note that by prediction, we do not mean universe, learning effective policies or board evaluation func- that there is a single best move that Cortigo will select for a tions is extremely difficult. In this paper we describe Cortigo, given board position. Even the very best human players will a system that efficiently and autonomously learns useful gen- disagree on the “best” move for a given position. However, eralizations for large state-space classification problems such it turns out that effective move prediction in the sense that as Go. Cortigo uses a hierarchical generative model loosely the top few moves predicted by the system include the move related to the human visual cortex to recognize Go board po- that was taken in the actual game results in a system that can sitions well enough to suggest promising next moves. We provide effective guidance, in the form of a move-ranking begin by briefly describing and providing motivation for re- heuristic for a Upper Confidence Intervals for Trees (UCT)- search in the computer Go domain. We describe Cortigo’s based Go player. ability to learn predictive models based on large subsets of the Go board and demonstrate how using Cortigo’s learned In this paper, we present results demonstrating that adding models as additive knowledge in a state-of-the-art computer Cortigo to the set of heuristics already used by the computer Go player (Fuego) significantly improves its playing strength. Go player Fuego results in a significant improvement in per- formance. We also show that learning these distributions is a process that converges based on small numbers of samples, 1 Introduction though both predictive accuracy and convergence suffer as This paper describes our work on Cortigo, a system that uses the number of stones on the board increases. learning in hierarchical Bayesian networks for move predic- tion in the game of Go. The extremely large number of pos- 2 Computer Go sible states on a Go board means that learning a policy based on exactly matching specific board positions is unlikely to The game of Go has a very simple set of rules, but is be helpful. An exhaustive policy is infeasible: the number nonetheless very challenging for both human and computer of possible states is estimated to be greater than the number players. Go differs from most other games for which com- of hydrogen atoms in the universe (Hsu 2007). A partial puter players have been implemented in that the best human policy can be much smaller, but empirical evidence demon- players are still significantly better than the best computer strates that even very large databases of Go positions are players. In contrast, for games such as chess, backgam- unlikely to provide exact matches past the first few moves of mon, and poker, computer players are acknowledged to be the game. Cortigo learns approximate board positions. Un- as strong as or stronger than the best human players. like previous work in the area (Wolf 2000; Silver et al. 2007; Go is played on a 19-by-19 board, with players taking turns placing either a black or a white stone on an unoccu- Dabney and McGovern 2007) that uses explicit game fea- 1 tures such as liberty counts, the presence or absence of walls pied point. Consequently, the number of possible moves is or ladders, Cortigo has no explicit model of board features very large for the first few moves of the game. The num- beyond which points are occupied by stones of what color. ber of “good” moves in the opening game is presumed to be Our hypothesis was that using hierarchical Bayesian net- significantly smaller, but is not known. While it is possible works would permit the system to learn implicit features, to construct an opening book for Go, there is no guarantee which would then result in good move prediction for board that other good opening moves are not waiting to be discov- positions that had not appeared in the training set. This has ered. Games can theoretically proceed until nearly the entire in fact been the case. Presented with a training set of partial the board is covered with stones, but in practice tend to run board positions (rectangles of varying sizes, oriented around roughly 100 moves, with a wide variance. Considered as a game-tree search, then, the game of Go is a huge problem: Copyright c 2011, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. 