S13058-019-1150-Z.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

S13058-019-1150-Z.Pdf Wang et al. Breast Cancer Research (2019) 21:64 https://doi.org/10.1186/s13058-019-1150-z RESEARCHARTICLE Open Access Nicotinamide N-methyltransferase enhances chemoresistance in breast cancer through SIRT1 protein stabilization Yanzhong Wang1,2,3,4†, Jin Zeng1,3†, Weiping Wu1,5, Shuduo Xie3,6, Haitao Yu1,3, Guoli Li1,3, Tao Zhu3,7, Fengying Li1,3, Jie Lu1,3, Gavin Y. Wang4,8, Xinyou Xie1,2,3* and Jun Zhang1,2,3* Abstract Background: Nicotinamide N-methyltransferase (NNMT) is overexpressed in various human tumors and involved in the development and progression of several carcinomas. In breast cancer, NNMT was found to be overexpressed in several cell lines. However, the clinical relevance of NNMT in breast cancer is not yet clear. Methods: NNMT expression in breast carcinoma was examined by immunohistochemistry, and then, its relationship with patient clinicopathological characteristics was analyzed. The effects of NNMT on chemoresistance in breast cancer cells were assessed by cell viability, colony formation, and apoptosis assay. The NNMT, SIRT1, p53, and acetyl-p53 proteins, which are involved in NNMT-related chemoresistance, were examined by Western blotting. The SIRT1 mRNA was examined by real-time PCR, and its activity was measured by using the SIRT1 deacetylase fluorometric reagent kit. Results: NNMT expression was significantly higher (53.9%) in breast carcinoma than in paracancerous tissues (10.0%) and breast hyperplasia (13.3%). A high level of NNMT expression correlated with poor survival and chemotherapy response in breast cancer patients who received chemotherapy. Ectopic overexpression of NNMT significantly inhibited the apoptotic cell death and suppression of colony formation induced by adriamycin and paclitaxel. Mechanistic studies revealed that NNMT overexpression increased SIRT1 expression and promoted its activity. Either inhibition of SIRT1 by EX527 or knockdown of SIRT1 by siRNA could reverse NNMT-mediated resistance to adriamycin and paclitaxel, which suggests that SIRT1 plays a critical role in NNMT-related chemoresistance in breast cancer. Conclusions: The results of this study demonstrate a novel correlation between the NNMT expression level and patient survival, suggesting that NNMT has the potential to become a new prognostic biomarker to predict the treatment outcomes of the clinical chemotherapy in breast cancer. Moreover, targeting NNMT or downstream SIRT1 may represent a new therapeutic approach to improve the efficacy of breast cancer chemotherapy. Keywords: Breast cancer, NNMT, Chemoresistance, Survival, Chemotherapy response, SIRT1 Background overcome resistance and improve the efficacy of Breast cancer (BC) is the leading cause of cancer death chemotherapy. in women worldwide. Chemotherapy is an important ad- Nicotinamide N-methyltransferase (NNMT), a phase juvant for breast cancer treatment, but resistance is a II metabolizing enzyme, mainly catalyzes the methyla- major obstacle for chemotherapy in some patients. Com- tion of nicotinamide into 1-methylnicotinamide (MNA) bination treatment targeting molecules that contribute and other pyridines into pyridinium ions [1], and it is in- to chemoresistance is an important approach to volved in the biotransformation of many drugs and xe- nobiotics [2]. In 1984, Seifert R was the first to confirm * Correspondence: [email protected]; [email protected] † that alterations in NNMT activity are involved in the de- Yanzhong Wang and Jin Zeng contributed equally to this work. velopment and progression of carcinoma in vivo [3]. A 1Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, large number of subsequent studies demonstrated that Zhejiang, People’s Republic of China NNMT is aberrantly expressed and associated with a Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Wang et al. Breast Cancer Research (2019) 21:64 Page 2 of 17 