Unifying Mysticism and Mathematics to Realize Love, Peace, Wholeness, and the Truth

Total Page:16

File Type:pdf, Size:1020Kb

Unifying Mysticism and Mathematics to Realize Love, Peace, Wholeness, and the Truth Prologue, Chapters 1–3, and Epilogue Unifying Mysticism and Mathematics To Realize Love, Peace, Wholeness, and the Truth Paul Hague Unifying Mysticism and Mathematics To Realize Love, Peace, Wholeness, and the Truth Paul Hague Paragonian Publications Svenshögen, Sweden Published by: Paragonian Publications Hällungevägen 60 SE-444 97 Svenshögen Sweden Web: mysticalpragmatics.net, paulhague.net Email: paul at mysticalpragmatics.net The most up-to-date, searchable version of this book will be available at: http://mysticalpragmatics.net/documents/unifying_mysticism_mathematics.pdf In the Mystical Society and Age of Light, there will be no copyright on books because everything created in the relativistic world of form is a gift of God. There is thus no separate entity in the Universe who can be said to have written this, or, indeed, any other book. However, this understanding is not yet accepted by society at large. So we feel obliged to copyright this book in the conventional manner. © 2019 Paul Hague First edition, 2019 ISBN: 978-91-975176-9-0, 91-975176-9-0 Typeset in Adobe Caslon 12/15 The image on the front cover is a symbol of Indra’s Net of Jewels or Pearls in Huayan Buddhism, visualized as a dewy spider’s web in which every dewdrop contains the reflection of the light emanating from all the other dewdrops, like nodes in a mathematical graph. Contents Having shown how the business modelling methods used by information systems architects have evolved into Integral Relational Logic, this edition of my final book uses this commonsensical science of thought and consciousness to map the entire number system, from Zero to Transfinity. As these correspond to Shūnyāta ‘Emptiness’ and Satchitānanda ‘Bliss of Absolute Truth and Consciousness’, this third chapter of Unifying Mysticism and Mathematics marks the culmination of my life’s work to heal the cultural psychic split between science and spirituality. Even though this book now feels complete, as it is, I plan to spend the first few months of 2019 writing the two remaining chapters I have sketched out. The first on ‘Sequences and Series’ will describe many beautiful formations that emerge naturally when we view mathematics as a generative science of patterns and relationships, often seen in the natural world around us. The fifth chapter, on ‘Universal Algebra’, goes beyond the number system, describing some of the mathematical abstractions that have now evolved into Integral Relational Logic: the Cosmic Context, Gnostic Foundation, and coordinating framework for all knowledge, which I call Panosophy or the Unified Relationships Theory, better known as the elusive Theory of Everything. This January-2019 edition also includes a 14-page Epilogue on how I currently view the great existential crisis that humanity faces at the moment and how we could perhaps resolve it, realizing that the Divine Essence we all share is Love. Prologue ...................................................................................................................... vii 1. Business Modelling .................................................................................................... 1 Managing data as a corporate resource ................................................................................................... 4 The meaning of meaning ........................................................................................................................ 8 Awakening Self-reflective Intelligence ................................................................................................. 11 Function of information systems architect ............................................................................................ 14 Modelling our rapidly changing world .................................................................................................. 20 2. Integral Relational Logic .......................................................................................... 34 Starting afresh at the very beginning .................................................................................................... 36 Building meaningful relationships ........................................................................................................ 47 Unifying opposites ................................................................................................................................ 63 Transcending the categories ................................................................................................................. 72 The Unified Relationships Theory ....................................................................................................... 78 3. From Zero to Transfinity ......................................................................................... 87 Growth of number types ....................................................................................................................... 87 Growth of numerical operators ........................................................................................................... 123 The infinitesimal calculus ................................................................................................................... 133 Infinity of infinities ............................................................................................................................. 