Iron-Withholding Strategy in Innate Immunity

Total Page:16

File Type:pdf, Size:1020Kb

Iron-Withholding Strategy in Innate Immunity ARTICLE IN PRESS Immunobiology 211 (2006) 295–314 www.elsevier.de/imbio REVIEW Iron-withholding strategy in innate immunity Sek Tong Onga, Jason Zhe Shan Hob, Bow Hoc,1, Jeak Ling Dinga,1,Ã aDepartment of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 bFaculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK cDepartment of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597 Received 13 January 2006; accepted 14 February 2006 Abstract The knowledge of how organisms fight infections has largely been built upon the ability of host innate immune molecules to recognize microbial determinants. Although of overwhelming importance, pathogen recognition is but only one of the facets of innate immunity. A primitive yet effective antimicrobial mechanism which operates by depriving microbial organisms of their nutrients has been brought into the forefront of innate immunity once again. Such a tactic is commonly referred to as the iron-withholding strategy of innate immunity. In this review, we introduce various vertebrate iron-binding proteins and their invertebrate homologues, so as to impress upon readers an obscured arm of innate immune defense. An excellent comprehension of the mechanics of innate immunity paves the way for the possibility that novel antimicrobial therapeutics may emerge one day to overcome the prevalent antibiotic resistance in bacteria. r 2006 Elsevier GmbH. All rights reserved. Keywords: Innate immunity; Iron sequestration; Ferritin; Hepcidin; Lipocalin; Nramp; Transferrin Contents Introduction . 296 Iron as a double-edged sword in biological systems . 296 How is iron involved in innate immunity? . 297 Advances in vertebrate host innate immune defense: the iron-withholding strategy . 298 Lipocalin – sequestration of iron-laden siderophores. 298 Hepcidin – a mediator of intracellular iron efflux . 300 Nramp (natural resistance-associated macrophage protein) – for effective macrophage defense mechanism . 302 Vertebrate transferrin family – an acute-phase Fe3+-binding protein . 303 Vertebrate ferritins – iron storage and detoxification. 303 Homologues of vertebrate iron-binding proteins are explicitly represented in invertebrates . 304 Abbreviations: DMT1, divalent cation transporter 1; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharides; Nramp, natural resistance- associated macrophage protein; PAMPs, pathogen-associated molecular patterns; PRRs, pattern recognition receptors; SPI2, Salmonella pathogenicity island 2; TNF-a, tumor necrosis factor-a ÃCorresponding author. Tel.: +65 68742776; fax: +65 67792486. E-mail address: [email protected] (J.L. Ding). 1Co-senior authors. 0171-2985/$ - see front matter r 2006 Elsevier GmbH. All rights reserved. doi:10.1016/j.imbio.2006.02.004 ARTICLE IN PRESS 296 S.T. Ong et al. / Immunobiology 211 (2006) 295–314 Invertebrate transferrin . 304 Invertebrate ferritins . 304 How iron-binding proteins may influence apoptosis. 305 Future perspectives. 308 Acknowledgements . 308 References . 308 Introduction carrier during the evolution of early life (Andrews et al., 2003). Iron plays an indispensable role in various The biological explanation to relate the pathogenesis physiological processes, such as photosynthesis, nitro- of anemia of inflammation and the regulation of iron gen fixation, methanogenesis, hydrogen production and absorption and distribution has been a challenge in consumption, respiration, the trichloroacetic acid cycle, classical hematology (Ganz, 2003). A well-known com- oxygen transport, gene regulation and DNA biosynth- ponent of innate immunity uses pattern recognition esis. The incorporation of iron into proteins allows its receptors (PRRs) to recognize pathogen-associated local environment to be regulated such that iron can molecular patterns (PAMPs) (Medzhitov and Janeway, adopt the necessary redox potential (À300 to 1997) in the detection and eradication of pathogens. The +700 mV), geometry and spin state for realization of PRRs serve as frontline surveillance molecules and may its prescribed functions (Andrews et al., 2003). trigger downstream processes to accelerate pathogen Unfortunately, with the appearance of oxygen on clearance. As the wealth of knowledge has accumulated earth approximately 2.2–2.7 billion years ago, two in pathogen recognition, another component of innate major problems arose. One was the production of toxic immunity, the iron-withholding strategy, has gradually oxygen species and the other, a drastic decrease in iron caught the attention of immunologists. To convey the availability (Touati, 2000). In its reduced ferrous form, excitement of advances on iron regulation and innate iron potentiates oxygen toxicity by converting the less immunity, we shall explore various iron-binding pro- reactive hydrogen peroxide to the more reactive oxygen teins in the vertebrates and invertebrates to develop an species, hydroxyl radical and ferryl iron, via the Fenton appreciation of the iron-withholding strategy that reaction (Fig. 1). Conversely, superoxide favors the deserves equal recognition for its role in ensuring the Fenton reaction by releasing iron from iron-containing continual