Coprinus Littoralis Fungal Planet Description Sheets 425

Total Page:16

File Type:pdf, Size:1020Kb

Coprinus Littoralis Fungal Planet Description Sheets 425 424 Persoonia – Volume 36, 2016 Coprinus littoralis Fungal Planet description sheets 425 Fungal Planet 453 – 4 July 2016 Coprinus littoralis G. Moreno, Carlavilla, Heykoop, Manjón, A. Sánchez, sp. nov. Etymology. Name reflects the habitat, littoral dunes, from which this Henares, Campus universitario, Escuela Politécnica, in a garden, 6 Nov. fungus was collected. 2015, A. López­Villalba, J.R. Carlavilla & G. Moreno, AH 45830 (ITS, LSU sequences GenBank, KU686917, KU686900). Coprinus pinetorum: SPAIN, Classification — Agaricaceae, Agaricales, Agaricomycetes. Madrid, Rivas Vaciamadrid, in humus of Pinus halepensis, 18 Nov. 2011, M. Martín, L. Rubio­Casas, L. Rubio­Roldán & G. Moreno, holotype AH Cap up to 45 × 25 mm (measured on dried herbarium speci- 44094 (ITS, LSU sequences GenBank, KU686924, KU686907); Madrid, mens), ovoid to broadly ellipsoid, becoming revolute at margin Rivas Vaciamadrid, in humus of Pinus halepensis, 18 Nov. 2011, M. Martín, when mature and strongly deliquescent, first whitish, later with L. Rubio­Casas, L. Rubio­Roldán & G. Moreno, AH 45797 (ITS, LSU se- pinkish tinges, veil thick, ochraceous, persistent at centre, quences GenBank, KU686925, KU686908); idem, 22 Nov. 2014, M. Martín, star-shaped, not deliquescent, recalling that of Coprinus AH 45798 (ITS, LSU sequences GenBank, KU686926, KU686909); Alm- vosoustii. Gills crowded, first white, then pinkish, later black, ería, Sierra de los Filabres, in humus of Pinus halepensis, 30 Nov. 2002, strongly deliquescent; gill-edge could not be observed due to G. Moreno & R. Galán, AH 45815 (ITS, LSU sequences GenBank, KU686927, KU686910). Coprinus vosoustii: SPAIN, Madrid, Ciudad Universitaria, Facul- deliquescence. Stem 55–65 × 3–6 mm, whitish, with whitish tad de Farmacia and Medicina, in a garden, 13 May 1976, K. Tabba, AH 1284 ephemeral ring; base up to 13 mm wide and bulbous to napi- (ITS, LSU sequences GenBank, KU686919, KU686902); idem, 8 May 1977, form, strongly rooting, 20–35 mm in length; hollow, with central G. Moreno, AH 556 (ITS, LSU sequences GenBank, KU686923, KU686906). strand. Spores 13–20 × 8–12 µm av. 15.5–17.5 × 9.5–10.6 Notes — Coprinus littoralis is characterised by its medium µm (3 collections), Q = 1.60–1.72, ellipsoid, smooth, some- av. size sporocarp (as compared with Coprinus comatus), its large times slightly broadened base, dark black, germ pore central to spores (13–20 × 8–12 µm) with slightly eccentric germ pore slightly eccentric toward the abaxial spore side, up to 2.5–3 µm and by growing in littoral dunes. diam. Basidia and pseudoparaphyses could not be observed due to deliquescence. Pleurocystidia not observed. Cheilo­ In our ITS phylogeny (MycoBank supplementary data) Coprinus cystidia probably present in young specimens but the material littoralis is significantly related to C. comatus, C. sterquilinus, studied was always very mature, with the gill-edge completely C. vosoustii and C. pinetorum. They all belong to subsect. Co­ deliquesced. Clamp­connections absent, only pseudoclamps prinus s. Uljé (the C. comatus group). Coprinus comatus differs present. Elements of veil 45–200 × 5–30 µm, consisting of from C. littoralis by its more robust habit, smaller spores (9–12.5 cylindrical septate hyphae, rarely branched, densely packed, × 7–9 µm) and by fruiting on strongly nitrified sites (gardens, very variable in size and shape. roadsides and paths or on lawns). Coprinus sterquilinus differs Habit, Habitat & Distribution — Growing solitary on sand in from C. littoralis by its larger spores (17–26 × 10–15 µm) and littoral dunes with