166 4. Sequences and Series .............................................................................................. 175 Finite series ......................................................................................................................................... 175 Infinite series ...................................................................................................................................... 179 Spatial dimensions .............................................................................................................................. 184 5. Universal Algebra .................................................................................................. 185 Abstract algebra of groups, rings, and fields ....................................................................................... 185 Linear algebra and vector space .......................................................................................................... 202 Boolean algebra to quantum computation .......................................................................................... 202 Epilogue .................................................................................................................... 203 References ................................................................................................................. 217 For humanity Prologue his book marks the glorious culmination of my lifelong quest to realize Love, Peace, Wholeness, and the Truth, which I set out to bring to light as a seven-year-old in 1949. For having been born T near London in the middle of the Second World War, I could see that we humans would never be able to live in love, peace, and harmony with each other unless we could end the long-running war between science and religion, arising from a deep wound in the cultural and collective psyche. Healing this wound in my own personal psyche has meant making radical changes to the concepts of God and the Universe, which I introjected into consciousness in childhood from the culture into which I was born. For just as I was beginning to think for myself, I could see that it did not make sense to say that God—as the Supreme Being—should reside somewhere in outer space, as indicated by the first words of the Lord’s Prayer in the Anglican Book of Common Prayer, established in 1662, as the result of the English Reformation: “Our Father, which art in heaven, …” The concepts of God and Universe provide the overall context for religion and science, respectively, yet they are incompatible with each other. And as we need a context to form concepts—as mental images of the world we live in—without an overall context for all our learning, we have no way of determining what is true or false. As a consequence, I learned almost nothing during my formal education. It was only after the age of thirty-eight that I began to make sense of my experiences and the world that I live in, as an autodidact. As I have discovered through seventy years of questioning the fundamental assumptions of Western civilization and forty years of profound self-inquiry, the discordant concepts of God and the Universe can only be reconciled by plunging into the Nondual, mystical foundations of mathematics, recognizing Consciousness as Ultimate Reality and that none of us is ever separate from any other being, including the Supreme Being, for an instant. I have come to this realization as the result of a life-changing death and rebirth process I went through in the spring of 1980. When working in an innovative marketing job for IBM in London, having some influence in Europe, I realized that the global economy is inherently unstable and that my children were not being educated to live in the world that would exist when they came to be bringing up children of their own, as my daughter, at least, is doing. What triggered me to abandon my family and business career in search of Wholeness and the Truth was an apocalyptic awakening that I experienced at 11:30 on Sunday 27th April 1980, as I was strolling across Wimbledon Common to the pub for lunch. Puzzling about what is causing technologists
Recommended publications
  • Linear Algebra for Dummies
    Linear Algebra for Dummies Jorge A. Menendez October 6, 2017 Contents 1 Matrices and Vectors1 2 Matrix Multiplication2 3 Matrix Inverse, Pseudo-inverse4 4 Outer products 5 5 Inner Products 5 6 Example: Linear Regression7 7 Eigenstuff 8 8 Example: Covariance Matrices 11 9 Example: PCA 12 10 Useful resources 12 1 Matrices and Vectors An m × n matrix is simply an array of numbers: 2 3 a11 a12 : : : a1n 6 a21 a22 : : : a2n 7 A = 6 7 6 . 7 4 . 5 am1 am2 : : : amn where we define the indexing Aij = aij to designate the component in the ith row and jth column of A. The transpose of a matrix is obtained by flipping the rows with the columns: 2 3 a11 a21 : : : an1 6 a12 a22 : : : an2 7 AT = 6 7 6 . 7 4 . 5 a1m a2m : : : anm T which evidently is now an n × m matrix, with components Aij = Aji = aji. In other words, the transpose is obtained by simply flipping the row and column indeces. One particularly important matrix is called the identity matrix, which is composed of 1’s on the diagonal and 0’s everywhere else: 21 0 ::: 03 60 1 ::: 07 6 7 6. .. .7 4. .5 0 0 ::: 1 1 It is called the identity matrix because the product of any matrix with the identity matrix is identical to itself: AI = A In other words, I is the equivalent of the number 1 for matrices. For our purposes, a vector can simply be thought of as a matrix with one column1: 2 3 a1 6a2 7 a = 6 7 6 .
