Barnegat Bay—
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fishery Bulletin of the Fish and Wildlife Service V.55
CHAPTER VIII SPONGES, COELENTERATES, AND CTENOPHORES Blank page retained for pagination THE PORIFERA OF THE GULF OF MEXICO 1 By J. Q. TIERNEY. Marine Laboratory, University of Miami Sponges are one of the dominant sessile inverte groups. The. floor of the Gulf between the bars brate groups in the Gulf of Mexico: they extend is sparsely populated. The majority of the ani from the intertidal zone down to the deepest mals and plants are concentrated on the rocky Parts of the basin, and almost all of the firm or ledges and outcroppings. rocky sections of the bottom provide attachment The most abundant sponges on these reefs are for them. of several genera representing most of the orders Members of the class Hyalospongea. (Hexacti of the class Demospongea. Several species of nellidea) are, almost without exception, limited to Ircinia are quite common as are Verongia, Sphecio the deeper waters of the Gulf beyond the 100 spongia, and several Axinellid and Ancorinid fathom curve. These sponges possess siliceous sponges; Cliona is very abundant, boring into spicules in which (typically) six rays radiate from molluscan shells, coral, and the rock itself. The II. central point; frequently, the spicules are fused sponge population is rich both in variety and in ~gether forming a basket-like skeleton. Spongin number of individuals; for this reason no attempt 18 never present in this group. is made to discuss it in taxonomic detail in this In contrast to the Hyalospongea, representa r~sum~. ti\Tes of the clasa Calcispongea are seldom, if Some of the sponges of the Gulf are of world ~\Ter, found in deep water. -
Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000). -
Common Fishes of the Hudson-Raritan Estuary
THE BIOLOGY OF THE HUDSON-RARITAN ESTUARY: A MARINE EDUCATION PROGRAM Produced by the Staff of the Education Program at the New Jersey Marine Sciences Consortium Building 22, Fort Hancock Sandy Hook, New Jersey 07732 Funded by the Geraldine R. Dodge Foundation and the New Jersey Sea Grant College Program N,J,SeaGrantProgram PREFACE AND ACKNOWLEDGEMENTS The Hudson-Raritan Estuary encompasses the waters of New York Harbor and the tidally influenced portions of all of the rivers and streams that empty into it.The Estuary is an extraordinary resource and a biologically rich ecosystem. However, as the site of extensive human activity, it has experienced significant ecological stress. Presently, the Estuary is threatened by increasing pollution and overuse of its resources. Although much information has been made available in recent years about human use of the marine resources of the Hudson-Raritan Estuary, it is scattered among technical and semi- technical reports, scientific journals, newsletter and magazine articles and other documents produced by federal and state agencies, private environmental organizations, and academic programs. Educational materials related to the Estuary are typically geared towards users such as commercial and recreational fishers, environmentalists, college students, or the general public. Educational materials related to the Estuary for teachers and students are lacking. To address this need, the New Jersey Marine Sciences Consortium undertook a project funded by the Geraldine R. Dodge Foundation and the New Jersey Sea Grant College Program to develop an interdisciplinary marine education program on the biology of the Hudson-Raritan Estuary.It is the goal of this project to enable teachers to introduce middle and high school students to the important resources of the Estuary, allowing them to understand why the United States Environmental Protection Agency has designated the Hudson-Raritan Estuary one of national significance. -
Occasional Papers