poor prognosis in various cancers, such as colorectal Cell line cancer [4], gastric cancer [5, 6], hepatocellular carcin- Human SK-BR-3 and MCF7 cell lines, which have low oma [7], and lung cancer [8]. Other studies have shown NNMT expression, and the MDA-MB-231 cell lines, that NNMT affects the proliferative, migratory, invasive, which have high NNMT expression, were obtained from and differentiation profiles of various cancers [9–11]. Cell Bank at the Chinese Academy of Sciences (Shang- Furthermore, NNMT overexpression has recently been hai, China) and cultured in DMEM (Gibco, Grand Is- found to be associated with chemotherapy resistance. land, NY, USA). The authenticity of the three cell lines After analyzing the correlation between the was verified using STR. All media were supplemented cancer-related genes and 99 anti-tumor drugs with with 10% fetal bovine serum (Gibco, Long Island, NY, known molecular mechanisms, Hsu et al. found that the USA), 100 U/ml penicillin (Sigma-Aldrich, St. Louis, NNMT expression level might be related to the sensitiv- MO, USA), and 100 mg/ml streptomycin (Sigma-Al- ity to chemotherapeutic drugs [12]. Yu et al. reported drich, St. Louis, MO, USA), and the cells were main- that NNMT knockdown PANC-1 cells were much less tained at 37 °C in a humidified 5% CO2 incubator. resistant to rapamycin as well as glycolytic inhibitor 2-deoxyglucose, whereas NNMT-overexpressing cells Human tissue specimens and patient clinical information showed the opposite effects [11]. We also have previ- This study was approved by the Human Research Ethics ously reported that NNMT overexpression inhibits the Committee of Sir Run Run Shaw Hospital (Hangzhou, activation of ASK1-p38 pathway via MNA production, China). As the initial treatment, total 165 which results in a decrease in the apoptosis induced by treatment-naive patients with breast cancer received 5-fluorouracil (5-FU) to enhance resistance in colorectal mastectomy from Oct 1, 2000, to Dec 31, 2006, 82 of cancer cells [13]. These reports suggested that NNMT whom had a chemotherapy efficacy record at Sir Run might be involved in the resistance to chemotherapy and Run Shaw Hospital (Hangzhou, China) and were there- thus serve as a potential target for combination therapy. fore included in this study. The diagnoses of breast can- Therefore, we investigated the role of NNMT in breast cer were confirmed by postoperative pathological cancer chemotherapy, which might be beneficial for im- results. proving chemotherapeutic efficacy in breast cancer. The clinical characteristics of 165 cancer patients were At the beginning of this study, we found that NNMT extracted from their medical record, including age, gen- was upregulated in breast carcinomas of patients who der, tumor diameter, TNM stage, ER, HER-2, PR, Ki-67, were undergoing mastectomy by immunohistochemistry and chemotherapy response judged by the revised on tissue microarray (p < 0.001). After correlation with RECIST guideline (version 1.1). Eighty-two patients with the clinicopathological characteristics of 82 patients with breast cancer received the chemotherapy mainly using their chemotherapy efficacy record, NNMT overexpres- CMF (cyclophosphamide + methotrexate + fluorouracil) sion was found to be associated with a shorter survival and FEC-P (fluorouracil + epirubicin + cyclophospha- and reduced chemotherapy efficacy (p < 0.05). We then mide + paclitaxel) regimens, which accounted for more confirmed that NNMT overexpression significantly en- than 90% of the patients. These patients were followed hanced resistance to adriamycin (ADM) and paclitaxel up, and the OS were calculated from the date of surgical (PTX) in BCs. Furthermore, we demonstrated that treatment to the date of death or last follow-up. NNMT overexpression attenuated the apoptosis that was induced by ADM and PTX to enhance the resist- ance through SIRT1 protein stabilization in BCs. Immunohistochemistry analysis (IHC) on paraffin- embedded tissue array The tissue microarray block was cut into 4-μm sections, Methods and immunohistochemical staining was performed. Drugs and antibodies Briefly, the sections were first deparaffinized and hy- Adriamycin (ADM) and 1-methylnicotinamide (MNA) drated. After antigen retrieval with 0.01 M citrate buffer were obtained from Sigma-Aldrich (Sigma-Aldrich, St. (pH 6.0) and microwave heat induction, the sections Louis, MO, USA), and paclitaxel (PTX) and the select- were treated with 3% hydrogen peroxide for 10 min. ively SIRT1 inhibitor EX527 were obtained from Selleck NNMT were detected using mouse monoclonal Chemicals (SelleckChemicals, Houston, TX, USA). The anti-human NNMT antibody (dilution 1:10000). After anti-SIRT1, anti-β-actin, and anti-acetyl-p53 were all ob- secondary antibody staining, diaminobenzidine was used tained from Cell Signaling Technology (CST, Beverly, as the chromogen for 3 min, and then, the nuclei were MA, USA). The mouse anti-NNMT monoclonal anti- counterstained with
Recommended publications
  • Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities
    cancers Review Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities Jordi Alcaraz 1,2,3,*, Rafael Ikemori 1 , Alejandro Llorente 1 , Natalia Díaz-Valdivia 1 , Noemí Reguart 2,4 and Miguel Vizoso 5,* 1 Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; [email protected] (R.I.); [email protected] (A.L.); [email protected] (N.D.-V.) 2 Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain; [email protected] 3 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain 4 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain 5 Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands * Correspondence: [email protected] (J.A.); [email protected] (M.V.) Simple Summary: Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key Citation: Alcaraz, J.; Ikemori, R.; to improve our understanding of the molecular mechanisms driving the pathologic alterations of Llorente, A.; Díaz-Valdivia, N.; fibroblasts in cancer.
    [Show full text]
  • Identification of 197 Genetic Variations in Six Human Methyltransferase Genes in the Japanese Population
    J Hum Genet (2001) 46:529–537 © Jpn Soc Hum Genet and Springer-Verlag 2001 ORIGINAL ARTICLE Susumu Saito · Aritoshi Iida · Akihiro Sekine Yukie Miura · Tsutomu Sakamoto · Chie Ogawa Saori Kawauchi · Shoko Higuchi · Yusuke Nakamura Identification of 197 genetic variations in six human methyltransferase genes in the Japanese population Received: May 17, 2001 / Accepted: June 18, 2001 Abstract Methylation is an important event in the biotrans- Introduction formation pathway for many drugs and xenobiotic com- pounds. We screened DNA from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in six Methylation is an important feature of the biotransforma- methyltransferase (MT) genes (catechol-O-MT, COMT; tion pathway for many drugs and xenobiotic compounds guanidinoacetate N-MT, GAMT; histamine N-MT, HNMT; (Weinshilboum 1989). The reaction involves transfer of nicotinamide N-MT, NNMT; phosphatidylethanolamine the activated methyl group of S-adenosyl-l-methionine N-MT, PEMT; and phenylethanolamine N-MT, PNMT) by (AdoMet) to the substrates. direct sequencing of their entire genomic regions except Among the enzymes involved in such reactions, called for repetitive elements. This approach identified 190 SNPs methyltransferases, catechol-O-methyltransferase (COMT; and seven insertion/deletion polymorphisms among the six EC 2.1.1.6) catalyzes the transfer of a methyl group from S- genes. Of the 190 SNPs, 33 were identified in the COMT adenosylmethionine to catecholamines, a class of molecules gene, 6 in GAMT, 41 in HNMT, 8 in NNMT, 98 in PEMT, that includes the neurotransmitters dopamine, epinephrine, and 4 in PNMT. Nine were located in 5Ј flanking regions, and norepinephrine (Kopin 1985). O-methylation drives 156 in introns, 10 in exons, and 15 in 3Ј flanking regions.