psammophilous vegetation. Very rare in the the habitat on dung. Coprinus vosoustii, considered by Moreno studied area. & Heykoop (1998) as a synonym of C. calyptratus, resembles C. littoralis because of the thick and persistent star-shaped Typus. SPAIN, Huelva, Playa Coto de Doñana, National Park of Doñana, ochraceous veil on the cap as well as by the large spores. psammophilous in dunes, 5 Apr. 2013, A. Sánchez (holotype AH 45819, Nevertheless, Coprinus littoralis differs from C. vosoustii by the ITS sequence GenBank KU686920, LSU sequence GenBank KU686903, MycoBank MB815823). strict psammophilous habitat and the absence of a napiform rooting stipe. Coprinus pinetorum differs from C. littoralis by its Additional specimens examined. Coprinus littoralis: SPAIN, Huelva, fibrillose flocculose veil, smaller spores (8–11 × 5.5–8 µm) and Playa de Doñana, National Park of Doñana, psammophilous in dunes, 6 Apr. 2013, A. Sánchez, paratype AH 45860 (ITS, LSU sequences Gen Bank, by fruiting among needles of Pinus halepensis. KU686921, KU686904), idem, 7 Apr. 2013, AH 45859 (ITS, LSU sequences Macroscopically, Coprinus spadiceisporus, a very rare species GenBank, KU686922, KU686905). Coprinus comatus: SPAIN, Alcalá de described from the State of Washington by Van de Bogart Henares, Campus universitario, Facultad de Biología, in a garden, 15 Nov. (1976), is also a C. comatus-like fungus. Nevertheless, it differs 2008, J. Rejos & G. Moreno, AH 44095 (ITS, LSU sequences GenBank, from C. littoralis by fruiting on dung and by its veil with small KU686915, KU686898); Madrid, Valdemorillo, in open area in a forest of Quercus ilex subsp. ballota, 10 Apr. 2010, M. Hinojosa & J.C. Campos, AH somewhat appressed scales (Van de Bogart 1976). Uljé et al. 45823 (ITS, LSU sequences GenBank, KU686913, KU686896); Madrid, (1998) revised the type of C. spadiceisporus and synonymised Canillejas, in parking of the Capricho Park, 23 Mar. 2014, J.L. Domingo, AH it with C. roseistipitatus, which also was described fruiting on 44089 (ITS, LSU sequences GenBank, KU686914, KU686897); Madrid, dung of rabbit and deer. Coprinus spadiceisporus has been Las Matas, on side of a path, 8 May 2014, I. Morales, AH 45796 (ITS, LSU collected in Spain (Lleida) by Tabarés & Rocabruna (2002) sequences GenBank, KU686916, KU686899); Guadalajara, in a garden, fruiting on dung of rabbit. Another C. comatus-like fungus which 6 Dec. 2014, J.R. Carlavilla, AH 45795 (ITS, LSU sequences GenBank, resembles Coprinus littoralis is C. levisticolens. However, Co­ KU686911, KU686894); Alcalá de Henares, Campus universitario, Resi- dencia Crusa, in a garden, 28 Oct. 2015, P. Rosario, AH 45832 (ITS, LSU prinus levisticolens differs from C. pinetorum by its scaly cap, sequences GenBank, KU686912, KU686895); idem, 4 Nov. 2015, AH smaller spores (11–14.5 × 7–8 µm) and by fruiting on sandy soil 45831 (ITS, LSU sequences GenBank, KU686918, KU686901); Alcalá de under Populus alba and Crataegus spp. (Ludwig & Roux 1995). Colour illustrations. Spain, Playa Coto de Doñana, National Park of Doñana, littoral dunes with psammophilous vegetation, where the holotype was collected; basidiomata, cylindrical septate hyphae of veil, spores under LM, smooth spores with eccentric germ pore under SEM (from the holotype). Scale bars = 1 cm (basidiomata), 50 µm (veil), 10 µm (spores under LM), 5 µm (spores under SEM). Gabriel Moreno, Juan Ramón Carlavilla, Michel Heykoop, José Luis Manjón & A. Sánchez, Departamento de Ciencias de la Vida (Área de Botánica), Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain; e-mail: [email protected], [email protected], [email protected], [email protected] & [email protected] © 2016 Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures.