    [Show full text]
  • Real-World Problems Through Computational Thinking Tools and Concepts: the Case of Coronavirus 46 Disease (COVID-19)
    The current issue and full text archive of this journal is available on Emerald Insight at: https://www.emerald.com/insight/2397-7604.htm JRIT 14,1 Real-world problems through computational thinking tools and concepts: the case of coronavirus 46 disease (COVID-19) Received 2 December 2020 Hatice Beyza Sezer and Immaculate Kizito Namukasa Revised 6 January 2021 Accepted 6 January 2021 Department of Curriculum Studies, Western University Faculty of Education, London, Canada Abstract Purpose – Many mathematical models have been shared to communicate about the COVID-19 outbreak; however, they require advanced mathematical skills. The main purpose of this study is to investigate in which way computational thinking (CT) tools and concepts are helpful to better understand the outbreak, and how the context of disease could be used as a real-world context to promote elementary and middle-grade students’ mathematical and computational knowledge and skills. Design/methodology/approach – In this study, the authors used a qualitative research design, specifically content analysis, and analyzed two simulations of basic SIR models designed in a Scratch. The authors examine the extent to which they help with the understanding of the parameters, rates and the effect of variations in control measures in the mathematical models. Findings – This paper investigated the four dimensions of sample simulations: initialization, movements, transmission, recovery process and their connections to school mathematical and computational concepts. Research limitations/implications – A major limitation is that this study took place during the pandemic and the authors could not collect empirical data. Practical implications – Teaching mathematical modeling and computer programming is enhanced by elaborating in a specific context.
    [Show full text]
  • Liouville Numbers
    Math 154 Notes 2 In these notes I’ll construct some explicit transcendental numbers. These numbers are examples of Liouville numbers. Let {ak} be a sequence of positive integers, and suppose that ak divides ak+1 for all k. We say that {ak} has moderate growth if there is some con- K stant K such that an+1 <K(an) for all n. Otherwise we say that {an} has immoderate growth. ∞ 1 Theorem 0.1 k P If {a } has immoderate growth then the number x = n=1 an is transcendental. Proof: We will suppose that P (x) = 0 for some polynomial P . There is some constant C1 such that P has degree at most C1 and all the coefficients of P are less than C1 in absolute value. Let xn = 1/a1 + ... +1/an. The divisibility condition guarantees that xn = hn/an, where hn is some integer. As long as P (xn) is nonzero, we have −C1 |P (xn) − P (x)| = |P (xn)|≥ (an) . (1) This just comes from the fact that P (xn) is a rational number whose denom- C1 inator is at most (an) . ′ On the other hand, there is some constant C2 such that |P (u)| < C2 for all u in the interval [x − 1,x + 1]. For n large, xn lies in this interval. Therefore, by the usual estimate that comes from integration, −1 |P (xn) − P (x)| <C2|xn − x| < 2C2an+1. (2) The last inequality comes from the fact that {1/an} decays faster than the sequence {1/2n} once n is large.
    [Show full text]
  • Irrationality and Transcendence of Alternating Series Via Continued
    Mathematical Assoc. of America American Mathematical Monthly 0:0 October 1, 2020 12:43 a.m. alternatingseries.tex page 1 Irrationality and Transcendence of Alternating Series Via Continued Fractions Jonathan Sondow Abstract. Euler gave recipes for converting alternating series of two types, I and II, into equiv- alent continued fractions, i.e., ones whose convergents equal the partial sums. A condition we prove for irrationality of a continued fraction then allows easy proofs that e, sin 1, and the pri- morial constant are irrational. Our main result is that, if a series of type II is equivalent to a sim- ple continued fraction, then the sum is transcendental and its irrationality measure exceeds 2. ℵℵ0 = We construct all 0 c such series and recover the transcendence of the Davison–Shallit and Cahen constants. Along the way, we mention π, the golden ratio, Fermat, Fibonacci, and Liouville numbers, Sylvester’s sequence, Pierce expansions, Mahler’s method, Engel series, and theorems of Lambert, Sierpi´nski, and Thue-Siegel-Roth. We also make three conjectures. 1. INTRODUCTIO. In a 1979 lecture on the Life and Work of Leonhard Euler, Andr´eWeil suggested “that our students of mathematics would profit much more from a study of Euler’s Introductio in Analysin Infinitorum, rather than of the available mod- ern textbooks” [17, p. xii]. The last chapter of the Introductio is “On Continued Frac- tions.” In it, after giving their form, Euler “next look[s] for an equivalent expression in the usual way of expressing fractions” and derives formulas for the convergents. He then converts a continued fraction into an equivalent alternating series, i.e., one whose partial sums equal the convergents.
