International Journal of Molecular Sciences Review Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications Gra˙zynaGromadzka 1,*, Beata Tarnacka 2 , Anna Flaga 1 and Agata Adamczyk 3 1 Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland; a.fl
[email protected] 2 Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Sparta´nska1 Street, 02-637 Warsaw, Poland;
[email protected] 3 Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawi´nskiegoStreet, 02-106 Warsaw, Poland;
[email protected] * Correspondence:
[email protected]; Tel.: +48-5-1071-7110 Received: 6 November 2020; Accepted: 28 November 2020; Published: 4 December 2020 Abstract: Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important.