Recommended publications
  • Agaricales, Basidiomycota) Occurring in Punjab, India
    Current Research in Environmental & Applied Mycology 5 (3): 213–247(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/3/6 Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal–Dhuri–148024, Punjab, India. 2Department of Botany, Punjabi University, Patiala–147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India. Current Research in Environmental & Applied Mycology 5(3), 213–247, Doi 10.5943/cream/5/3/6 Abstract This paper includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India. The information is based on the survey to dung localities of the state during the various years from 2007-2011. A total number of 172 collections have been observed, growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, open areas, zoological parks, and on dung heaps along roadsides or along village ponds, etc. High coprophilous mushrooms’ diversity has been established and a number of rare and sensitive species recorded with the present study. The observed collections belong to 95 species spread over 20 genera and 07 families of the order Agaricales. The present paper discusses the distribution of these mushrooms in Punjab among different seasons, regions, habitats, and growing habits along with their economic utility, habitat management and conservation. This is the first attempt in which various dung localities of the state has been explored systematically to ascertain the diversity, seasonal availability, distribution and ecology of coprophilous mushrooms.
    [Show full text]
  • Postharvest Biochemical Characteristics and Ultrastructure of Coprinus Comatus
    Postharvest biochemical characteristics and ultrastructure of Coprinus comatus Yi Peng1,2, Tongling Li2, Huaming Jiang3, Yunfu Gu1, Qiang Chen1, Cairong Yang2,4, Wei liang Qi2, Song-qing Liu2,4 and Xiaoping Zhang1 1 College of Resources, Sichuan Agricultural Uniersity, Chengdu, Sichuan, China 2 College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, Sichuan, China 3 Sichuan Vocational and Technical College, Suining, Sichuan, China 4 Institute of Microbiology, Chengdu Normal University, Chengdu, Sichuan, China ABSTRACT Background. Coprinus comatus is a novel cultivated edible fungus, hailed as a new preeminent breed of mushroom. However, C. comatus is difficult to keep fresh at room temperature after harvest due to high respiration, browning, self-dissolve and lack of physical protection. Methods. In order to extend the shelf life of C. comatus and reduce its loss in storage, changes in quality, biochemical content, cell wall metabolism and ultrastructure of C. comatus (C.c77) under 4 ◦C and 90% RH storage regimes were investigated in this study. Results. The results showed that: (1) After 10 days of storage, mushrooms appeared acutely browning, cap opening and flowing black juice, rendering the mushrooms commercially unacceptable. (2) The activity of SOD, CAT, POD gradually increased, peaked at the day 10, up to 31.62 U g−1 FW, 16.51 U g−1 FW, 0.33 U g−1 FW, respectively. High SOD, CAT, POD activity could be beneficial in protecting cells from ROS-induced injuries, alleviating lipid peroxidation and stabilizing membrane integrity. (3) The activities of chitinase, β-1,3-glucanase were significantly increased. Higher degrees of cell wall degradation observed during storage might be due to those enzymes' high activities.
    [Show full text]
  • The Good, the Bad and the Tasty: the Many Roles of Mushrooms
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 85: 125–157. The good, the bad and the tasty: The many roles of mushrooms K.M.J. de Mattos-Shipley1,2, K.L. Ford1, F. Alberti1,3, A.M. Banks1,4, A.M. Bailey1, and G.D. Foster1* 1School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 2School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK; 3School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; 4School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK *Correspondence: G.D. Foster, [email protected] Abstract: Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the “Forgotten Kingdom”, fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or ‘roles’, for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category.
    [Show full text]
  • A New Genus and Four New Species in the /Psathyrella S.L. Clade from China
    A peer-reviewed open-access journal MycoKeys 80: 115–131 (2021) doi: 10.3897/mycokeys.80.65123 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research A new genus and four new species in the /Psathyrella s.l. clade from China Tolgor Bau1, Jun-Qing Yan2 1 Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Af- fairs, Jilin Agricultural University, Changchun 130118, China 2 Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China Corresponding authors: Tolgor Bau ([email protected]); Jun-Qing Yan ([email protected]) Academic editor: Alfredo Vizzini | Received 27 February 2021 | Accepted 15 May 2021 | Published 26 May 2021 Citation: Bau T, Yan J-Q (2021) A new genus and four new species in the /Psathyrella s.l. clade from China. MycoKeys 80: 115–131. https://doi.org/10.3897/mycokeys.80.65123 Abstract Based on traditional morphological and phylogenetic analyses (ITS, LSU, tef-1α and β-tub) of psathyrel- loid specimens collected from China, four new species are here described: Heteropsathyrella macrocystidia, Psathyrella amygdalinospora, P. piluliformoides, and P. truncatisporoides. H. macrocystidia forms a distinct lineage and groups together with Cystoagaricus, Kauffmania, and Typhrasa in the /Psathyrella s.l. clade, based on the Maximum Likelihood and Bayesian analyses. Thus, the monospecific genusHeteropsathyrella gen. nov. is introduced for the single species. Detailed descriptions, colour photos, and illustrations are presented in this paper. Keywords Agaricales, Basidiomycete, four new taxa, Psathyrellaceae, taxonomy Introduction Psathyrella (Fr.) Quél. is characterized by usually fragile basidiomata, a hygrophanous pileus, brown to black-brown spore prints, always present cheilocystidia and basidi- ospores fading to greyish in concentrated sulphuric acid (H2SO4) (Kits van Waveren 1985; Örstadius et al.