1For full rules see: http://en.wikipedia.org/wiki/Go (game) 815 the tree depth is on the order of 100 and the branching fac- tor is on the order of the size of the board for at least the first few moves. The number of states is immense and there are no obvious means to factor or partition them, beyond the obvious rotational and reflective symmetries. Recent approaches to computer Go have either treated it as a stochastic search problem, using a sampling-based heuristic search algorithm known as Upper Confidence In- tervals for Trees (UCT), or as a learning problem, or as some combination of the two (Bouzy and Cazenave 2001). Learning for computer Go has included attempting to learn policies via reinforcement learning (Silver et al. 2007), or learning classifiers for board positions, such that each board comes with a suggested next move (Stern, Herbrich, and Figure 1: Multilayer pyramidal Bayes net, from (Dean 2006) Graepel 2006). At this point, the strongest players are all variants on or refinements of UCT. One of the strengths of the UCT approach, and one of the reasons for the wide va- riety of competitive UCT-based Computer Go players (e.g., of an exact match on board position in even a large database Fuego, Crazy Stone, MoGo, Zen, etc.) is that the UCT algo- are very low. rithm presents several opportunities for heuristic approaches Consequently, we treat this as a generalization problem: and enhancements, including but not limited to the selection given a limited set of training samples consisting of a quad- of nodes for expansion and biasing the Monte Carlo search rant board position and the next move in that quadrant, learn used to evaluate those nodes. a function such that the move(s) suggested based on a po- sition in a game not previously seen will include the move that was actually taken in that game. This problem is made 3 Cortigo more difficult by the fact that it is not obvious how to char- Cortigo provides a ranking on possible next moves for a acterize two board positions as being “close” to one another. given board position. Cortigo does this using move pre- Removing a single stone from the board, or moving a stone diction: mapping from a given board position to a predic- on the board a single point in any direction, can have dras- tion of the next move that would be made by an expert tic effects on the strength of the resulting positions for each Go player. The moves are ordered in decreasing likelihood player. that that move would be taken given the current board po- As mentioned earlier, previous work on computer Go sition, given the distributions that have been learned in a players has sometimes relied on defining specific features previously-trained hierarchical Bayes net, described below. thought to be relevant to this classification problem. In In many ways, this is an easy domain for this kind of classi- contrast, Cortigo starts with no assumptions about specific fication problem. The description of the current board posi- relevant features above the level of individual points on tion is simple in structure and small in size, consisting only the board. Cortigo deals with the problem of approximate of the current state of each point on the board. For a board matches on the board position and multiple possible moves position appearing in any given game, the output of the clas- for any given position by learning distributions, encoded as sifier is unambiguous: the next move taken. Finally, this is a set of weights within a hierarchical Bayesian network. As a domain where very extensive training and testing data is shown in Figure 1, this network has a very specific struc- available. Go has been played for hundreds of years in very ture, known as a Pyramidal Bayes Net (PBN), and is part close to its current form, and many of those games have been of a more general approach known as Hierarchical Gen- recorded in detail. erative Models (Dean 2005; 2006). Intended to be loosely If the problem were that straightforward, the easy solu- analogous to the visual cortex, these structures have been tion would be to buy a large game database,2 and match the shown by Dean to provide some of the same benefits in terms current board position to those appearing in saved games, of preserving recognition of objects and structures through resulting in a selection of suggested moves based on a long translation and scaling changes, and in the presence of noisy history of expert play.
Recommended publications
  • CSC321 Lecture 23: Go
    CSC321 Lecture 23: Go Roger Grosse Roger Grosse CSC321 Lecture 23: Go 1 / 22 Final Exam Monday, April 24, 7-10pm A-O: NR 25 P-Z: ZZ VLAD Covers all lectures, tutorials, homeworks, and programming assignments 1/3 from the first half, 2/3 from the second half If there's a question on this lecture, it will be easy Emphasis on concepts covered in multiple of the above Similar in format and difficulty to the midterm, but about 3x longer Practice exams will be posted Roger Grosse CSC321 Lecture 23: Go 2 / 22 Overview Most of the problem domains we've discussed so far were natural application areas for deep learning (e.g. vision, language) We know they can be done on a neural architecture (i.e. the human brain) The predictions are inherently ambiguous, so we need to find statistical structure Board games are a classic AI domain which relied heavily on sophisticated search techniques with a little bit of machine learning Full observations, deterministic environment | why would we need uncertainty? This lecture is about AlphaGo, DeepMind's Go playing system which took the world by storm in 2016 by defeating the human Go champion Lee Sedol Roger Grosse CSC321 Lecture 23: Go 3 / 22 Overview Some milestones in computer game playing: 1949 | Claude Shannon proposes the idea of game tree search, explaining how games could be solved algorithmically in principle 1951 | Alan Turing writes a chess program that he executes by hand 1956 | Arthur Samuel writes a program that plays checkers better than he does 1968 | An algorithm defeats human novices at Go 1992