    [Show full text]
  • On Transcendental Numbers: New Results and a Little History
    Axioms 2013, xx, 1-x; doi:10.3390/—— OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Communication On transcendental numbers: new results and a little history Solomon Marcus1 and Florin F. Nichita1,* 1 Institute of Mathematics of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: (+40) (0) 21 319 65 06; Fax: (+40) (0) 21 319 65 05 Received: xx / Accepted: xx / Published: xx Abstract: Attempting to create a general framework for studying new results on transcendental numbers, this paper begins with a survey on transcendental numbers and transcendence, it then presents several properties of the transcendental numbers e and π, and then it gives the proofs of new inequalities and identities for transcendental numbers. Also, in relationship with these topics, we study some implications for the theory of the Yang-Baxter equations, and we propose some open problems. Keywords: Euler’s relation, transcendental numbers; transcendental operations / functions; transcendence; Yang-Baxter equation Classification: MSC 01A05; 11D09; 11T23; 33B10; 16T25 arXiv:1502.05637v2 [math.HO] 5 Dec 2017 1. Introduction One of the most famous formulas in mathematics, the Euler’s relation: eπi +1=0 , (1) contains the transcendental numbers e and π, the imaginary number i, the constants 0 and 1, and (transcendental) operations. Beautiful, powerful and surprising, it has changed the mathematics forever. We will unveil profound aspects related to it, and we will propose a counterpart: ei π < e , (2) | − | Axioms 2013, xx 2 Figure 1. An interpretation of the inequality ei π < e .
    [Show full text]
  • Newsletter 115, 2017
    Cumann Oid´ıMatamaitice na hEireann´ N e w s l e t t e r Irish Mathematics Teachers' Association 2017 Number 115 Maths Development Team Important update From September 1st 2017, the Maths Development Team(MDT) will form part of the Professional Development Service for Teachers. We will continue to provide professional development to post-primary teachers of Mathematics through the following supports: ◦ The effective use of Lesson Study: All new participants are asked to sign up at (https://goo.gl/forms/GJRS7GLuHdehVZqz1) for one of our three-day Induction Programmes, which will be held in Dublin, Carrick-on-Shannon and Limerick on September 27th , 28th and 29th , 2017. Closing date for receipt of applications: Monday 11th September 2017. ◦ A series of six Lesson Study meetings to be held from October 2017 to February 2018. These meetings will be conducted in over 50 locations nationally. Contact Administrator Gráinne Haughney: email [email protected] Phone: 01- 8576422 for venues. ◦ Ongoing participation in Lesson Study for all mathematics teachers. ◦ On-line support and resources available at www.projectmaths.ie ◦ Half-day school visits to support the on-going professional development of teachers. The primary focus will be on teaching and learning using reflective approaches with particular emphasis on: i. Algebra through the Lens of Functions, ii. Geometry through the Lens of Enquiry, iii. School-identified needs. Please note that substitution will not be provided for teachers availing of these school visits. If you wish to apply for a member of the team to visit your Mathematics Department during the 2017-2018 school year, please contact [email protected] or [email protected] for an application form.
    [Show full text]
  • Math 308: Autumn 2019 Course Notes Robert Won
    Math 308: Autumn 2019 Course Notes Robert Won These are course notes from a linear algebra course at the University of Washington taught during Autumn 2019. The textbook was Linear Algebra with Applications by Jeffrey Holt, but many other sources contributed to these notes. Jake Levinson provided me with his handwritten notes from when he taught 308 at UW. Jeremy Rouse and Jason Gaddis both gave me TeXed notes from their linear algebra courses at Wake Forest (which used the textbook by Lay). I thank Jake, Jeremy, and Jason for generously sharing their materials. I also thank Liz Wicks for contributing the images of graphs, which she made when she used these notes for her 308 class. 1. Wednesday 9/25: Systems of Linear Equations (1.1) Introduction and Syllabus • On board: MATH 308, Robert Won, [email protected], PDL C-418, Office hours: M 1:30{ 2:30, W 2:30{3:30pm. • Q: What is linear algebra? If you've taken any math before, you've probably thought a good bit about one-dimensional space and two-dimensional space. If you're one of the many students who has taken multi- variable calculus, then you've probably thought a good bit about 3-dimensional space. In linear algebra, we will study n-dimensional space, but we will only worry about “flat” things. This theory is still extremely useful, because even if things aren't flat, if we look at them closely enough, they can look flat. (This is the essential idea in calculus.) The main focus of the class will be getting a coherent and somewhat abstract theory of systems of linear equations.
