The Formation of Polar Disk Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flat Rotation Curves and Low Velocity Dispersions in KMOS Star-Forming Galaxies at Z ∼ 1? E
A&A 594, A77 (2016) Astronomy DOI: 10.1051/0004-6361/201628315 & c ESO 2016 Astrophysics Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ∼ 1? E. M. Di Teodoro1; 2, F. Fraternali1; 3, and S. H. Miller4 1 Department of Physics and Astronomy, University of Bologna, 6/2 Viale Berti Pichat, 40127 Bologna, Italy 2 Research School of Astronomy and Astrophysics – The Australian National University, Canberra, ACT, 2611, Australia e-mail: [email protected] 3 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands 4 University of California – Irvine, Irvine, CA 92697, USA Received 15 February 2016 / Accepted 18 July 2016 ABSTRACT The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z ∼ 1; observed in the Hα emission line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3DBarolo, which models the galaxy emission directly in 3D observational space, without the need to extract kinematic maps. This major advantage of this technique is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that (1) the rotation curves of these z ∼ 1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and (2) the Hα velocity dispersions are low, ranging from 15 to 40 km s−1, which leads to V/σ = 3–10. -
Modeling and Interpretation of the Ultraviolet Spectral Energy Distributions of Primeval Galaxies
Ecole´ Doctorale d'Astronomie et Astrophysique d'^Ile-de-France UNIVERSITE´ PARIS VI - PIERRE & MARIE CURIE DOCTORATE THESIS to obtain the title of Doctor of the University of Pierre & Marie Curie in Astrophysics Presented by Alba Vidal Garc´ıa Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies Thesis Advisor: St´ephane Charlot prepared at Institut d'Astrophysique de Paris, CNRS (UMR 7095), Universit´ePierre & Marie Curie (Paris VI) with financial support from the European Research Council grant `ERC NEOGAL' Composition of the jury Reviewers: Alessandro Bressan - SISSA, Trieste, Italy Rosa Gonzalez´ Delgado - IAA (CSIC), Granada, Spain Advisor: St´ephane Charlot - IAP, Paris, France President: Patrick Boisse´ - IAP, Paris, France Examinators: Jeremy Blaizot - CRAL, Observatoire de Lyon, France Vianney Lebouteiller - CEA, Saclay, France Dedicatoria v Contents Abstract vii R´esum´e ix 1 Introduction 3 1.1 Historical context . .4 1.2 Early epochs of the Universe . .5 1.3 Galaxytypes ......................................6 1.4 Components of a Galaxy . .8 1.4.1 Classification of stars . .9 1.4.2 The ISM: components and phases . .9 1.4.3 Physical processes in the ISM . 12 1.5 Chemical content of a galaxy . 17 1.6 Galaxy spectral energy distributions . 17 1.7 Future observing facilities . 19 1.8 Outline ......................................... 20 2 Modeling spectral energy distributions of galaxies 23 2.1 Stellar emission . 24 2.1.1 Stellar population synthesis codes . 24 2.1.2 Evolutionary tracks . 25 2.1.3 IMF . 29 2.1.4 Stellar spectral libraries . 30 2.2 Absorption and emission in the ISM . 31 2.2.1 Photoionization code: CLOUDY ....................... -
Galactic-Scale Macro-Engineering: Looking for Signs of Other Intelligent Species, As an Exercise in Hope for Our Own
Galactic-scale macro-engineering: Looking for signs of other intelligent species, as an exercise in hope for our own * Joseph Voros Senior Lecturer in Strategic Foresight Faculty of Business & Law, Swinburne University of Technology, Melbourne, Australia Abstract If we consider Big History as simply ‘our’ example of the process of cosmic evolution playing out, then we can seek to broaden our view of our possible fate as a species by asking questions about what paths or trajectories other species’ own versions of Big History might take or have taken. This paper explores the broad outlines of possible scenarios for the evolution of long-lived intelligent engineering species—scenarios which might have been part of another species’ own Big History story, or which may yet lie ahead in our own distant future. A sufficiently long-lived engineering-oriented