Geodesy, Map Projections and Coordinate Systems GIS in Water Resources, Fall 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
State Plane Coordinate System
Wisconsin Coordinate Reference Systems Second Edition Published 2009 by the State Cartographer’s Office Wisconsin Coordinate Reference Systems Second Edition Wisconsin State Cartographer’s Offi ce — Madison, WI Copyright © 2015 Board of Regents of the University of Wisconsin System About the State Cartographer’s Offi ce Operating from the University of Wisconsin-Madison campus since 1974, the State Cartographer’s Offi ce (SCO) provides direct assistance to the state’s professional mapping, surveying, and GIS/ LIS communities through print and Web publications, presentations, and educational workshops. Our staff work closely with regional and national professional organizations on a wide range of initia- tives that promote and support geospatial information technologies and standards. Additionally, we serve as liaisons between the many private and public organizations that produce geospatial data in Wisconsin. State Cartographer’s Offi ce 384 Science Hall 550 North Park St. Madison, WI 53706 E-mail: [email protected] Phone: (608) 262-3065 Web: www.sco.wisc.edu Disclaimer The contents of the Wisconsin Coordinate Reference Systems (2nd edition) handbook are made available by the Wisconsin State Cartographer’s offi ce at the University of Wisconsin-Madison (Uni- versity) for the convenience of the reader. This handbook is provided on an “as is” basis without any warranties of any kind. While every possible effort has been made to ensure the accuracy of information contained in this handbook, the University assumes no responsibilities for any damages or other liability whatsoever (including any consequential damages) resulting from your selection or use of the contents provided in this handbook. Revisions Wisconsin Coordinate Reference Systems (2nd edition) is a digital publication, and as such, we occasionally make minor revisions to this document. -
Part V: the Global Positioning System ______
PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment. -
Geodetic Position Computations
GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem. -
GPS and the Search for Axions
GPS and the Search for Axions A. Nicolaidis1 Theoretical Physics Department Aristotle University of Thessaloniki, Greece Abstract: GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission of a GPS signal from a satellite to another satellite, both in low orbit around the Earth. To increase the accuracy of the experiment, we evaluate the influence of Earth’s gravitational field on the whole quantum phenomenon. There is a significant advantage in our proposal. While the geomagnetic field B is low, the magnetized length L is very large, resulting into a scale (BL)2 orders of magnitude higher than existing or proposed reaches. The transformation of the GPS photons into axion particles will result in a dimming of the photons and even to a “light shining through the Earth” phenomenon. 1 Email: [email protected] 1 Introduction Quantum Chromodynamics (QCD) describes the strong interactions among quarks and gluons and offers definite predictions at the high energy-perturbative domain. At low energies the non-linear nature of the theory introduces a non-trivial vacuum which violates the CP symmetry. The CP violating term is parameterized by θ and experimental bounds indicate that θ ≤ 10–10. The smallness of θ is known as the strong CP problem. An elegant solution has been offered by Peccei – Quinn [1]. A global U(1)PQ symmetry is introduced, the spontaneous breaking of which provides the cancellation of the θ – term. As a byproduct, we obtain the axion field, the Nambu-Goldstone boson of the broken U(1)PQ symmetry. -
World Geodetic System 1984
World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z). -
Geodetic Control
FGDC-STD-014.4-2008 Geographic Information Framework Data Content Standard Part 4: Geodetic Control May 2008 Federal Geographic Data Committee Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Education, Energy, Health and Human Services, Homeland Security, Housing and Urban Development, the Interior, Justice, Labor, State, and Transportation, the Treasury, and Veteran Affairs; the Environmental Protection Agency; the Federal Communications Commission; the General Services Administration; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; the National Science Foundation; the Nuclear Regulatory Commission; the Office of Personnel Management; the Small Business Administration; the Smithsonian Institution; the Social Security Administration; the Tennessee Valley Authority; and the U.S. Agency for International Development. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of -
Coordinate Reference System Google Maps