    [Show full text]
  • Residual Networks for Computer Go Tristan Cazenave
    Residual Networks for Computer Go Tristan Cazenave To cite this version: Tristan Cazenave. Residual Networks for Computer Go. IEEE Transactions on Games, Institute of Electrical and Electronics Engineers, 2018, 10 (1), 10.1109/TCIAIG.2017.2681042. hal-02098330 HAL Id: hal-02098330 https://hal.archives-ouvertes.fr/hal-02098330 Submitted on 12 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE TCIAIG 1 Residual Networks for Computer Go Tristan Cazenave Universite´ Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 PARIS, FRANCE Deep Learning for the game of Go recently had a tremendous success with the victory of AlphaGo against Lee Sedol in March 2016. We propose to use residual networks so as to improve the training of a policy network for computer Go. Training is faster than with usual convolutional networks and residual networks achieve high accuracy on our test set and a 4 dan level. Index Terms—Deep Learning, Computer Go, Residual Networks. I. INTRODUCTION Input EEP Learning for the game of Go with convolutional D neural networks has been addressed by Clark and Storkey [1]. It has been further improved by using larger networks [2].
    [Show full text]
  • Achieving Master Level Play in 9X9 Computer Go
    Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) Achieving Master Level Play in 9 9 Computer Go × Sylvain Gelly∗ David Silver† Univ. Paris Sud, LRI, CNRS, INRIA, France University of Alberta, Edmonton, Alberta, Canada Abstract simulated, using self-play, starting from the current position. Each position in the search tree is evaluated by the average The UCT algorithm uses Monte-Carlo simulation to estimate outcome of all simulated games that pass through that po- the value of states in a search tree from the current state. However, the first time a state is encountered, UCT has no sition. The search tree is used to guide simulations along knowledge, and is unable to generalise from previous expe- promising paths. This results in a highly selective search rience. We describe two extensions that address these weak- that is grounded in simulated experience, rather than an ex- nesses. Our first algorithm, heuristic UCT, incorporates prior ternal heuristic. Programs using UCT search have outper- knowledge in the form of a value function. The value function formed all previous Computer Go programs (Coulom 2006; can be learned offline, using a linear combination of a million Gelly et al. 2006). binary features, with weights trained by temporal-difference Monte-Carlo tree search algorithms suffer from two learning. Our second algorithm, UCT–RAVE, forms a rapid sources of inefficiency. First, when a position is encoun- online generalisation based on the value of moves. We ap- tered for the first time, no knowledge is available to guide plied our algorithms to the domain of 9 9 Computer Go, the search.
    [Show full text]
  • Computer Go: from the Beginnings to Alphago Martin Müller, University of Alberta
    Computer Go: from the Beginnings to AlphaGo Martin Müller, University of Alberta 2017 Outline of the Talk ✤ Game of Go ✤ Short history - Computer Go from the beginnings to AlphaGo ✤ The science behind AlphaGo ✤ The legacy of AlphaGo The Game of Go Go ✤ Classic two-player board game ✤ Invented in China thousands of years ago ✤ Simple rules, complex strategy ✤ Played by millions ✤ Hundreds of top experts - professional players ✤ Until 2016, computers weaker than humans Go Rules ✤ Start with empty board ✤ Place stone of your own color ✤ Goal: surround empty points or opponent - capture ✤ Win: control more than half the board Final score, 9x9 board ✤ Komi: first player advantage Measuring Go Strength ✤ People in Europe and America use the traditional Japanese ranking system ✤ Kyu (student) and Dan (master) levels ✤ Separate Dan ranks for professional players ✤ Kyu grades go down from 30 (absolute beginner) to 1 (best) ✤ Dan grades go up from 1 (weakest) to about 6 ✤ There is also a numerical (Elo) system, e.g. 2500 = 5 Dan Short History of Computer Go Computer Go History - Beginnings ✤ 1960’s: initial ideas, designs on paper ✤ 1970’s: first serious program - Reitman & Wilcox ✤ Interviews with strong human players ✤ Try to build a model of human decision-making ✤ Level: “advanced beginner”, 15-20 kyu ✤ One game costs thousands of dollars in computer time 1980-89 The Arrival of PC ✤ From 1980: PC (personal computers) arrive ✤ Many people get cheap access to computers ✤ Many start writing Go programs ✤ First competitions, Computer Olympiad, Ing Cup ✤ Level 10-15 kyu 1990-2005: Slow Progress ✤ Slow progress, commercial successes ✤ 1990 Ing Cup in Beijing ✤ 1993 Ing Cup in Chengdu ✤ Top programs Handtalk (Prof.
