Advances in Pure Mathematics, 2013, 3, 331-334 http://dx.doi.org/10.4236/apm.2013.33047 Published Online May 2013 (http://www.scirp.org/journal/apm) An Elementary Proof of the Mean Inequalities Ilhan M. Izmirli Department of Statistics, George Mason University, Fairfax, USA Email:
[email protected] Received November 24, 2012; revised December 30, 2012; accepted February 3, 2013 Copyright © 2013 Ilhan M. Izmirli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT In this paper we will extend the well-known chain of inequalities involving the Pythagorean means, namely the har- monic, geometric, and arithmetic means to the more refined chain of inequalities by including the logarithmic and iden- tric means using nothing more than basic calculus. Of course, these results are all well-known and several proofs of them and their generalizations have been given. See [1-6] for more information. Our goal here is to present a unified approach and give the proofs as corollaries of one basic theorem. Keywords: Pythagorean Means; Arithmetic Mean; Geometric Mean; Harmonic Mean; Identric Mean; Logarithmic Mean 1. Pythagorean Means 11 11 x HM HM x For a sequence of numbers x xx12,,, xn we will 12 let The geometric mean of two numbers x1 and x2 can n be visualized as the solution of the equation x j AM x,,, x x AM x j1 12 n x GM n 1 n GM x2 1 n GM x12,,, x xnj GM x x j1 1) GM AM HM and 11 2) HM x , n 1 x1 1 HM x12,,, x xn HM x AM x , n 1 1 x1 x j1 j 11 1 3) x xx n2 to denote the well known arithmetic, geometric, and 12 n xx12 xn harmonic means, also called the Pythagorean means This follows because PM .