    [Show full text]
  • Identification of Evolutionary and Kinetic Drivers of NAD-Dependent Signaling
    Identification of evolutionary and kinetic drivers of NAD-dependent signaling Mathias Bockwoldta, Dorothée Houryb, Marc Nierec, Toni I. Gossmannd,e, Ines Reinartzf,g, Alexander Schugh, Mathias Zieglerc, and Ines Heilanda,1 aDepartment of Arctic and Marine Biology, UiT The Arctic University of Norway, 9017 Tromsø, Norway; bDepartment of Biological Sciences, University of Bergen, 5006 Bergen, Norway; cDepartment of Biomedicine, University of Bergen, 5009 Bergen, Norway; dDepartment of Animal and Plant Sciences, Western Bank, University of Sheffield, S10 2TN Sheffield, United Kingdom; eDepartment of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany; fDepartment of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; gSteinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; and hJohn von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany Edited by Richard H. Goodman, Vollum Institute, Portland, OR, and approved June 24, 2019 (received for review February 9, 2019) Nicotinamide adenine dinucleotide (NAD) provides an important The enzymes involved in these processes are sensitive to the link between metabolism and signal transduction and has emerged available NAD concentration. Therefore, NAD-dependent signal- as central hub between bioenergetics and all major cellular events. ing can act as a transmitter of changes in cellular energy ho- NAD-dependent signaling (e.g., by sirtuins and poly–adenosine meostasis, for example, to regulate gene expression or metabolic diphosphate [ADP] ribose polymerases [PARPs]) consumes consider- activity (30). able amounts of NAD. To maintain physiological functions, NAD The significance of NAD-dependent signaling for NAD ho- consumption and biosynthesis need to be carefully balanced. Using meostasis has long been underestimated.
    [Show full text]
  • Nicotinamide N‑Methyltransferase Enhances the Progression of Prostate Cancer by Stabilizing Sirtuin 1
    ONCOLOGY LETTERS 15: 9195-9201, 2018 Nicotinamide N‑methyltransferase enhances the progression of prostate cancer by stabilizing sirtuin 1 ZHENYU YOU, YANG LIU and XUEFEI LIU Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China Received August 6, 2017; Accepted February 5, 2018 DOI: 10.3892/ol.2018.8474 Abstract. A previous study demonstrated that nicotinamide Nicotinamide N-methyltransferase (NNMT) was identi- N-methyltransferase (NNMT) is upregulated in the tissues fied as an S‑adenosyl‑L‑methionine‑dependent cytoplasmic of patients with prostate cancer (PCa); however, the specific enzyme (3). Previous studies have indicated its critical role underlying mechanism of this remains unclear. To begin with, in the biotransformation and detoxification of multiple the expression of NNMT was investigated in the peripheral drugs and xenobiotic compounds (3,4). Abnormal upregu- blood of patients with PCa and of healthy control subjects. lation of NNMT has been extensively identified in various The results indicated that the expression level of NNMT tumor types. For instance, in the progression of PCa, over- was elevated in the peripheral blood and tissues of patients expression of NNMT has been frequently determined (4). with PCa. Furthermore, the overexpression of NNMT Furthermore, NNMT has been frequently reported to be a enhanced PC-3 cell viability, invasion and migration capacity. non‑invasive biomarker of cancer in body fluids, including Additionally, the overexpression of NNMT significantly serum (5), saliva (6) and urine (7). It was originally defined increased the mRNA level of sirtuin 1 (SIRT1) in PC-3 cells. as the enzyme responsible for nicotinamide methylation, In addition, nicotinamide treatment significantly suppressed which is an important form of vitamin B3 (8).
