Saequestionlibrary.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effusion =S Fluid in Pleural Space (Outside of Lung) Fremitus - Pathophysiology • Fremitus: – Increased W/Consolidation (E.G
General Part Head and Neck Cardiovascular Abdomen Lung Muscles Lung Exam • Includes Vital Signs & Cardiac Exam • 4 Elements (cardiac & abdominal too) – Observation – Palpation – Percussion – Auscultation Pulmonary Review of Systems • All organ systems have an ROS • Questions to uncover problems in area • Need to know right questions & what the responses might mean! Exposure Is Key – You Cant Examine What You Can’t See! Anatomy Of The Spine Cervical: 7 Vertebrae Thoracic: 12 Vertebrae Lumbar: 5 Vertebrae Sacrum: 5 Fused Vertebrae Note gentle curve ea segment Hammer & Nails icon indicates A Slide Describing Skills You Should Perform In Lab Spine Exam As Relates to the Thorax • W/patient standing, observe: – shape of spine. – Stand behind patient, bend @ waist – w/Scoliosis (curvature) one shoulder appears “higher” Pathologic Changes In Shape Of Spine – Can Affect Lung Function Scoliosis (curved to one side) Thoracic Kyphosis (bent forward) Observation • ? Ambulates w/out breathing difficulty? • Readily audible noises (e.g. wheezing)? • Appearance →? sitting up, leaning forward, inability to speak, pursed lips → significant compromise • ? Use of accessory muscles of neck (sternocleidomastoids, scalenes), inter-costals → significant compromise / Make Note of Chest Shape: Changes Can Give Insight into underlying Pathology Barrel Chested (hyperinflation secondary to emphysema) Examine Nails/Fingers: Sometimes Provides Clues to Pulmonary Disorders Cyanosis Nicotine Staining Clubbing Assorted other hand and arm abnormalities: Shape, color, deformity -
Primary Desmoid Tumor of the Small Bowel: a Case Report and Literature Review
Open Access Case Report DOI: 10.7759/cureus.4915 Primary Desmoid Tumor of the Small Bowel: A Case Report and Literature Review Peter A. Ebeling 1 , Tristan Fun 1 , Katherine Beale 1 , Robert Cromer 2 , Jason W. Kempenich 1 1. Surgery, University of Texas Health Science Center at San Antonio, San Antonio, USA 2. Surgery, Keesler U.S. Air Force Medical Center, Biloxi, USA Corresponding author: Peter A. Ebeling, [email protected] Abstract Desmoid tumors, also known as aggressive fibromatosis, are fibromuscular neoplasms that arise from mesenchymal cell lines. They may occur in almost all soft tissue compartments. Primary desmoids of the small bowel are rare but potentially serious tumors presenting unique challenges to the general surgeon. We present one case of a 59-year-old man presenting with three months of abdominal distension secondary to a small bowel desmoid. Computed tomography of the abdomen showed an 18-cm mass in the mid-abdomen without obvious vital structure encasement. Percutaneous biopsy of the mass indicated a desmoid tumor. The patient underwent a successful elective exploratory laparotomy with resection and primary enteric anastomosis. Final pathology revealed the mass to be a primary desmoid of the small bowel. His post- operative course was uneventful. At two years after surgery, he is symptom free, and there is no evidence of disease recurrence. Due to the rare nature of primary small bowel desmoids, there are few specific care pathways outlined. This is a challenging pathology to treat that often requires a multidisciplinary team of surgical and medical oncologists. Categories: General Surgery, Oncology Keywords: desmoid, small bowel, resection, aggressive fibromatosis Introduction Desmoid tumors, also known as aggressive fibromatosis, are fibromuscular neoplasms that arise from mesenchymal cell lines. -
Meniscus Injury
Introduction Role of menisci • Medial meniscus lesions are more common than 01 lateral meniscus because it is attached to the improving articular capsule that make it less mobile thus it cannot congruency and increasing easily to accommodate the abnormal stresses. the stability of the knee • In increasing age – gradual degeneration and change in the material properties of the menisci Meniscus controlling the complex thus splits and tears are more likely that usually associated with osteoarthritic articular damage or rolling and gliding actions of chondrocalcinosis. Injury the joint • In younger people - meniscal tears are usually the result of trauma, with a specific injury identified in distributing load