species may decide to undertake a program of macro-engineering projects that might eventually lead to a re-engineered galaxy so altered that its artificiality may be detectable from Earth. We consider activities that lead ultimately to a galactic structure consisting of a central inner core surrounded by a more distant ring of stars separated by a relatively sparser ‘gap’, where star systems and stellar materials may have been removed, ‘lifted’ or turned into Dyson Spheres. When one looks to the sky, one finds that such galaxies do indeed exist—including the beautiful ringed galaxy known as ‘Hoag’s Object’ (PGC 54559) in the constellation Serpens. This leads us to pose the question: Is Hoag’s Object an example of galaxy-scale macro-engineering? And this suggests a program of possible observational activities and theoretical explorations, several of which are presented here, that could be carried out in order to begin to investigate this beguiling question. -
Arxiv:1704.01678V2 [Astro-Ph.GA] 28 Jul 2017 Been Notoriously Difficult, Resulting Mostly in Upper Lim- Highest Escape Fractions Measured to Date Among Low- Its (E.G
Submitted: 3 March 2017 Preprint typeset using LATEX style AASTeX6 v. 1.0 MRK 71 / NGC 2366: THE NEAREST GREEN PEA ANALOG Genoveva Micheva1, M. S. Oey1, Anne E. Jaskot2, and Bethan L. James3 (Accepted 24 July 2017) 1University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109-1107, USA 2Department of Astronomy, Smith College, Northampton, MA 01063, USA 3STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA ABSTRACT We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H II region Markarian 71 (Mrk 71). We compare the system with GPs in terms of morphology, excitation properties, specific star-formation rate, kinematics, absorption of low-ionization species, reddening, and chemical abundance, and find consistencies throughout. Since extreme GPs are associated with both candidate and confirmed Lyman continuum (LyC) emitters, Mrk 71/NGC 2366 is thus also a good candidate for LyC escape. The spatially resolved data for this object show a superbubble blowout generated by mechanical feedback from one of its two super star clusters (SSCs), Knot B, while the extreme ionization properties are driven by the . 1 Myr-old, enshrouded SSC Knot A, which has ∼ 10 times higher ionizing luminosity. Very massive stars (> 100 M ) may be present in this remarkable object. Ionization-parameter mapping indicates the blowout region is optically thin in the LyC, and the general properties also suggest LyC escape in the line of sight. -
Broad-Band Photometry and Long-Slit Spectroscopy of the Peculiar Ring Galaxy FM 287-14
A&A 559, A8 (2013) Astronomy DOI: 10.1051/0004-6361/201219721 & c ESO 2013 Astrophysics Broad-band photometry and long-slit spectroscopy of the peculiar ring galaxy FM 287-14 M. Faúndez-Abans1, P. C. da Rocha-Poppe2,3, V. A. Fernandes-Martin2,3, M. de Oliveira-Abans1,5, I. F. Fernandes2,3,E.Wenderoth4, and A. Rodríguez-Ardila1 1 MCTI/Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, CEP 37504-364 Itajubá, MG, Brazil e-mail: [max;mabans;aardila]@lna.br 2 UEFS, Departamento de Física, Av. Transnordenstina, S/N, Novo Horizonte, CEP 44036-900 Feira de Santana, BA, Brazil 3 UEFS, Observatório Astronômico Antares, Rua da Barra, 925, Jardim Cruzeiro, CEP 44015-430 Feira de Santana, BA, Brazil e-mail: [paulopoppe;vmartin][email protected]; [email protected] 4 Gemini Observatory, Southern Operations Center, c/o AURA, 603 Casilla, La Serena, Chile e-mail: [email protected] 5 UNIFEI, Instituto de Engenharia de Produção e Gestão, Av. BPS, 1303, Pinheirinho, CEP 37500-903 Itajubá, MG, Brazil Received 30 May 2013 / Accepted 21 August 2013 ABSTRACT Aims. We report detailed morphological and kinematical insights into the disturbed galaxy FM 287-14, which is reported in the literature as a member of strongly interacting galaxies with a clear case of mergers. The main purpose of this paper is to provide a first observational study of this double-nuclei object based on photometry and spectroscopy. Methods. The study is based on BVR photometry with the 1.6-m telescope at OPD, and long-slit spectroscopy with Gemini South’s GMOS spectrograph, with two-gratings centered at 5 011 Å and 6 765 Å. -