    [Show full text]
  • Scale-Up Evaluation of a Composite Tumor Marker Assay for the Early Detection of Renal Cell Carcinoma
    diagnostics Article Scale-Up Evaluation of a Composite Tumor Marker Assay for the Early Detection of Renal Cell Carcinoma Dong Su Kim 1, Won Sik Ham 2 , Won Sik Jang 2 , Kang Su Cho 2 , Young Deuk Choi 2 , Suki Kang 3, Bora Kim 1, Kook Jin Kim 1, Eun Ji Lim 1, Sun Young Rha 4, Ja Hyeon Ku 5, Cheol Kwak 5, Hyeon Hoe Kim 5, Chang Wook Jeong 5,* and Nam Hoon Cho 3,* 1 Genomine Research Division, Genomine, Inc., Pohang Technopark, Pohang, Kyungbuk 790-834, Korea; [email protected] (D.S.K.); [email protected] (B.K.); [email protected] (K.J.K.); [email protected] (E.J.L.) 2 Department of Urology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; [email protected] (W.S.H.); [email protected] (W.S.J.); [email protected] (K.S.C.); [email protected] (Y.D.C.) 3 Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; [email protected] 4 Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; [email protected] 5 Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; [email protected] (J.H.K.); [email protected] (C.K.); [email protected] (H.H.K.) * Correspondence: [email protected] (C.W.J.); [email protected] (N.H.C.); Tel.: +82-2-2072-3899 (C.W.J.); +82-2-2228-1767 (N.H.C.); Fax: +82-2-742-4665 (C.W.J.); +82-2-362-0860 (N.H.C.) Received: 4 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The early detection of renal cell carcinoma (RCC) using tumor markers remains an attractive prospect for the potential to downstage the disease.
    [Show full text]
  • Integrated Bioinformatics Approach to Understand Immune-Related Key
    Integrated bioinformatics approach to understand immune-related key genes and pathways in chronic spontaneous urticaria wenxing su Second Aliated Hospital of Soochow University biao huang First Aliated Hospital of Soochow University ying zhao Second Aliated Hospital of Soochow University xiaoyan zhang Second Aliated Hospital of Soochow University lu chen second aliated hospital of soochow university jiang ji ( [email protected] ) Second Aliated Hospital of Soochow University qingqing Jiao rst aliated hospital of soochow university Research Keywords: Chronic spontaneous urticaria, bioinformatical analysis, differentially expressed genes, immune inltration Posted Date: December 31st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-137346/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background Chronic spontaneous urticaria (CSU) refers to recurrent urticaria that lasts for more than 6 weeks in the absence of an identiable trigger. Due to its recurrent wheal and severe itching, CSU seriously affects patients' life quality. There is currently no radical cure for it and its vague pathogenesis limits the development of targeted therapy. With the goal of revealing the underlying mechanism, two data sets with accession numbers GSE57178 and GSE72540 were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the differentially expressed genes (DEGs) of CSU skin lesion samples and healthy controls, four kinds of analyses were performed, namely functional annotation, protein- protein interaction (PPI) network and module construction, co-expression and drug-gene interaction prediction analysis, and immune and stromal cells deconvolution analyses. Results 92 up-regulated genes and 7 down-regulated genes were selected for subsequent analyses.
    [Show full text]
  • High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT) Rocco L
    Subscriber access provided by JUBILANT ORGANOSYS LTD Article High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT) Rocco L. Policarpo, Ludovic Decultot, Elizabeth May, Petr Kuzmic, Samuel Carlson, Danny Huang, Vincent Chu, Brandon A. Wright, Saravanakumar Dhakshinamoorthy, Aimo Kannt, Shilpa Rani, Sreekanth Dittakavi, Joseph D. Panarese, Rachelle Gaudet, and Matthew D. Shair J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.9b01238 • Publication Date (Web): 07 Oct 2019 Downloaded from pubs.acs.org on October 8, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Possible Adverse Effects of High-Dose Nicotinamide
    biomolecules Article Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment Eun Seong Hwang * and Seon Beom Song Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul 02504, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-64-90-2-669 Received: 13 March 2020; Accepted: 21 April 2020; Published: 29 April 2020 Abstract: Nicotinamide (NAM) at doses far above those recommended for vitamins is suggested to be effective against a wide spectrum of diseases and conditions, including neurological dysfunctions, depression and other psychological disorders, and inflammatory diseases. Recent increases in public awareness on possible pro-longevity effects of nicotinamide adenine dinucleotide (NAD+) precursors have caused further growth of NAM consumption not only for clinical treatments, but also as a dietary supplement, raising concerns on the safety of its long-term use. However, possible adverse effects and their mechanisms are poorly understood. High-level NAM administration can exert negative effects through multiple routes. For example, NAM by itself inhibits poly(ADP-ribose) polymerases (PARPs), which protect genome integrity. Elevation of the NAD+ pool alters cellular energy metabolism. Meanwhile, high-level NAM alters cellular methyl metabolism and affects methylation of DNA and proteins, leading to changes in cellular transcriptome and proteome. Also, methyl metabolites of NAM, namely methylnicotinamide, are predicted to play roles in certain diseases and conditions. In this review, a collective literature search was performed to provide a comprehensive list of possible adverse effects of NAM and to provide understanding of their underlying mechanisms and assessment of the raised safety concerns.