NUMBER 79, 64 pages 27 July 2004 BISHOP MUSEUM OCCASIONAL PAPERS RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 2003 PART 2: NOTES NEAL L. EVENHUIS AND LUCIUS G. ELDREDGE, EDITORS BISHOP MUSEUM PRESS HONOLULU C Printed on recycled paper Cover illustration: soldier of Coptotermes formosanus, the subterranean termite (modified from Williams, F.X., 1931, Handbook of the insects and other invertebrates of Hawaiian sugar cane fields). Bishop Museum Press has been publishing scholarly books on the natu- RESEARCH ral and cultural history of Hawai‘i and the Pacific since 1892. The Bernice P. Bishop Museum Bulletin series (ISSN 0005-9439) was begun PUBLICATIONS OF in 1922 as a series of monographs presenting the results of research in many scientific fields throughout the Pacific. In 1987, the Bulletin series BISHOP MUSEUM was superceded by the Museum’s five current monographic series, issued irregularly: Bishop Museum Bulletins in Anthropology (ISSN 0893-3111) Bishop Museum Bulletins in Botany (ISSN 0893-3138) Bishop Museum Bulletins in Entomology (ISSN 0893-3146) Bishop Museum Bulletins in Zoology (ISSN 0893-312X) Bishop Museum Bulletins in Cultural and Environmental Studies (NEW) (ISSN 1548-9620) Bishop Museum Press also publishes Bishop Museum Occasional Papers (ISSN 0893-1348), a series of short papers describing original research in the natural and cultural sciences. To subscribe to any of the above series, or to purchase individual publi- cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected]. Institutional libraries interested in exchang- ing publications may also contact the Bishop Museum Press for more information. -
Delawarebayreport
DELAWARE BAY REPORT SERIES Volume 6 THE BIOLOGY OF THE OYSTER COMMUNITY AND ITS ASSOCIATED FAUNA IN DELAWARE BAY by Don Maurer and Les Watling This series was prepared under a grant from the National Geographic Society Report Series Editor Dennis F. Polis Spring 1973 College of Marine Studies University of Delaware Newark, Delaware 19711 3 TABLE OF CONTENTS Page List of Figures and Tables. 4 Abstract. •. 5 Introduction. 7 Description of Study Area 9 Oyster Population . 15 Descriptive Biology 18 A. Porifera. • 27 B. Coelenterata. 31 C. Turbellaria . 33 D. Nemertea. 34 E. Mollusca, Pelecypoda. 35 F. Mollusca, Gastropoda. 39 G. Polychaeta. 45 H. Arthropoda. 50 1. Ectoprocta. 59 J. Tunicates and Pisces. 62 General Comparisons of the Fauna. 63 Substrate .•... 68 Salinity and Season 72 Discussion. 72 References. 80 4 LIST OF FIGURES Page Figure 1: Map of Delaware Bay and Tributaries. 10 Figure 2: The relationship between the maximum salinity and species abundance on the oyster bars of Delaware Bay.•.•..• 76 LIST OF TABLES Table 1: Observed Hydrographic and Substrate Characteristics of Delaware's Oyster Beds. 12 Table 2: Occurrence and Distribution of Species From Oyster Bars ...•..• 21 Table 3: Composition of Fauna by Group. 64 Table 4: Jaccard Coefficient for Fauna on Oyster Bars Fall and Spring Samples Combined 66 Table 5: Species that Occur in 20% or more of all Samples. .•..••..•.. 67 Table 6: Number of Stations with a Given Substrate in each River, Fall and Spring. •..•. 69 Table 7: Percent of All Species in Each River Occurring on a Given Substrate in the Fall and the Spring 71 5 ABSTRACT The purpose of this study was to describe the composition of the fauna of Delaware oyster beds. -
Lawarb: Bayrepobt Series
MARS QH 1 .045 v.5 i<"-_V~/, LAWARB: BAYREPOBT SERIES .. ----------------\\ DELAWARE BAY REPORT SERIES Volume 5 GUIDE TO THE MACROSCOPIC ESTUARINE AND MARINE INVERTEBRATES OF THE DELAWARE BAY REGION by Les Watling and Don Maurer This series was prepared under a grant from the National Geographic Society Report Series Editor Dennis F. Polis Spring 1973 College of Marine Studies University of Delaware Newark, Delaware 19711 3 I CONTENTS !fj ! I Introduction to the Use of Thi.s Guide •••••• 5 I Key to the Major Groups in the Gui.de. •••• 10 I Part T. PORIFERA.......... 13 Key to the Porifera of the Delaware Bay Region 15 Bibliography for the Porifera. 18 Part II. PHYLUM CNIDARIA ••.