Astronomy 2008 Index
Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs. -
Star Formation in Ring Galaxies Susan C
East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2016 Star Formation in Ring Galaxies Susan C. Olmsted East Tennessee State Universtiy Follow this and additional works at: https://dc.etsu.edu/honors Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Olmsted, Susan C., "Star Formation in Ring Galaxies" (2016). Undergraduate Honors Theses. Paper 322. https://dc.etsu.edu/honors/ 322 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Star Formation in Ring Galaxies Susan Olmsted Honors Thesis May 5, 2016 Student: Susan Olmsted: ______________________________________ Mentor: Dr. Beverly Smith: ____________________________________ Reader 1: Dr. Mark Giroux: ____________________________________ Reader 2: Dr. Michele Joyner: __________________________________ 1 Abstract: Ring galaxies are specific types of interacting galaxies in which a smaller galaxy has passed through the center of the disk of another larger galaxy. The intrusion of the smaller galaxy causes the structure of the larger galaxy to compress as the smaller galaxy falls through, and to recoil back after the smaller galaxy passes through, hence the ring-like shape. In our research, we studied the star-forming regions of a sample of ring galaxies and compared to those of other interacting galaxies and normal galaxies. Using UV, optical, and IR archived images in twelve wavelengths from three telescopes, we analyzed samples of star-forming regions in ring and normal spiral galaxies using photometry. -
A “Smashing” Polar-Ring Galaxy
A “Smashing” Polar-ring Galaxy Image Credit: Gemini Observatory/AURA Gemini Observatory Legacy Image Gemini Observatory Facts The Gemini Observatory is operated A “Smashing” Polar-ring Galaxy by the Association of Universities for PRIMARY MIRRORS: Research in Astronomy, Inc., under a cooperative agreement with the This Gemini North telescope image captures the “bloody” Diameter: 8.1 meters; 26.57 feet; 318.84 inches National Science Foundation on behalf of the Gemini Partnership. aftermath of one galaxy piercing the heart of another. All Mass: 22.22 metric tonnes; 24.5 U.S. tons the action appears in a single frame, with the stunning Composition: Corning Ultra-Low Expansion (ULE) Glass Surface Accuracy: 15.6 nm RMS (between 1/1000 - 1/10,000 polar-ring galaxy NGC 660 as the focus of attention. thickness of human hair) NGC 660 spans some 40,000 light years across and lies TELESCOPE STRUCTURES: United States about 40 million light years distant in the direction of Height: 21.7 meters; 71.2 feet; 7 stories (from “Observing Floor”) the constellation of Pisces. It has an unusually high Weight: 380 metric tonnes; 419 U.S. tons gas content and resolves into hundreds of objects, a Optomechanical Design: Cassegrain ; Alt-azimuth Canada considerable fraction of which are blue and red supergiant DOMES: stars. The ring’s youngest detected stars formed only Height: 46 meters; 151 feet; 15 stories (from ground) about seven million years ago, indicating a long and Weight: 780 metric tonnes; 860 U.S. tons (moving mass) Rotation: 360 degrees in 2 minutes ongoing process of formation. -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
The Inner Resonance Ring of NGC 3081. II. Star Formation, Bar Strength, Disk Surface Mass Density, and Mass-To-Light Ratio