    [Show full text]
  • Reinforcement Learning of Local Shape in the Game of Go
    Reinforcement Learning of Local Shape in the Game of Go David Silver, Richard Sutton, and Martin Muller¨ Department of Computing Science University of Alberta Edmonton, Canada T6G 2E8 {silver, sutton, mmueller}@cs.ualberta.ca Abstract effective. They are fast to compute; easy to interpret, modify and debug; and they have good convergence properties. We explore an application to the game of Go of Secondly, weights are trained by temporal difference learn- a reinforcement learning approach based on a lin- ing and self-play. The world champion Checkers program ear evaluation function and large numbers of bi- Chinook was hand-tuned by expert players over 5 years. nary features. This strategy has proved effective When weights were trained instead by self-play using a tem- in game playing programs and other reinforcement poral difference learning algorithm, the program equalled learning applications. We apply this strategy to Go the performance of the original version [7]. A similar ap- by creating over a million features based on tem- proach attained master level play in Chess [1]. TD-Gammon plates for small fragments of the board, and then achieved world class Backgammon performance after train- use temporal difference learning and self-play. This ingbyTD(0)andself-play[13]. A program trained by method identifies hundreds of low level shapes with TD(λ) and self-play outperformed an expert, hand-tuned ver- recognisable significance to expert Go players, and sion at the card game Hearts [11]. Experience generated provides quantitive estimates of their values. We by self-play was also used to train the weights of the world analyse the relative contributions to performance of champion Othello and Scrabble programs, using least squares templates of different types and sizes.
    [Show full text]
  • Weiqi, Baduk): a Beautiful Game
    Go (Weiqi, Baduk): A Beautiful Game Description Go is a strategy board game originating from China more than two thousand years ago. Though its rules are simple, the game is intractably complex; a top professional can easily defeat the best supercomputers today. It was considered one of the four essential skills of a Chinese scholar. The game spread to Korea and Japan, has flourished in East Asia, and is becoming more well-known in the West. Today, Go is enjoyed by more than 40 million players in the world. Objectives Students will learn the rules of go and become able to play at an intermediate level. They will also understand the game in a historical and/or mathematical context. We hope (but do not require) that students will be able to play at a single-digit kyu level (1k-9k). Students will also learn something significant from one of the following (or both): ◦ The culture and history of go, including its origins, historical figure, and presence in East Asia and the western world. ◦ Some mathematical results of go, including a treatment of go using combinatorial game theory. This will offer enough flexibility for students of all majors. Prerequisites None. We expect all students to be able to understand the course material. The course is designed to suit students of all majors. This course is not designed for dan-level players. We will not allow dan-level players to take this course. Course Format This course will be taught by Joshua Wu in both lecture and interactive formats. We hope to emphasize student participation.