• ••••• 19 Key to the Hydrozoa of the Delaware Bay Region •• 23 Key to the Scyphozoa of the Delaware Bay Regi.on. • 27 Key to the Anthozoa of the Delaware Bay Region • 28 Bibliography for the Cnidaria. ••••• 30 Part III. PLATYHELMINTHES AND RHYNCHOCOELA ••• 32 Key to the Platyhelminthes of the Delaware Bay Region. 34 Key to the Rhynchocoela of the Delaware Bay Region 35 Bibliography for the Platyhelminthes • 37 Bibliography for the Rhynchocoela. • 38 Part IV. ANNELIDA AND SIPUNCULIDA..• 39 Key to the Families of Polychaeta. • 43 Bibliography for the Polychaeta. • 62 Bibliography for the Sipunculida •• 66 Part V. PHYLUM MOLLUSCA • 67 Key to the Pelecypoda of the Delaware Bay Region • 75 Key to the Gastropoda of the Delaware Bay Region . 83 Key to the Cephalopoda of the Delaware Bay Region. 93 Bibliography for the Mollusca. •••.• 94 Bibliography for the Pelecypoda. •••• 95 Bibliography for Gastropoda, Cephalopoda and Scaphopoda. -
Inhabitants of Chesapeake Bay Part 1. Animals of Jelly
W&M ScholarWorks Reports 1960 Inhabitants of Chesapeake Bay Part 1. Animals of Jelly Robert S. Bailey Virginia Fisheries Laboratory Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Bailey, R. S. (1960) Inhabitants of Chesapeake Bay Part 1. Animals of Jelly. Educational series; no. 11. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.21220/V51N07 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ,I, I INHABITANTS OF CHESAPEAKE BAY PART 1.//~ tJ/ ~~ --- ?--'-.......... / LIL:rrAT?Y ' I r f){ fhr~ : yt· GIN/A lNSTrfUTf:_ \ - --""' By Robert S. Bailey VIMS VIRGINIA FISHERIES QH 91.15 .E38 no.ll c.l \{t filS !)\\; G-32. ,~..,JJ , II CONTENTS SWIMMING JELLYFISHES THAT STING 1 NON -SWIMMING JELLYFISHES THAT STING 9 PLANT-LIKE JELLYFISHES THAT STING 13 1. Hydroids 13 2. Corals 21 JELLYFISHES THAT DO NOT STING 23 APPENDIX Systematic List 27 Selected References 31 INHABITANTS OF CHESAPEAKE BAY I. ANIMALS OF JELLY by Robert S. Bailey Information Officer Virginia Fisheries Laboratory Gloucester Point, Virginia Published by VIRGINIA FISHERIES LAB ORA TORY Educational Series, No. ll 1960 FOREWORD Animals of Jelly is Part I of a series intended to introduce beginning biology students to marine organisms. The animals described here all have bodies of jelly-like material. Some are free-swimming, some are sessile; some build hard limestone structures for support, others are buoyed up by the water and have no firm structure. -
Email: [email protected] Phone: 508 289 7375 Fax: 508 2980 7900
Marine Resources Department Catalog of Specimens and Services For scientific research and education only Email: [email protected] Phone: 508 289 7375 Fax: 508 2980 7900 Catalog # Name Category Unit Price 110 Aquaria Set (w/ out Seawater) Aquaria 1 Set $98.95 120 Aquaria Set (w/Seawater) Aquaria 1 Set $98.95 130 Sea Water (Filtered Natural) Services 5 gallons $25.00 140 Plankton tow ( (~1 liter)) Services 1 quart $38.60 149 Sponge collection (4 spp.) Porifera (Sponges) each $130.00 150 Leucosolenia botryoides (Organ-Pipe Sponge) Porifera (Sponges) 50 students $53.25 160 Sycon ciliatum (Little Vase Sponge) Porifera (Sponges) 50 students $53.25 170 Haliclona sp. (Finger Sponge) Porifera (Sponges) 50 students $45.75 180 Lissodendoryx isodictyalis (Garlic or stinking sponge) Porifera (Sponges) 50 students $45.75 190 Clathria (Microciona) prolifera (Red Beard Sponge) Porifera (Sponges) 1 clump $21.25 200 Mycale fibrexilis (Sponge) Porifera (Sponges) 50 students $53.25 210 Halichondria (Breadcrumb sponge) Porifera (Sponges) 50 students $50.15 220 Suberites ficus (Sea orange sponge) Porifera (Sponges) 1 clump $21.25 230 Cliona (Sulfur or Boring sponge) Porifera (Sponges) 1 clump $21.25 239 Cnidarian collection (4 spp.) Cnidaria each $140.00 240 Tubularia crocea (Pink-mouth hydroid) Hydroids 50 students $45.75 250 Pennaria (Feather Hydroid) Hydroids 50 students $37.80 260 Clava (Club Hydroid) Hydroids 1 clump $36.50 270 Cordylophora (Fresh water Hydroid) Hydroids 1 clump $45.75 280 Hydractinia echinata (Snail fur) Hydroids 1 each $6.55 290 Bougainvillia (Bougainvillia Hydroid) Hydroids 50 students $45.75 300 Eudendrium sp. (Stick Hydroids) Hydroids 1 clump $53.25 310 Campanularia (Campanularian Hydroid) Hydroids 50 students $37.80 320 Obelia dichotoma (Sea thread Hydroid ) Hydroids 50 students $45.75 MRD services and specimens are only available for research and educational purposes and not to the general public. -