    [Show full text]
  • A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion
    BASIC RESEARCH www.jasn.org A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion † ‡ | Annekatrin Aue,* Christian Hinze,* Katharina Walentin,* Janett Ruffert,* Yesim Yurtdas,*§ | Max Werth,* Wei Chen,* Anja Rabien,§ Ergin Kilic,¶ Jörg-Dieter Schulzke,** †‡ Michael Schumann,** and Kai M. Schmidt-Ott* *Max Delbrueck Center for Molecular Medicine, Berlin, Germany; †Experimental and Clinical Research Center, and Departments of ‡Nephrology, §Urology, ¶Pathology, and **Gastroenterology, Charité Medical University, Berlin, Germany; and |Berlin Institute of Urologic Research, Berlin, Germany ABSTRACT Grainyhead transcription factors control epithelial barriers, tissue morphogenesis, and differentiation, but their role in the kidney is poorly understood. Here, we report that nephric duct, ureteric bud, and collecting duct epithelia express high levels of grainyhead-like homolog 2 (Grhl2) and that nephric duct lumen expansion is defective in Grhl2-deficient mice. In collecting duct epithelial cells, Grhl2 inactivation impaired epithelial barrier formation and inhibited lumen expansion. Molecular analyses showed that GRHL2 acts as a transcrip- tional activator and strongly associates with histone H3 lysine 4 trimethylation. Integrating genome-wide GRHL2 binding as well as H3 lysine 4 trimethylation chromatin immunoprecipitation sequencing and gene expression data allowed us to derive a high-confidence GRHL2 target set. GRHL2 transactivated a group of genes including Ovol2, encoding the ovo-like 2 zinc finger transcription factor, as well as E-cadherin, claudin 4 (Cldn4), and the small GTPase Rab25. Ovol2 induction alone was sufficient to bypass the requirement of Grhl2 for E-cadherin, Cldn4,andRab25 expression. Re-expression of either Ovol2 or a combination of Cldn4 and Rab25 was sufficient to rescue lumen expansion and barrier formation in Grhl2-deficient collecting duct cells.