Coordinate Reference System Google Maps Green-eyed Prasun taxis penally while Miles always believing his myope dozing subito, he haws so incontinently. Tittuppy Rourke duping, his stirabouts worths ruptures grandly. Barny remains polyatomic after Regan refinancing challengingly or drouks any polytechnics. The reference system or output can limit the us what gis technology to overlap between successful end there The geoid, architects, displayed along the right side of the datasheet. Same as preceding, they must all use the same Coordinate System. Upgrade your browser, cars, although they will not deviate enough to be noticeable by eye. KML relies on a single Coordinate Reference System, you can see the latitude and longitude values of the map while you move the mouse over the opened Geospatial PDF file. In future posts I will discuss some of these packages and their capabilities. Bokeh has started adding support for working with Geographical data. Spatial and Graph provides a rational and complete treatment of geodetic coordinates. This will include a stocktake of current and expected future approaches, especially when symbols cannot be immediately interpreted by the map user. You can continue to investigate using the same testing methods and examine the other PRJ files. DOM container is removed automatically. Geographic Information Systems Demystified. Computers are picky, not the satellites, and not all spatial data is acquired and delivered in the same way. Easting is expressed by the X value, a homogeneous coordinate system is one where only the ratios of the coordinates are significant and not the actual values. Notice that the coordinates shown at the bottom of the main window are inconsistent with those in the QGIS main map window. -
Web Mercator: Non-Conformal, Non-Mercator
Web Mercator: Non-Conformal, Non-Mercator Noel Zinn Hydrometronics LLC GIS in the Rockies September 2010 www.hydrometronics.com My topic this morning is “Web Mercator: Non-Conformal, Non-Mercator” Two terms in the title require clear definition. They are “web Mercator” and “conformal”. And we’ll get right to it. But first you should know that this entire presentation - with speaker’s notes - is posted for download at the URL given at the bottom of the screen, “www . hydrometronics . com”. We’ll do a little math this morning, but just relax. You needn’t take notes. Anything you miss can be downloaded later. 1 Web Mercator Defined • Web Mercator is the mapping of WGS84 datum (i.e. ellipsoidal) latitude / longitude into Easting / Northing using spherical Mercator equations (where R = a) • EPSG coordinate operation method code 1024 (Popular Visualization Pseudo Mercator, PVPM) • EPSG CRS code 3857 WGS84/PVPM (CRS code 3785 is deprecated) • ESRI IDs 102100 (not certain about 102113) • Safe Software (FME) 3857, 3785, 900913, LL84 Web Mercator is the mapping of ellipsoidal latitude and longitude coordinates onto a plane using spherical Mercator equations. This projection was popularized by Google in Google Maps (not Google Earth). The reference ellipsoid is always WGS84 and the spherical radius (R) is equal to the semi-major axis of the WGS84 ellipsoid (a). That’s “Web Mercator”. EPSG call Web Mercator “Popular Visualization Pseudo Mercator”, operation method code 1024. Coupled with WGS84, that’s coordinate reference system (CRS) code 3857. ESRI and FME have their own codes for Web Mercator given here. Web Mercator has been called a cartographic advancement on the Internet. -
Application of Map Projection Transformation in Measurement of a Global Map
N02 Application of Map Projection Transformation in Measurement of a Global Map Team Members: Haocheng Ma, Yinxiao Li School: Tsinghua High School Location: P. R. China,Beijing Academic Advisor: Jianjun Zhou Page - 163 N02 Application of Map Projection Transformation in Measurement of a Global Map Abstract: Cartographical projection is mathematical cartography. Map projection is the mathematical model of geoid. Gauss-Kruger projection is unable to realize seamless splicing between adjoining sheet maps. While Mercator projection, especially web Mercator projection, is able to realize seamless splicing but has larger measurement error. How to combine with the advantage of the two projections, apply the method of map projection transformation and realize accurate measurement under the framework of a global map, is the purpose of this article. In order to demonstrate that the problem of measurement could be solved by map projection transformation, we studied the mathematical principle of Gauss - Kruger Projection and the Mercator Projection and designed the algorithm model based on characteristics of both projections. And established simulated data in ArcMap, calculated the error of the three indicators-the area, the length and the angle- under areas in different latitude(0°-4°、30°-34°、 60°-64°)and longitude (120°-126°)range which validated the algorithm model. The conclusion suggests that it is feasible that using web Mercator Projection is capable to achieve a global map expression. Meanwhile, calculations of area, distance and angle using map projection transformation principle are feasible as well in Gauss - Kruger Projection. This algorithm combines the advantage of the two different kinds of projection, is able to satisfy uses' high demand and covers the shortage of measurement function of online map services in China. -
Coordinate Systems in Geodesy