Inhabitants of Chesapeake Bay Part
,I, I INHABITANTS OF CHESAPEAKE BAY PART 1.//~ tJ/ ~~ --- ?--'-.......... / LIL:rrAT?Y ' I r f){ fhr~ : yt· GIN/A lNSTrfUTf:_ \ - --""' By Robert S. Bailey VIMS VIRGINIA FISHERIES QH 91.15 .E38 no.ll c.l \{t filS !)\\; G-32. ,~..,JJ , II CONTENTS SWIMMING JELLYFISHES THAT STING 1 NON -SWIMMING JELLYFISHES THAT STING 9 PLANT-LIKE JELLYFISHES THAT STING 13 1. Hydroids 13 2. Corals 21 JELLYFISHES THAT DO NOT STING 23 APPENDIX Systematic List 27 Selected References 31 INHABITANTS OF CHESAPEAKE BAY I. ANIMALS OF JELLY by Robert S. Bailey Information Officer Virginia Fisheries Laboratory Gloucester Point, Virginia Published by VIRGINIA FISHERIES LAB ORA TORY Educational Series, No. ll 1960 FOREWORD Animals of Jelly is Part I of a series intended to introduce beginning biology students to marine organisms. The animals described here all have bodies of jelly-like material. Some are free-swimming, some are sessile; some build hard limestone structures for support, others are buoyed up by the water and have no firm structure. Some of these animals are coelenterates possessing stinging cells; some are ctenophores which have none; some are beautiful to behold and all are inter esting animals to observe and study. There are many coelenterates living in the Chesa peake area which are not mentioned in this booklet and no attempt has been made to give full description of those which have been included. The systematic list in the appendix will be helpful in locating the different species in various scien tific guides, where more complete description will be found. Excellent references are available in the Virginia Fisheries Laboratory library which may be used by students who have made prior arrangements through the Education Office. -
The Bioenergetics of Symbiotic Sea Anemones (Anthozoa: Actiniaria)
Symbiosis, 5 (1988) 103-142 103 Balaban Publishers, Philadelphia/Rehovot Review article The Bioenergetics of Symbiotic Sea Anemones (Anthozoa: Actiniaria) R. GRANT STEEN* Division of NMR Research, Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Tel. {301} 955-7492 Received November 19, 1987; Accepted March 17, 1988 Abstract The bioenergetics of sea anemones and the interactions between anemones and symbiotic zooxanthellae are reviewed from the standpoint of costs and benefits to the anemone. Energy input to the anemone includes phagotrophy (consumption of particulate organic material), saprotrophy (uptake of dis• solved organic material), and autotrophy (photosynthesis by zooxanthellae). Energy output includes respiration, growth and storage, reproduction, and export of carbon. Interactions between host and symbiont affect virtually all of these processes and the energetic costs of symbiosis to the host should not be ignored. Anemones appear to benefit from translocated algal photosynthate as anemones starved in light lose weight less rapidly than anemones starved in darkness. However oxygen production during algal photosynthesis may also be important in determining the balance between aerobic and anaerobic res• piration by the host. Furthermore, translocation of algal photosynthate may not equate with benefit to the host: much photosynthetic carbon is lost from the host and the remaining carbon may not contribute substantially to host bioenergetic status. The net impact of zooxanthellae on the host energy bud• get under field conditions is largely unknown. Keywords: Bioenergetics, symbiosis, sea anemone, photosynthesis "Present address: Department of Radiology, University of Washington, Seattle, WA 98195, USA 0334-5114/88/$03.00 © 1988 Balaban Publishers 104 R.G. -