    [Show full text]
  • Fiscal Year 2015-2016 Ed & Ethel Moore Alzheimer's Disease
    Fiscal Year 2015-2016 Ed & Ethel Moore Alzheimer’s Disease Research Grants Principal Principal Project Title General Audience Abstract Investigator Investigator’s Organization Melissa Murray Mayo Clinic Clinicopathologic Alzheimer’s disease is a devastating neurologic disorder that is estimated to affect 5.3 million Americans. Jacksonville and genetic Much progress has been made toward characterizing the changes in the brain at the clinical level, tissue differences of level, and molecular level. There is unfortunately a skewed representation of information about Alzheimer’s neurodegenerative disease in non- Hispanic White Americans. Moreover, the frequency of other common neurologic disorders health disparities in Hispanic and Black Americans is poorly characterized. Our overall goal is to examine similarities and differences in brain diseases, cognitive decline, and genetics across these three ethnoracial backgrounds. in the State of Currently, brain autopsies are the only way to confirm from which brain disease an individual suffered. By Florida brain bank leveraging one of the State of Florida’s most valuable resources, the Alzheimer’s Disease Initiative brain bank; we plan to specifically investigate Alzheimer’s and other brain diseases (e.g., Lewy body disease) in Floridians across ethnoracial groups. Alterations in brain proteins, amyloid-β and tau, occur throughout a patient’s disease course. These proteins form in characteristic patterns, but only around 20% of Alzheimer’s disease brains have no other co-existing pathologies found. Vascular diseases are observed to be more common in black Americans when compared to Hispanic and non-Hispanic White Americans. Based on this knowledge, our first goal will be to test the hypothesis that coexisting pathologies (e.g., Alzheimer’s and vascular disease) will be more common in Black Americans than Hispanic and non-Hispanic White Americans.
    [Show full text]
  • Nicotinamide N-Methyltransferase
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Portal University of Birmingham Nicotinamide N-methyltransferase increases complex I activity in SH-SY5Y cells via sirtuin 3 Liu, Karolina Y.; Mistry, Rakhee J.; Aguirre, Carlos A.; Fasouli, Eirini S.; Thomas, Martin G.; Klamt, Fábio; Ramsden, David B.; Parsons, Richard B. DOI: 10.1016/j.bbrc.2015.10.023 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Liu, KY, Mistry, RJ, Aguirre, CA, Fasouli, ES, Thomas, MG, Klamt, F, Ramsden, DB & Parsons, RB 2015, 'Nicotinamide N-methyltransferase increases complex I activity in SH-SY5Y cells via sirtuin 3', Biochemical and Biophysical Research Communications, vol. 467, no. 3, pp. 491-496. https://doi.org/10.1016/j.bbrc.2015.10.023 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 23/02/2016 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Nicotinamide Methyltransferase (NNMT) Inhibitor Screening Kit
    N-Nicotinamide Methyltransferase (NNMT) Inhibitor Screening Kit Catalog Number MAK299 Storage Temperature –70 C TECHNICAL BULLETIN Product Description N-Nicotinamide Methyltransferase (E.C. 2.1.1.1, Enzyme-II 1 vial NNMT) catalyzes the N-methylation of nicotinamide, Catalog Number MAK299F pyridines, and other analogues using S-adenosyl methionine (SAM) as the donor resulting in the 1-Methylnicotinamide (MNA) (150 mM) 20 L production of 1-methylnicotinamide (MNA). NNMT plays Catalog Number MAK299G a significant role in the regulation of metabolic pathways and is expressed at markedly high levels in Thiol Detecting Probe (DMSO) 200 L several kinds of cancers, neurodegenerative diseases, Catalog Number MAK299H obesity, and diabetes, indicating it is a potential molecular target for therapy. SAM Reconstitution Buffer 500 L Catalog Number MAK299I This NNMT inhibitor screening kit utilizes SAM as the methyl group donor and nicotinamide as the substrate. Reagents and Equipment Required but Not NNMT methylates nicotinamide generating S-adenosyl- Provided. homocysteine (SAH) and 1-methylnicotinamide. The 96 well flat-bottom plate – black plates are SAH is hydrolyzed by SAH hydrolase to form preferred for this assay homocysteine, the free thiol group of which is detected Fluorescence multiwell plate reader using the Thiol Detecting Probe, generating an Isopropyl alcohol chilled to –20 C enhanced fluorescence signal (ex = 392 nm/ Dimethylsulfoxide (DMSO) em = 482 nm). In the presence of an NNMT inhibitor, the enzymatic activity is inhibited resulting in decreased Precautions and Disclaimer fluorescence. This assay kit is a simple, sensitive, and This product is for R&D use only, not for drug, rapid tool to screen potential inhibitors of NNMT.
    [Show full text]