    [Show full text]
  • Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities
    Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities S.E. Evans & P.J. Roberts Evidence Report No 134 About Natural Resources Wales Natural Resources Wales is the organisation responsible for the work carried out by the three former organisations, the Countryside Council for Wales, Environment Agency Wales and Forestry Commission Wales. It is also responsible for some functions previously undertaken by Welsh Government. Our purpose is to ensure that the natural resources of Wales are sustainably maintained, used and enhanced, now and in the future. We work for the communities of Wales to protect people and their homes as much as possible from environmental incidents like flooding and pollution. We provide opportunities for people to learn, use and benefit from Wales' natural resources. We work to support Wales' economy by enabling the sustainable use of natural resources to support jobs and enterprise. We help businesses and developers to understand and consider environmental limits when they make important decisions. We work to maintain and improve the quality of the environment for everyone and we work towards making the environment and our natural resources more resilient to climate change and other pressures. Page 2 of 57 www.naturalresourceswales.gov.uk Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way.
    [Show full text]
  • Checklist of the Argentine Agaricales 2. Coprinaceae and Strophariaceae
    Checklist of the Argentine Agaricales 2. Coprinaceae and Strophariaceae 1 2* N. NIVEIRO & E. ALBERTÓ 1Instituto de Botánica del Nordeste (UNNE-CONICET). Sargento Cabral 2131, CC 209 Corrientes Capital, CP 3400, Argentina 2Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET) Intendente Marino Km 8.200, Chascomús, Buenos Aires, CP 7130, Argentina *CORRESPONDENCE TO: [email protected] ABSTRACT—A checklist of species belonging to the families Coprinaceae and Strophariaceae was made for Argentina. The list includes all species published till year 2011. Twenty-one genera and 251 species were recorded, 121 species from the family Coprinaceae and 130 from Strophariaceae. KEY WORDS—Agaricomycetes, Coprinus, Psathyrella, Psilocybe, Stropharia Introduction This is the second checklist of the Argentine Agaricales. Previous one considered the families Amanitaceae, Pluteaceae and Hygrophoraceae (Niveiro & Albertó, 2012). Argentina is located in southern South America, between 21° and 55° S and 53° and 73° W, covering 3.7 million of km². Due to the large size of the country, Argentina has a wide variety of climates (Niveiro & Albertó, 2012). The incidence of moist winds coming from the oceans, the Atlantic in the north and the Pacific in the south, together with different soil types, make possible the existence of many types of vegetation adapted to different climatic conditions (Brown et al., 2006). Mycologists who studied the Agaricales from Argentina during the last century were reviewed by Niveiro & Albertó (2012). It is considered that the knowledge of the group is still incomplete, since many geographic areas in Argentina have not been studied as yet. The checklist provided here establishes a baseline of knowledge about the diversity of species described from Coprinaceae and Strophariaceae families in Argentina, and serves as a resource for future studies of mushroom biodiversity.