during the history. movement Tear of Meniscus Pathology Pathology • Usually, meniscus more likely to tear along its Vertical tear Horizontal tear length than across its width because the Bucket-handle tear usually ‘degenerative’ or due to repetitive minor trauma meniscus consists mainly of circumferential the separated fragment remains attached front complex with the tear pattern lying in many collagen fibres held by a few radial strands. and back planes The torn portion can sometimes displace towards may be displaced or likely to displace • The meniscus is usually torn by a twisting the centre of the joint and becomes jammed If the loose piece of meniscus can be displaced, it between femur and tibia acts as a mechanical irritant, giving rise to force with the knee bent and taking weight. This causes a block to movement with the patient recurrent synovial effusion and mechanical describing a ‘locked knee’ symptoms • In middle life, tears can occur with relatively posterior or anterior horn tears Some are associated with meniscal cysts little force when fibrotic change has the very back or front of the meniscus is It is also suggested that synovial cells infiltrate into the vascular area between meniscus and restricted mobility of the meniscus. -
Comparison of the Thesslay Test and Mcmurray Test: a Systematic
py & Ph ra ys e i th c Alexanders et al.,Physiother Rehabil 2016, 1:1 a io l s R y e Journal of DOI: 10.4172/2573-0312.1000104 h h a P b f i o l i l t a ISSN:a 2573-0312 t n i r o u n o J Physiotherapy & Physical Rehabilitation Research Article Open Access Comparison of the Thesslay Test and McMurray Test: A Systematic Review of Comparative Diagnostic Studies Jenny Alexanders1*, Anna Anderson2, Sarah Henderson1 and Ulf Clausen3 1Sport, Health and Sciences Department, The University of Hull, Washburn Building, Cottingham Road, Hull, United Kingdom 2Leeds Teaching Hospitals, Beckett Street, Leeds, LS9 7TF, United Kingdom 3Dr Hill and Partners, Beverly Health Practice, Manor Road, Hull, HU17 7BZ, United Kingdom Abstract Background: The Thessaly test is a relatively recently developed meniscal test; therefore research compared to other meniscal tests is somewhat limited. In addition, a systematic review comparing the Thessaly’s test with a long standing test such as the McMurray test has not been previously conducted. Objective: To systematically identify and appraise all empirical studies comparing the diagnostic accuracy of the Thessaly test and McMurray test. Procedure: Eligible studies were identified through a rigorous search of ScienceDirect, CINAHL Plus, Pubmed, PEDro, EMBASE and Cochrane Library from January 2004 until August 2014. Full English reports of studies investigating the accuracy of the Thessaly test and McMurray test. Quality Assessment of Studies of Diagnostic Accuracy (QUADAS) scores were completed on each selected article. Results: The Thessaly test reported to have higher diagnostic accuracy values (61-96%) compared to the McMurray test (56-84%). -
Physical Esxam
Pearls in the Musculoskeletal Exam Frank Caruso MPS, PA-C, EMT-P Skin, Bones, Hearts & Private Parts 2019 Examination Key Points • Area that needs to be examined, gown your patients - well exposed • Understand normal functional anatomy • Observe normal activity • Palpation • Range of Motion • Strength/neuro-vascular assessment • Special Tests General Exam Musculoskeletal Overview Physical Exam Preview Watch Your Patients Walk!! Inspection • Posture – Erectness – Symmetry – Alignment • Skin and subcutaneous tissues – Swelling – Redness – Masses Inspection • Extremities – Size – Deformities – Enlargement – Alignment – Contour – Symmetry Inspection • Muscles – Bilateral symmetry – Hypertrophy – Atrophy – Fasciculations – Spasms Palpation • Palpate bones, joints, and surrounding muscles for the following: – Heat – Tenderness – Swelling – Fluctuation – Crepitus – Resistance to pressure – Muscle tone Muscles • Size and strength affected by the following: – Genetics – Exercise – Nutrition • Muscles move joints through range of motion (ROM). Muscle Strength • Compare bilateral muscles – Strength – Symmetry – Equality – Resistance End Feel Think About It!! • The sensation the examiner feels in the joint as it reaches the end of the range of motion of each passive movement • Bone to bone: This is hard, unyielding – normal would be elbow extension. • Soft–tissue approximation: yielding compression that stops further movement – elbow and knee flexion. End Feel • Tissue stretch: hard – springy type of movement with a slight give – toward the end of range of motion – most common type of normal end feel : knee extension and metacarpophalangeal joint extension. Abnormal End Feel • Muscle spasm: invoked by movement with a sudden dramatic arrest of movement often accompanied by pain - sudden hard – “vibrant twang” • Capsular: Similar to tissue stretch but it does not occur where one would expect – range of motion usually reduced. -