COORDINATE SYSTEMS IN GEODESY E. J. KRAKIWSKY D. E. WELLS May 1971 TECHNICALLECTURE NOTES REPORT NO.NO. 21716 COORDINATE SYSTElVIS IN GEODESY E.J. Krakiwsky D.E. \Vells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N .B. Canada E3B 5A3 May 1971 Latest Reprinting January 1998 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. TABLE OF CONTENTS page LIST OF ILLUSTRATIONS iv LIST OF TABLES . vi l. INTRODUCTION l 1.1 Poles~ Planes and -~es 4 1.2 Universal and Sidereal Time 6 1.3 Coordinate Systems in Geodesy . 7 2. TERRESTRIAL COORDINATE SYSTEMS 9 2.1 Terrestrial Geocentric Systems • . 9 2.1.1 Polar Motion and Irregular Rotation of the Earth • . • • . • • • • . 10 2.1.2 Average and Instantaneous Terrestrial Systems • 12 2.1. 3 Geodetic Systems • • • • • • • • • • . 1 17 2.2 Relationship between Cartesian and Curvilinear Coordinates • • • • • • • . • • 19 2.2.1 Cartesian and Curvilinear Coordinates of a Point on the Reference Ellipsoid • • • • • 19 2.2.2 The Position Vector in Terms of the Geodetic Latitude • • • • • • • • • • • • • • • • • • • 22 2.2.3 Th~ Position Vector in Terms of the Geocentric and Reduced Latitudes . • • • • • • • • • • • 27 2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes • . • • • • • • • • • • 28 2.2.5 The Position Vector of a Point Above the Reference Ellipsoid . • • . • • • • • • . .• 28 2.2.6 Transformation from Average Terrestrial Cartesian to Geodetic Coordinates • 31 2.3 Geodetic Datums 33 2.3.1 Datum Position Parameters . -
Geodesy: Trends and Prospects
Geodesy: Trends and Prospects Practktll and Scientific Values of Geodesy 25 clearly observable with the new long-baseline interferom We recommend that the United States support three long etry (LBI) and laser-ranging techniques. For example, the baseline-radio-interferometry stations and approximately 1960 Chilean earthquake (magnitude 8.3) has been calcu six laser ranging stations at fvced locations as part ofa new lated (Smith, 1977) to give a change in polar motion corre international service for determining UT and polar motion sponding to a 65-crn offset in the axis about which the pole on a continuing basis with suff~eient accuracy to meet cur moves, if the coseismic fault plane motion derived by Kana rent geodynamics needs. rnori and Cipar (1974) is used, and a possible additional 87 -ern offset due to the preseismic motion for which they The reasons for recommending support for these particu have presented evidence. lar numbers of stations are discussed in Section 4.2. It Seismologists generally believe that the "seismic mo should be noted that most of these stations also will fulfill ment" corresponding to the coseismic motion can be de other important scientific or applied objectives and that a rived accurately from observed long-period seismic-wave number of them are already available or will be soon. amplitudes. However, motions occurring over periods of minutes, days, or even several months before and after the quake are difficult to determine in other ways. Thus 3.3 OCEAN DYNAMICS changes in polar motion over a period of several months around the time of the quake can give a check on the total The geoid is considered to be the equipotential surface that fault displacement, which complements the information would enclose the ocean waters if all external forces were available from resurveys of the surface area surrounding the removed and the waters were to become still. -
Journal of Geodynamics the Interdisciplinary Role of Space
Journal of Geodynamics 49 (2010) 112–115 Contents lists available at ScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog The interdisciplinary role of space geodesy—Revisited Reiner Rummel Institute of Astronomical and Physical Geodesy (IAPG), Technische Universität München, Arcisstr. 21, 80290 München, Germany article info abstract Article history: In 1988 the interdisciplinary role of space geodesy has been discussed by a prominent group of leaders in Received 26 January 2009 the fields of geodesy and geophysics at an international workshop in Erice (Mueller and Zerbini, 1989). Received in revised form 4 August 2009 The workshop may be viewed as the starting point of a new era of geodesy as a discipline of Earth Accepted 6 October 2009 sciences. Since then enormous progress has been made in geodesy in terms of satellite and sensor systems, observation techniques, data processing, modelling and interpretation. The establishment of a Global Geodetic Observing System (GGOS) which is currently underway is a milestone in this respect. Wegener Keywords: served as an important role model for the definition of GGOS. In turn, Wegener will benefit from becoming Geodesy Satellite geodesy a regional entity of GGOS. −9 Global observing system What are the great challenges of the realisation of a 10 global integrated observing system? Geodesy Global Geodetic Observing System is potentially able to provide – in the narrow sense of the words – “metric and weight” to global studies of geo-processes. It certainly can meet this expectation if a number of fundamental challenges, related to issues such as the international embedding of GGOS, the realisation of further satellite missions and some open scientific questions can be solved.