    [Show full text]
  • Coprinopsis Rugosomagnispora: a Distinct New Coprinoid Species from Poland (Central Europe)
    Plant Syst Evol DOI 10.1007/s00606-017-1418-7 ORIGINAL ARTICLE Coprinopsis rugosomagnispora: a distinct new coprinoid species from Poland (Central Europe) 1 2 3,4 5 Błazej_ Gierczyk • Pamela Rodriguez-Flakus • Marcin Pietras • Mirosław Gryc • 6 7 Waldemar Czerniawski • Marcin Pia˛tek Received: 3 November 2016 / Accepted: 31 March 2017 Ó The Author(s) 2017. This article is an open access publication Abstract A new coprinoid fungus, Coprinopsis rugoso- evolutionary trees recovered C. rugosomagnispora within a magnispora, is described from Poland (Central Europe). Its lineage containing species having morphological charac- macromorphological characters are similar to species ters of the subsection Lanatuli (though within the so-called belonging to the subsection Nivei of Coprinus s.l. How- Atramentarii clade) that contradicts its morphological ever, C. rugosomagnispora has unique micromorphologi- similarity to members of the subsection Nivei. cal characters: very large, ornamented spores, voluminous basidia and cystidia, and smooth veil elements. The large Keywords Agaricales Á Coprinopsis Á Coprinoid fungi Á spores and pattern of spore ornamentation (densely pitted) Molecular phylogeny Á Spore ornamentation Á Taxonomy make this species unique within all coprinoid species described so far. The structure (arrangement and shape) of veil elements in C. rugosomagnispora is intermediate Introduction between members of the subsections Nivei and Lanatuli of Coprinus s.l. Molecular phylogenetic analyses, based on The coprinoid fungi are a highly diverse and polyphyletic single-locus (ITS) maximum likelihood and Bayesian group of the order Agaricales, which species show a unique set of characters: presence of dark spores, deliquescent basidiocarps that often undergo autolysis, and pseudopa- Handling editor: Miroslav Kolarˇ´ık.
    [Show full text]
  • Phylogeny and Character Evolution of the Coprinoid Mushroom Genus <I>Parasola</I> As Inferred from LSU and ITS Nrdna
    Persoonia 22, 2009: 28–37 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X422434 Phylogeny and character evolution of the coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA sequence data L.G. Nagy1, S. Kocsubé1, T. Papp1, C. Vágvölgyi1 Key words Abstract Phylogenetic relationships, species concepts and morphological evolution of the coprinoid mushroom genus Parasola were studied. A combined dataset of nuclear ribosomal ITS and LSU sequences was used to infer Agaricales phylogenetic relationships of Parasola species and several outgroup taxa. Clades recovered in the phylogenetic Coprinus section Glabri analyses corresponded well to morphologically discernable species, although in the case of P. leiocephala, P. lila- deliquescence tincta and P. plicatilis amended concepts proved necessary. Parasola galericuliformis and P. hemerobia are shown gap coding to be synonymous with P. leiocephala and P. plicatilis, respectively. By mapping morphological characters on the morphological traits phylogeny, it is shown that the emergence of deliquescent Parasola taxa was accompanied by the development Psathyrella of pleurocystidia, brachybasidia and a plicate pileus. Spore shape and the position of the germ pore on the spores species concept showed definite evolutionary trends within the group: from ellipsoid the former becomes more voluminous and heart- shaped, the latter evolves from central to eccentric in taxa referred to as ‘crown’ Parasola species. The results are discussed and compared to other Coprinus s.l. and Psathyrella taxa. Homoplasy and phylogenetic significance of various morphological characters, as well as indels in ITS and LSU sequences, are also evaluated. Article info Received: 12 September 2008; Accepted: 8 January 2009; Published: 16 February 2009.
    [Show full text]
  • Coprinus Pinetorum Fungal Planet Description Sheets 427
    426 Persoonia – Volume 36, 2016 Coprinus pinetorum Fungal Planet description sheets 427 Fungal Planet 454 – 4 July 2016 Coprinus pinetorum G. Moreno, Carlavilla, Heykoop & Manjón, sp. nov. Etymology. Name reflects the habitat, humus of Pinus halepensis, from side of a path, 8 May 2014, I. Morales, AH 45796 (ITS, LSU sequences Gen- which this fungus was collected. Bank, KU686916, KU686899); Guadalajara, in a garden, 6 Dec. 2014, J.R. Carlavilla, AH 45795 (ITS, LSU sequences GenBank, KU686911, KU686894); Classification — Agaricaceae, Agaricales, Agaricomycetes. Alcalá de Henares, Campus universitario, Residencia Crusa, in a garden, 28 Oct. 2015, P. Rosario, AH 45832 (ITS, LSU sequences GenBank, KU686912, Cap 35–45 × 25–35 mm when still closed, ellipsoid to subcylin- KU686895); idem, 4 Nov. 2015, AH 45831 (ITS, LSU sequences GenBank, drical, becoming revolute at margin when mature, first whitish, KU686918, KU686901); Alcalá de Henares, Campus universitario, Escuela later with pinkish tinges, veil first fibrillose to flocculose, then Politécnica, in a garden, 6 Nov. 2015, A. López­Villalba, J.R. Carlavilla & breaking up into small and fragile whitish upturned scales, G. Moreno, AH 45830 (ITS, LSU sequences GenBank, KU686917, except at centre, that stays smooth and becomes creamy to KU686900). Coprinus littoralis: SPAIN, Huelva, Playa Coto de Doñana, strawish creamy. Gills crowded, first white, and then pinkish to National Park of Doñana, psammophilous in dunes, 5 Apr. 2013, A. Sánchez, black, the gill-edge whitish, probably due to the presence of holotype AH 45819 (ITS, LSU sequences GenBank, KU686920, KU686903); Huelva, Playa de Doñana, National Park of Doñana, psammophilous in numerous cheilocystidia, strongly deliquescent when mature.