Lumps and Bumps of the Abdominal Wall and Lumbar Region—Part 2: Beyond Hernias
Published online: 2019-06-18 THIEME Review Article 19 Lumps and Bumps of the Abdominal Wall and Lumbar Region—Part 2: Beyond Hernias Sangoh Lee1 Catalin V. Ivan1 Sarah R. Hudson1 Tahir Hussain1 Suchi Gaba2 Ratan Verma1 1 1 Arumugam Rajesh James A. Stephenson 1Department of Radiology, University Hospitals of Leicester, Address for correspondence James A. Stephenson, MD, FRCR, Leicester General Hospital, Leicester, United Kingdom Department of Radiology, University Hospitals of Leicester, 2Department of Radiology, University Hospitals of North Midlands, Leicester General Hospital, Leicester, LE5 4PW, United Kingdom Royal Stoke University Hospital, Stoke-on-Trent, United Kingdom (e-mail: [email protected]). J Gastrointestinal Abdominal Radiol ISGAR 2018;1:19–32 Abstract Abdominal masses can often clinically mimic hernias, especially when they are locat- ed close to hernial orifices. Imaging findings can be challenging and nonspecific Keywords with numerous differential diagnoses. We present a variety of pathology involving ► abdominal wall the abdominal wall and lumbar region, which were referred as possible hernias. This ► hernia demonstrates the wide-ranging pathology that can present as abdominal wall lesions ► mimics or mimics of hernias that the radiologist should be alert to. Introduction well-differentiated liposarcomas are histologically identical. The term “atypical lipoma” was coined by Evans et al in 1979 to An abdominal hernia occurs when an organ of a body ca vity describe well-differentiated liposarcoma of subcutaneous and 1 protrudes through a defect in the wall of that cavity. It is a 6 intramuscular layers. The World Health Organization (WHO) common condition with lifetime risk of developing a groin has further refined the definition by using atypical lipoma to hernia being estimated at 27% for men and 3% for women; it has describe subcutaneous lesions only and well- differentiated 2 thus been covered extensively in the literature. -
New Jersey Chapter American College of Physicians
NEW JERSEY CHAPTER AMERICAN COLLEGE OF PHYSICIANS ASSOCIATES ABSTRACT COMPETITION 2015 SUBMISSIONS 2015 Resident/Fellow Abstracts 1 1. ID CATEGORY NAME ADDITIONAL PROGRAM ABSTRACT AUTHORS 2. 295 Clinical Abed, Kareem Viren Vankawala MD Atlanticare Intrapulmonary Arteriovenous Malformation causing Recurrent Cerebral Emboli Vignette FACC; Qi Sun MD Regional Medical Ischemic strokes are mainly due to cardioembolic occlusion of small vessels, as well as large vessel thromboemboli. We describe a Center case of intrapulmonary A-V shunt as the etiology of an acute ischemic event. A 63 year old male with a past history of (Dominik supraventricular tachycardia and recurrent deep vein thrombosis; who has been non-compliant on Rivaroxaban, presents with Zampino) pleuritic chest pain and was found to have a right lower lobe pulmonary embolus. The deep vein thrombosis and pulmonary embolus were not significant enough to warrant ultrasound-enhanced thrombolysis by Ekosonic EndoWave Infusion Catheter System, and the patient was subsequently restarted on Rivaroxaban and discharged. The patient presented five days later with left arm tightness and was found to have multiple areas of punctuate infarction of both cerebellar hemispheres, more confluent within the right frontal lobe. Of note he was compliant at this time with Rivaroxaban. The patient was started on unfractionated heparin drip and subsequently admitted. On admission, his vital signs showed a blood pressure of 138/93, heart rate 65 bpm, and respiratory rate 16. Cardiopulmonary examination revealed regular rate and rhythm, without murmurs, rubs or gallops and his lungs were clear to auscultation. Neurologic examination revealed intact cranial nerves, preserved strength in all extremities, mild dysmetria in the left upper extremity and an NIH score of 1. -