    [Show full text]
  • Transcendental Numbers
    INTRODUCTION TO TRANSCENDENTAL NUMBERS VO THANH HUAN Abstract. The study of transcendental numbers has developed into an enriching theory and constitutes an important part of mathematics. This report aims to give a quick overview about the theory of transcen- dental numbers and some of its recent developments. The main focus is on the proof that e is transcendental. The Hilbert's seventh problem will also be introduced. 1. Introduction Transcendental number theory is a branch of number theory that concerns about the transcendence and algebraicity of numbers. Dated back to the time of Euler or even earlier, it has developed into an enriching theory with many applications in mathematics, especially in the area of Diophantine equations. Whether there is any transcendental number is not an easy question to answer. The discovery of the first transcendental number by Liouville in 1851 sparked up an interest in the field and began a new era in the theory of transcendental number. In 1873, Charles Hermite succeeded in proving that e is transcendental. And within a decade, Lindemann established the tran- scendence of π in 1882, which led to the impossibility of the ancient Greek problem of squaring the circle. The theory has progressed significantly in recent years, with answer to the Hilbert's seventh problem and the discov- ery of a nontrivial lower bound for linear forms of logarithms of algebraic numbers. Although in 1874, the work of Georg Cantor demonstrated the ubiquity of transcendental numbers (which is quite surprising), finding one or proving existing numbers are transcendental may be extremely hard. In this report, we will focus on the proof that e is transcendental.
    [Show full text]
  • Solving Recurrence Equations
    Great Theoretical Ideas In Computer Science V. Adamchik CS 15-251 Spring 2010 D. Sleator Solve in integers Lecture 8 Feb 04, 2010 Carnegie Mellon University Recurrences and Continued Fractions x1 + x2 +…+ x5 = 40 xkrk; yk=xk – k y1 + y2 +…+ y5 = 25 y ≥ 0; k 29 4 Partitions Solve in integers Find the number of ways to partition the integer n x + y + z = 11 3 = 1+1+1=1+2 xr0; yb3; zr0 4=1+1+1+1=1+1+2=1+3=2+2 2 3 x1 2x2 3x3 ... nxn n [X11] 1 x x x (1 -x) 2 1 (1 -x)(1 -x2)(1 -x3)...(1 -xn) Leonardo Fibonacci The rabbit reproduction model •A rabbit lives forever In 1202, Fibonacci has become •The population starts as a single newborn interested in rabbits and what they do pair •Every month, each productive pair begets a new pair which will become productive after 2 months old Fn= # of rabbit pairs at the beginning of the nth month month 1 2 3 4 5 6 7 rabbits 1 1 2 3 5 8 13 1 F =0, F =1, 0 1 WARNING!!!! Fn=Fn-1+Fn-2 for n≥2 This lecture has What is a closed form explicit mathematical formula for Fn? content that can be shocking to some students. n n-1 n-2 Characteristic Equation - - = 0 n-2 2 Characteristic Fn=Fn-1+Fn-2 iff ( - - 1) = 0 equation Consider solutions of the form: iff 2 - - 1 = 0 n 1 5 Fn= for some (unknown) constant ≠ 0 2 = , or = -1/ must satisfy: (“phi”) is the golden ratio n - n-1 - n-2 = 0 a,b a n + b (-1/ )n = , or = -(1/ ) satisfies the inductive condition So for all these values of the Adjust a and b to fit the base inductive condition is satisfied: conditions.