The Inner Resonance Ring of NGC 3081. II. Star Formation, Bar Strength, Disk Surface Mass Density, and Mass-to-Light Ratio Gene G. Byrd – University of Alabama Tarsh Freeman – Bevill State Community College Ronald J. Buta – University of Alabama Deposited 06/13/2018 Citation of published version: Byrd, G., Freeman, T., Buta, R. (2006): The Inner Resonance Ring of NGC 3081. II. Star Formation, Bar Strength, Disk Surface Mass Density, and Mass-to-Light Ratio. The Astronomical Journal, 131(3). DOI: 10.1086/499944 © 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astronomical Journal, 131:1377–1393, 2006 March # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE INNER RESONANCE RING OF NGC 3081. II. STAR FORMATION, BAR STRENGTH, DISK SURFACE MASS DENSITY, AND MASS-TO-LIGHT RATIO Gene G. Byrd,1 Tarsh Freeman,2 and Ronald J. Buta1 Received 2005 July 19; accepted 2005 November 19 ABSTRACT We complement our Hubble Space Telescope (HST ) observations of the inner ring of the galaxy NGC 3081 using an analytical approach and n-body simulations. We find that a gas cloud inner (r) ring forms under a rotating bar perturbation with very strong azimuthal cloud crowding where the ring crosses the bar major axis. Thus, star forma- tion results near to and ‘‘downstream’’ of the major axis. From the dust distribution and radial velocities, the disk rotates counterclockwise (CCW) on the sky like the bar pattern speed. We explain the observed CCW color asym- metry crossing the major axis as due to the increasing age of stellar associations inside the r ring major axis. -
The Green Valley: How to Rejuvenate an S0 Galaxy Through Minor Mergers
Galaxies 2015, 3, 192-201; doi:10.3390/galaxies3040192 OPEN ACCESS galaxies ISSN 2075-4434 www.mdpi.com/journal/galaxies Article Back to the Green Valley: How to Rejuvenate an S0 Galaxy through Minor Mergers Michela Mapelli INAF—Astronomical Observatory of Padova, Vicolo dell’Osservatorio 5, Padova 35122, Italy; E-Mail: [email protected] Academic Editors: Alexei Moiseev, José Alfonso López Aguerri and Enrichetta Iodice Received: 14 October 2015 / Accepted: 10 November 2015 / Published: 13 November 2015 Abstract: About half of the S0 galaxies in the nearby Universe show signatures of recent or ongoing star formation. Whether these S0 galaxies were rejuvenated by the accretion of fresh gas is still controversial. We study minor mergers of a gas-rich dwarf galaxy with an S0 galaxy, by means of N-body smoothed-particle hydrodynamics simulations. We find that minor mergers trigger episodes of star formation in the S0 galaxy, lasting for ∼10 Gyr. One of the most important fingerprints of the merger is the formation of a gas ring in the S0 galaxy. The ring is reminiscent of the orbit of the satellite galaxy, and its lifetime depends on the merger properties: polar and counter-rotating satellite galaxies induce the formation of long-lived smooth gas rings. Keywords: galaxies: interactions; methods: numerical; galaxies: kinematics and dynamics; galaxies: ISM; galaxies: star formation 1. Introduction S0 galaxies are intriguing objects: they are early-type galaxies (ETGs), but are characterized by a stellar disc (although with no spiral arms). About half of S0 galaxies [1] lie in the region of the colour-magnitude diagram (CMD) of galaxies that is called green valley. -
Upper Limits on the Presence of Central Massive Black Holes in Two Ultra-Compact Dwarf Galaxies in Centaurus A
The Astrophysical Journal, 858:20 (15pp), 2018 May 1 https://doi.org/10.3847/1538-4357/aabae5 © 2018. The American Astronomical Society. All rights reserved. Upper Limits on the Presence of Central Massive Black Holes in Two Ultra-compact Dwarf Galaxies in Centaurus A Karina T. Voggel1 , Anil C. Seth1, Nadine Neumayer2 , Steffen Mieske3, Igor Chilingarian4,5 , Christopher Ahn1 , Holger Baumgardt6, Michael Hilker7, Dieu D. Nguyen1 , Aaron J. Romanowsky8,9 , Jonelle L. Walsh10 , Mark den Brok11, and Jay Strader12 1 University of Utah, Department of Physics & Astronomy, 115 S 1400 E, Salt Lake City, UT 84105, USA; [email protected] 2 Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 4 Smithsonian Astrophysical Observatory, 60 Garden Street MS09, 02138 Cambridge, MA, USA 5 Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 13 Universitetsky prospect, 119992 Moscow, Russia 6 School of Mathematics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia 7 European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany 8 Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192, USA 9 University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA 10 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843,