Examination of the Knee
Examination of the Knee The Examination For every joint of the lower extremity always begin with the patient in standing IN STANDING INSPECTION 1. Cutaneous Structures: Look for Erythema, scarring, bruising, and swelling in the following areas: a. Peripatellar grooves b. Suprapatellar bursa c. Prepatellar bursa d. Infrapatellar tendon e. Anserine bursa f. Popliteal fossa 2. Muscle & Soft Tissue: a. Quadriceps atrophy b. Hamstring atrophy c. Calf atrophy 3. Bones & Alignment: a. Patella position (Alta, Baha, Winking, Frog eyed), b. Varus or Valgus alignment c. Flexion contracture or Genu recurvatum RANGE OF MOTION - ACTIVE Standing is the best opportunity to assess active range of motion of the knee. 1. Ask the patient to squat into a deep knee bend. Both knees should bend symmetrically. 2. Ask the patient to then stand and extend the knee fully – lock the knee. The knee should straighten to 0 degrees of extension. Some people have increased extension referred to as genu recurvatum. GAIT 1. Look for a short stance phase on the affected limb and an awkward gait if a concomitant leg length discrepancy 2. Look for turning on block 3. Screening 1. Walk on the toes 2. Walk on the heels 3. Squat down – Active Range of Motion testing SPECIAL TESTS 1. Leg Length Discrepancy a. Look at patients back for evidence of a functional scoliosis b. Place your hands on the patients Iliac crests looking for inequality which may mean a leg length discrepancy IN SITTING NEUROLOGIC EXAMINATION 1. Test the reflexes a. L4 – Quadriceps reflex VASCULAR EXAMINATION 1. Feel for the posterior tibial artery SUPINE POSITION INSPECTION 1. -
SIMMONDS TEST: Patient Is Prone Doctor Flexes the Patients Knee to 90 Degrees Doctor Squeezes the Patient’S Calf
Clinical Orthopedic Testing Review SIMMONDS TEST: Patient is prone Doctor flexes the patients knee to 90 degrees Doctor squeezes the patient’s calf. Classical response: Failure of ankle plantarflexion Classical Importance= torn Achilles tendon Test is done bilaterally ACHILLES TAP: Patient is prone Doctor flexes the patient’s knee to 90 degree Doctor dorsiflexes the ankle and then strikes the Achilles tendon with a percussion hammer Classical response: Plantar response Classical Importance= Intact Achilles tendon Test is done bilaterally FOOT DRAWER TEST: Patient is supine with their ankles off the edge of the examination table Doctor grasps the heel of the ankle being tested with one hand and the tibia just above the ankle with the other. Doctor applies and anterior to posterior and then a posterior to anterior sheer force. Classical response: Anterior or posterior translation of the ankle Classical Importance= Anterior talofibular or posterior talofibular ligament laxity. Test is done bilaterally LATERAL STABILITY TEST: Patient is supine Doctor grasps the tibia with one hand and the foot with the other. Doctor rotates the foot into inversion Classical response: Excessive inversion Classical Importance= Anterior talofibular ligament sprain Test is done bilaterally MEDIAL STABILITY TEST: Patient is supine Doctor grasps the tibia with one hand and the foot with the other Doctor rotates the foot into eversion Classical response: Excessive eversion Classical Importance= Deltoid ligament sprain Test is done bilaterally 1 Clinical Orthopedic Testing Review KLEIGER’S TEST: Patient is seated with the legs and feet dangling off the edge of the examination table. Doctor grasps the patient’s foot while stabilizing the tibia with the other hand Doctor pulls the ankle laterally. -
About Soft Tissue Sarcoma Overview and Types
cancer.org | 1.800.227.2345 About Soft Tissue Sarcoma Overview and Types If you've been diagnosed with soft tissue sarcoma or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is a Soft Tissue Sarcoma? Research and Statistics See the latest estimates for new cases of soft tissue sarcoma and deaths in the US and what research is currently being done. ● Key Statistics for Soft Tissue Sarcomas ● What's New in Soft Tissue Sarcoma Research? What Is a Soft Tissue Sarcoma? Cancer starts when cells start to grow out of control. Cells in nearly any part of the body can become cancer and can spread to other areas. To learn more about how cancers start and spread, see What Is Cancer?1 There are many types of soft tissue tumors, and not all of them are