    [Show full text]
  • The Mycological Legacy of Elias Magnus Fries
    The mycological legacy of Elias Magnus Fries Petersen, Ronald H.; Knudsen, Henning Published in: IMA Fungus DOI: 10.5598/imafungus.2015.06.01.04 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Petersen, R. H., & Knudsen, H. (2015). The mycological legacy of Elias Magnus Fries. IMA Fungus, 6(1), 99- 114. https://doi.org/10.5598/imafungus.2015.06.01.04 Download date: 26. sep.. 2021 IMA FUNGUS · 6(1): 99–114 (2015) doi:10.5598/imafungus.2015.06.01.04 ARTICLE The mycological legacy of Elias Magnus Fries Ronald H. Petersen1, and Henning Knudsen2 1Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996–1100 USA; corresponding author e–mail: [email protected] 2Natural History Museum, University of Copenhagen, Oester Farimagsgade 2 C, 1353 Copenhagen, Denmark Abstract: The taxonomic concepts which originated with or were accepted by Elias Magnus Fries Key words: were presented during his lifetime in the printed word, illustrative depiction, and in collections of dried Biography specimens. This body of work was welcomed by the mycological and botanical communities of his time: Fungi students and associates aided Fries and after his passing carried forward his taxonomic ideas. His legacy Systema mycologicum spawned a line of Swedish and Danish mycologists intent on perpetuating the Fries tradition: Hampus Taxonomy von Post, Lars Romell, Seth Lundell and John Axel Nannfeldt in Sweden; Emil Rostrup, Severin Petersen Uppsala and Jakob Lange in Denmark. Volumes of color paintings and several exsiccati, most notably one edited by Lundell and Nannfeldt attached fungal portraits and preserved specimens (and often photographs) to Fries names.
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]
  • Monstruosities Under the Inkap Mushrooms
    Monstruosities under the Inkap Mushrooms M. Navarro-González*1; A. Domingo-Martínez1; S. S. Navarro-González1; P. Beutelmann2; U. Kües1 1. Molecular Wood Biotechnology, Institute of Forest Botany, Georg-August-University Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany. 2. Institute of General Botany, Johannes Gutenberg-University of Mainz, Müllerweg 6, D-55099 Mainz, Germany Four different Inkcaps were isolated from horse dung and tested for growth on different medium. In addition to normal-shaped mushrooms, three of the isolates formed fruiting body-like structures re- sembling the anamorphs of Rhacophyllus lilaceus, a species originally believed to be asexual. Teleo- morphs of this species were later found and are known as Coprinus clastophyllus, respectively Coprinop- sis clastophylla. The fourth of our isolates also forms mushrooms but most of them are of crippled shape. Well-shaped umbrella-like mushrooms assigns this Inkcap to the clade Coprinellus. ITS se- quencing confirmed that the first three strains and the Rhacophyllus type strain belong to the genus Coprinopsis and that the fourth isolate belongs to the genus Coprinellus. 1. Introduction Inkcaps are a group of about 200 basidiomycetes whose mushrooms usually deliquesce shortly after maturation for spore liberation (see Fig. 1). Until re- cently, they were compiled under the one single genus Coprinus. However, molecular data divided this group into four new genera: Coprinus, Coprinop- sis, Coprinellus and Parasola (Redhead et al. 2001). Genetics and Cellular Biology of Basidiomycetes-VI. A.G. Pisabarro and L. Ramírez (eds.) © 2005 Universidad Pública de Navarra, Spain. ISBN 84-9769-107-5 113 FULL LENGTH CONTRIBUTIONS Figure 1. Mushrooms of Coprinopsis cinerea strain AmutBmut (about 12 cm in size) formed on horse dung, the natural substrate of the fungus.
    [Show full text]