    [Show full text]
  • Learning to Play the Game of Go
    Learning to Play the Game of Go James Foulds October 17, 2006 Abstract The problem of creating a successful artificial intelligence game playing program for the game of Go represents an important milestone in the history of computer science, and provides an interesting domain for the development of both new and existing problem-solving methods. In particular, the problem of Go can be used as a benchmark for machine learning techniques. Most commercial Go playing programs use rule-based expert systems, re- lying heavily on manually entered domain knowledge. Due to the complexity of strategy possible in the game, these programs can only play at an amateur level of skill. A more recent approach is to apply machine learning to the prob- lem. Machine learning-based Go playing systems are currently weaker than the rule-based programs, but this is still an active area of research. This project compares the performance of an extensive set of supervised machine learning algorithms in the context of learning from a set of features generated from the common fate graph – a graph representation of a Go playing board. The method is applied to a collection of life-and-death problems and to 9 × 9 games, using a variety of learning algorithms. A comparative study is performed to determine the effectiveness of each learning algorithm in this context. Contents 1 Introduction 4 2 Background 4 2.1 Go................................... 4 2.1.1 DescriptionoftheGame. 5 2.1.2 TheHistoryofGo ...................... 6 2.1.3 Elementary Strategy . 7 2.1.4 Player Rankings and Handicaps . 7 2.1.5 Tsumego ..........................
    [Show full text]
  • Human Vs. Computer Go: Review and Prospect
    This article is accepted and will be published in IEEE Computational Intelligence Magazine in August 2016 Human vs. Computer Go: Review and Prospect Chang-Shing Lee*, Mei-Hui Wang Department of Computer Science and Information Engineering, National University of Tainan, TAIWAN Shi-Jim Yen Department of Computer Science and Information Engineering, National Dong Hwa University, TAIWAN Ting-Han Wei, I-Chen Wu Department of Computer Science, National Chiao Tung University, TAIWAN Ping-Chiang Chou, Chun-Hsun Chou Taiwan Go Association, TAIWAN Ming-Wan Wang Nihon Ki-in Go Institute, JAPAN Tai-Hsiung Yang Haifong Weiqi Academy, TAIWAN Abstract The Google DeepMind challenge match in March 2016 was a historic achievement for computer Go development. This article discusses the development of computational intelligence (CI) and its relative strength in comparison with human intelligence for the game of Go. We first summarize the milestones achieved for computer Go from 1998 to 2016. Then, the computer Go programs that have participated in previous IEEE CIS competitions as well as methods and techniques used in AlphaGo are briefly introduced. Commentaries from three high-level professional Go players on the five AlphaGo versus Lee Sedol games are also included. We conclude that AlphaGo beating Lee Sedol is a huge achievement in artificial intelligence (AI) based largely on CI methods. In the future, powerful computer Go programs such as AlphaGo are expected to be instrumental in promoting Go education and AI real-world applications. I. Computer Go Competitions The IEEE Computational Intelligence Society (CIS) has funded human vs. computer Go competitions in IEEE CIS flagship conferences since 2009.
    [Show full text]
  • Computer Go: an AI Oriented Survey
    Computer Go: an AI Oriented Survey Bruno Bouzy Université Paris 5, UFR de mathématiques et d'informatique, C.R.I.P.5, 45, rue des Saints-Pères 75270 Paris Cedex 06 France tel: (33) (0)1 44 55 35 58, fax: (33) (0)1 44 55 35 35 e-mail: [email protected] http://www.math-info.univ-paris5.fr/~bouzy/ Tristan Cazenave Université Paris 8, Département Informatique, Laboratoire IA 2, rue de la Liberté 93526 Saint-Denis Cedex France e-mail: [email protected] http://www.ai.univ-paris8.fr/~cazenave/ Abstract Since the beginning of AI, mind games have been studied as relevant application fields. Nowadays, some programs are better than human players in most classical games. Their results highlight the efficiency of AI methods that are now quite standard. Such methods are very useful to Go programs, but they do not enable a strong Go program to be built. The problems related to Computer Go require new AI problem solving methods. Given the great number of problems and the diversity of possible solutions, Computer Go is an attractive research domain for AI. Prospective methods of programming the game of Go will probably be of interest in other domains as well. The goal of this paper is to present Computer Go by showing the links between existing studies on Computer Go and different AI related domains: evaluation function, heuristic search, machine learning, automatic knowledge generation, mathematical morphology and cognitive science. In addition, this paper describes both the practical aspects of Go programming, such as program optimization, and various theoretical aspects such as combinatorial game theory, mathematical morphology, and Monte- Carlo methods.