Using the Critical Salinity (Scrit) Concept to Predict Invasion Potential of the Anemone Diadumene Lineata in the Baltic Sea
Mar Biol (2016) 163:227 DOI 10.1007/s00227-016-2989-5 INVASIVE SPECIES - ORIGINAL PAPER Using the critical salinity (Scrit) concept to predict invasion potential of the anemone Diadumene lineata in the Baltic Sea Imke Podbielski1,2 · Christian Bock3 · Mark Lenz1 · Frank Melzner1 Received: 3 March 2016 / Accepted: 10 September 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract It is widely assumed that the ability of an intro- a fivefold population growth through asexual reproduction duced species to acclimate to local environmental condi- at high salinities (34 and 24). Biomass increase under these tions determines its invasion success. The sea anemone conditions was significantly higher (69 %) than at a salin- Diadumene lineata is a cosmopolitan invader and shows ity of 14. At a salinity of 7, anemones ceased to reproduce extreme physiological tolerances. It was recently discov- asexually, their biomass decreased and metabolic depres- ered in Kiel Fjord (Western Baltic Sea), although the brack- sion was observed. Five main intracellular osmolytes were ish conditions in this area are physiologically challenging identified to be regulated in response to salinity change, for most marine organisms. This study investigated salin- with osmolyte depletion at a salinity of 7. We postulate that ity tolerance in D. lineata specimens from Kiel Fjord in depletion of intracellular osmolytes defines a critical salin- order to assess potential geographical range expansion of ity (Scrit) that determines loss of fitness. Our results indicate the species in the Baltic Sea. In laboratory growth assays, that D. lineata has the potential to invade the Kattegat and we quantified biomass change and asexual reproduction Skagerrak regions with salinity >10. -
New Distributional Records of Actiniarian Sea Anemones from Andaman and Nicobar Islands
Rec. zool. Surv. India: Vol. 117(1)/ 26-33, 2017 ISSN (Online) : (Applied for) DOI: 10.26515/rzsi/v117/i1/2017/117280 ISSN (Print) : 0375-1511 New distributional records of Actiniarian sea anemones from Andaman and Nicobar Islands C. Raghunathan* and Smitanjali Choudhury Zoological Survey of India, Port Blair – 744102, Andaman and Nicobar Islands; [email protected] Abstract Two species of actiniarian sea anemones Actinodendron arboreum (Quoy & Gaimard, 1833) and Diadumene leucolena (Verrill, 1866) under the families Actinodendronidae and Diadumenidae respectively were recorded as new addition of sea anemone fauna to India from Andaman and Nicobar Islands. Earlier literature indicated that the occurrence of A. arboreum D. leucolena from Asia-Pacific region while known from east and west coast of North America. The diagnostic features of the presently recorded species along with distributional details are provided. Keywords: Sea anemone, Actinodendron arboreum and Diadumene leucolena, New records, Andaman Introduction against 71 species from Indian seas (Raghunathan et al., 2014; Choudhury et al., 2015; Choudhury et al., in press). The sea anemones are considered to be a lesser known The genusActinodendron de Blainville, 1830 group in India as only 6.5% of species revealed from representing five species (Fautin, 2015a) is found in littoral Indian water against their global diversity of 1109 species to infra littoral and the tropical to subtropical regions (WoRMS, 2014). Studies on sea anemones was initiated of world waters. In India, Raghunathan et al. (2014) date back the beginning of the 19th century. The first sea reported the same genus with a record of Actinodendron anemones were reported from South Africa by Lesson glomeratum Haddon, 1898 from Andaman and Nicobar (1830), who described two species from the ‘Cape of Good Islands.