    [Show full text]
  • Laney-Math Lab
    Laney-Math Lab “The roots of education are bitter, but the fruit is sweet.”1 DREAM.FLOURISH.SUCCEED. 1 Aristotle Table of Contents WELCOME TO LANEY-MATH LAB ...................................................................................... 1 MATH LAB ONLINE TUTORING ........................................................................................... 2 ONLINE RESOURCES ............................................................................................................... 3 FORMULAS AND WORKSHEETS .......................................................................................... 7 MATHEMATICS DEGREES ................................................................................................... 30 TUTORING POSITIONS .......................................................................................................... 31 CAMPUS RESOURCES ............................................................................................................ 32 DIRECTORY OF CAMPUS ADMINISTRATORS ............................................................... 42 SPECIAL THANKS: .................................................................................................................. 44 SOURCES: .................................................................................................................................. 44 WELCOME TO LANEY-MATH LAB Laney College educates, supports, and inspires students to excel in an inclusive and diverse learning environment rooted in social justice. Website: https://laney.edu/mathematics/math-lab/
    [Show full text]
  • Strategies: What to Do When They’Re Stuck Jennifer Georgia
    2020 LDSHE h o m e e d u c a t i o n c o n f e r e n c e Strategies: What To Do When They’re Stuck Jennifer Georgia Solid math understanding is made of a wide and deep knowledge base, flexible thinking skills, and a positive “can-do” attitude. These three components cycle over and over through the years, adding layer upon layer of understanding. If there are malfunctions in any of the areas, it will affect the others. Best-Practice Math Repair 1. Mitigate anxiety and promote positive emotions Common Math Malfunctions 2. Take multiple breaks, or have learning time 1. Math anxiety when the brain is calm (after dinner) 2. Attention problems: environmental or 3. Manipulatives! physiological 4. Multisensory learning, find patterns, create their 3. Weak number sense own math book, constant review through games 4. Weak memory 5. Roll back the thinking from abstract to mental 5. Inability to hold two concepts in the mind at image, to concrete, then to “vibrant concrete” once—fractions 6. Anything that promotes the development of 6. Inability to generalize—algebra inductive reasoning, or that gets kids out of math “ruts” (or even better, never lets them fall in) Decrease Negative and Boost Positive Emotions: Only attempt math when child is well rested, well fed, and has just had some movement time. Use eye contact, breathing, touch, and music to re-center and calm an anxious child. Use a timer: “How long do you think you should puzzle over this one before moving on?” Also keep the total math session fairly short—avoid the frustration/tiredness wall.
    [Show full text]
  • A Computable Absolutely Normal Liouville Number
    MATHEMATICS OF COMPUTATION Volume 84, Number 296, November 2015, Pages 2939–2952 http://dx.doi.org/10.1090/mcom/2964 Article electronically published on April 24, 2015 A COMPUTABLE ABSOLUTELY NORMAL LIOUVILLE NUMBER VERONICA´ BECHER, PABLO ARIEL HEIBER, AND THEODORE A. SLAMAN Abstract. We give an algorithm that computes an absolutely normal Liou- ville number. 1. The main result The set of Liouville numbers is {x ∈ R \ Q : ∀k ∈ N, ∃q ∈ N,q>1and||qx|| <q−k} where ||x|| =min{|x−m| : m ∈ Z} is the distance of a real number x to the nearest −k! integer and other notation is as usual. Liouville’s constant, k≥1 10 ,isthe standard example of a Liouville number. Though uncountable, the set of Liouville numbers is small, in fact, it is null, both in Lebesgue measure and in Hausdorff dimension (see [6]). We say that a base is an integer s greater than or equal to 2. A real number x is normal to base s if the sequence (sjx : j ≥ 0) is uniformly distributed in the unit interval modulo one. By Weyl’s Criterion [11], x is normal to base s if and only if certain harmonic sums associated with (sjx : j ≥ 0) grow slowly. Absolute normality is normality to every base. Bugeaud [6] established the existence of absolutely normal Liouville numbers by means of an almost-all argument for an appropriate measure due to Bluhm [3, 4]. The support of this measure is a perfect set, which we call Bluhm’s fractal, all of whose irrational elements are Liouville numbers.
    [Show full text]