    [Show full text]
  • Strategic Choices: Small Budgets and Simple Regret Cheng-Wei Chou, Ping-Chiang Chou, Chang-Shing Lee, David L
    Strategic Choices: Small Budgets and Simple Regret Cheng-Wei Chou, Ping-Chiang Chou, Chang-Shing Lee, David L. Saint-Pierre, Olivier Teytaud, Mei-Hui Wang, Li-Wen Wu, Shi-Jim Yen To cite this version: Cheng-Wei Chou, Ping-Chiang Chou, Chang-Shing Lee, David L. Saint-Pierre, Olivier Teytaud, et al.. Strategic Choices: Small Budgets and Simple Regret. TAAI, 2012, Hualien, Taiwan. hal-00753145v1 HAL Id: hal-00753145 https://hal.inria.fr/hal-00753145v1 Submitted on 19 Nov 2012 (v1), last revised 18 Mar 2013 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Strategic Choices: Small Budgets and Simple Regret Cheng-Wei Chou 1, Ping-Chiang Chou, Chang-Shing Lee 2, David Lupien Saint-Pierre 3, Olivier Teytaud 4, Mei-Hui Wang 2, Li-Wen Wu 2 and Shi-Jim Yen 2 1Dept. of Computer Science and Information Engineering NDHU, Hualian, Taiwan 2Dept. of Computer Science and Information Engineering National University of Tainan, Taiwan 3Montefiore Institute Universit´ede Li`ege, Belgium 4TAO (Inria), LRI, UMR 8623(CNRS - Univ. Paris-Sud) bat 490 Univ. Paris-Sud 91405 Orsay, France November 17, 2012 Abstract In many decision problems, there are two levels of choice: The first one is strategic and the second is tactical.
    [Show full text]
  • Move Prediction in the Game of Go
    Move Prediction in the Game of Go A Thesis presented by Brett Alexander Harrison to Computer Science in partial fulfillment of the honors requirements for the degree of Bachelor of Arts Harvard College Cambridge, Massachusetts April 1, 2010 Abstract As a direct result of artificial intelligence research, computers are now expert players in a variety of popular games, including Checkers, Chess, Othello (Reversi), and Backgammon. Yet one game continues to elude the efforts of computer scientists: Go, also known as Igo in Japan, Weiqi in China, and Baduk in Korea. Due in part to the strategic complexity of Go and the sheer number of moves available to each player, most typical game-playing algorithms have failed to be effective with Go. Even state-of-the-art computer Go programs are weaker than high-ranking amateurs. Thus Go provides the perfect framework for devel- oping and testing new ideas in a variety of fields in computer science, including algorithms, computational game theory, and machine learning. In this thesis, we explore the problem of move prediction in the game of Go. The move prediction problem asks how we can build a program which trains on Go games in order to predict the moves of professional and high-ranking amateur players in other Go games. An accurate move predictor could serve as a powerful component of Go-playing programs, since it can be used to reduce the branching factor in game tree search and can be used as an effective move ordering heuristic. Our first main contribution to this field is the creation of a novel move prediction system, based on a naive Bayes model, which builds upon the work of several previous move prediction systems.
    [Show full text]
  • Mastering the Game of Go Without Human Knowledge
    Mastering the Game of Go without Human Knowledge David Silver*, Julian Schrittwieser*, Karen Simonyan*, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, Demis Hassabis. DeepMind, 5 New Street Square, London EC4A 3TW. *These authors contributed equally to this work. A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, su- perhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated posi- tions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self- play. Here, we introduce an algorithm based solely on reinforcement learning, without hu- man data, guidance, or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of tree search, re- sulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo. Much progress towards artificial intelligence has been made using supervised learning sys- tems that are trained to replicate the decisions of human experts 1–4. However, expert data is often expensive, unreliable, or simply unavailable. Even when reliable data is available it may impose a ceiling on the performance of systems trained in this manner 5.
    [Show full text]