cancerous. Many benign tumors are found in soft tissues. The word benign means they're not cancer. These tumors can't spread to other parts of the body. Some soft tissue tumors behave 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 in ways between a cancer and a non-cancer. These are called intermediate soft tissue tumors. When the word sarcoma is part of the name of a disease, it means the tumor is malignant (cancer).A sarcoma is a type of cancer that starts in tissues like bone or muscle. Bone and soft tissue sarcomas are the main types of sarcoma. Soft tissue sarcomas can develop in soft tissues like fat, muscle, nerves, fibrous tissues, blood vessels, or deep skin tissues. -
Aggressive Fibromatosis (Desmoid Tumor) Is Derived from Mesenchymal Progenitor Cells
Published OnlineFirst September 14, 2010; DOI: 10.1158/0008-5472.CAN-10-1656 Published OnlineFirst on September 14, 2010 as 10.1158/0008-5472.CAN-10-1656 Tumor and Stem Cell Biology Cancer Research Aggressive Fibromatosis (Desmoid Tumor) Is Derived from Mesenchymal Progenitor Cells Colleen Wu1, Saied Nik-Amini1, Puviindran Nadesan1, William L. Stanford2, and Benjamin A. Alman1,3 Abstract The cellular origins from which most tumors arise are poorly defined, especially in mesenchymal neoplasms. Aggressive fibromatosis, also known as desmoid tumor, is a locally invasive soft tissue tumor that has mesenchymal characteristics. We found that aggressive fibromatosis tumors express genes and cell surface markers characteristic of mesenchymal stem cells (MSC). In mice that are genetically predisposed to develop wt/1638N aggressive fibromatosis tumors (Apc ), we found that the number of tumors formed was proportional to −/− wt/1638N the number of MSCs present. Sca-1 mice, which develop fewer MSCs, were crossed with Apc mice. Doubly mutant mice deficient in Sca-1 developed substantially fewer aggressive fibromatosis tumors than wild-type (WT) littermates, but Sca-1 deficiency had no effect on the formation of epithelial-derived intestinal wt/1638N polyps. MSCs isolated from Apc mice(ormiceexpressingastabilizedformofβ-catenin) induced aberrant cellular growth reminiscent of aggressive fibromatosis tumors after engraftment to immunocompro- mised mice, but WT cells and mature fibroblasts from the same animals did not. Taken together, our findings indicate that aggressive fibromatosis is derived from MSCs, and that β-catenin supports tumorigenesis by maintaining mesenchymal progenitor cells in a less differentiated state. Protecting this progenitor cell popu- lation might prevent tumor formation in patients harboring a germline APC mutation, where fibromatosis is currently the leading cause of mortality. -
Aggressive Fibromatosis Response to Tamoxifen
Libertini et al. Clin Sarcoma Res (2018) 8:13 https://doi.org/10.1186/s13569-018-0100-3 Clinical Sarcoma Research RESEARCH Open Access Aggressive fbromatosis response to tamoxifen: lack of correlation between MRI and symptomatic response M. Libertini1 , I. Mitra1,2, W. T. A. van der Graaf1,3, A. B. Miah1,3, I. Judson1,3, R. L. Jones1,3, K. Thomas2, E. Moskovic1,3, Z. Szucs1, C. Benson1 and C. Messiou1,2,3* Abstract Background: One of the commonly used systemic agents for the treatment of aggressive fbromatosis is the anti- oestrogen drug tamoxifen. However, data on efcacy and optimum methods of response assessment are limited, consisting mainly of small case series and reports. Methods: A retrospective database was used to identify consecutive patients diagnosed with aggressive fbroma- tosis (AF) and treated with tamoxifen plus/minus non-steroidal anti-infammatory drugs at our tertiary referral centre between 2007 and 2014. MRI and symptom changes were recorded. Results: Thirty-two patients (13 male 19 female, median age 41 years) were included. Median duration of treatment with tamoxifen was 316 days. Of 9 patients with progressive disease by RECIST 1.1 (28%): 4 patients experienced wors- ening symptoms; 3 patients had improved symptoms and 2 had no change in symptoms. Of 22 patients with stable disease (69%): 11 had no change in symptoms; 6 had improved symptoms and 5 patients had worsening symptoms. One patient achieved a partial response with improved symptoms. Conclusions: No relationship was identifed between symptomatic beneft and response by RECIST 1.1 on MRI. Pro- spective studies in AF should incorporate endpoints focusing on patient symptoms.