survival of organisms against infections. molecules. It is widely accepted that tight regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Iron as a double-edged sword in biological Iron bioavailability has also been associated with systems sepsis, which has been a challenge to humans and it has steadily worsened in recent years. In the United States Iron is an abundant metal, being the fourth most alone, there are 500,000 incidents each year with a plentiful element in the earth’s crust. As a transition death rate of 35–65% (Dellinger et al., 1997; Bone et al., metal, it exists mainly in one of the two readily reversible 1997). Amongst the numerous complex interactions redox states: the reduced Fe2+ ferrous form and the between host and pathogen, one common and essential oxidized Fe3+ ferric form. Depending on its ligand factor is the ability to invade and multiply successfully environment, both ferrous and ferric forms can adopt within host tissues. Proliferation of a pathogen is critical different spin states. As a result of these properties, iron to its establishing an infection and this facilitates the is an extremely attractive prosthetic component for pathogen to produce the full arsenal of virulence incorporation into proteins as a biocatalyst or electron determinants required for pathogenicity (Bullen et al., - 3 + 2+ O2 + Fe O2+ Fe [ 1 ] 2+ • - 3+ H2O2+ Fe OH + OH + Fe (Fenton reaction) [ 2 ] Fig. 1. The Fenton reaction. In the first reaction, the ferric ion converts a superoxide anion to oxygen, as it becomes reduced in the process. In the next step, the ferrous ion converts hydrogen peroxide into hydroxyl radical and hydroxyl anion. The hydroxyl radical is highly reactive and may react with host biological macromolecules (Moody and Hassan, 1982; Cerutti, 1985). ARTICLE IN PRESS S.T. Ong et al. / Immunobiology 211 (2006) 295–314 297 2000). The availability of iron in the host environment tenance of low plasma iron may be achieved in the host and its effects on bacterial growth is one of the best- would be illustrated with various iron-binding proteins studied aspects in pathogenicity (Schade and Caroline, that the host employs. 1946; Weinberg, 2005). Humans are equipped with a well-developed natural resistance against bacterial in- fection. Currently, some of the understood mechanisms How is iron involved in innate immunity? involved are the antibacterial properties of tissue fluids and the phagocytic abilities of cells (Bullen et al., 2000). Traditionally, the innate immune system is represented However, research has revealed that these mechanisms by a frontline defense that targets microbial pathogens require a virtually iron-free environment for proper by recognizing molecular structures that are shared by function (Ward and Bullen, 1999). In normal human large groups of pathogens, the PAMPs via PRRs. The plasma, the extremely high-affinity constant for Fe3+ PAMPs are conserved products of microbial metabo- (10À36 M) and the unsaturated state of the iron-binding lism, which are essential for the survival or pathogenicity protein, transferrin, ensure that the amount of free ferric of the microorganisms (Medzhitov and Janeway, 1997). iron is only 10À18 M(Bullen et al., 1978). In vivo, Examples of PAMPs include lipopolysaccharides (LPS) bacterial growth is inhibited by strong bactericidal and of Gram-negative bacteria, lipoteichoic acids of Gram- bacteriostatic mechanisms in the plasma. These include positive bacteria and the mannans of yeasts/fungi. A key unsaturated transferrin, antibody and complement feature of these microbial patterns is their polysaccharide components, which function in the virtual absence of chains that vary in length and carbohydrate composition freely available iron. Intracellularly, iron is essential for (Franc and White, 2000), to which the hosts have neutrophil myeloperoxidases involved in bactericidal evolved different PRRs to recognize and differentiate activity (Erickson et al., 2000). (Zhu et al. and Ng et al. personal communications). Even though freely available iron in normal body The invertebrates have a defense system centered on fluids is virtually absent, pathogenic bacteria are able to both cellular and humoral immune response. The multiply successfully
Recommended publications
  • Characterization of the Hgba Locus Encoding a Hemoglobin Receptor from Haemophilus Ducreyi
    INFECTION AND IMMUNITY, June 1995, p. 2194–2200 Vol. 63, No. 6 0019-9567/95/$04.0010 Copyright q 1995, American Society for Microbiology Characterization of the hgbA Locus Encoding a Hemoglobin Receptor from Haemophilus ducreyi 1 1 2 CHRISTOPHER ELKINS, * CHING-JU CHEN, AND CHRISTOPHER E. THOMAS Departments of Medicine1 and of Microbiology and Immunology,2 School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 Received 1 December 1994/Returned for modification 8 February 1995/Accepted 22 March 1995 Haemophilus ducreyi can bind hemoglobin and use it as a source of heme, for which it has an obligate requirement. We previously identified and purified HgbA, a hemoglobin-binding outer membrane protein from H. ducreyi. In this report, we describe the molecular cloning, expression, DNA sequence, and mutagenesis of the structural gene for HgbA, hgbA. H. ducreyi and recombinant Escherichia coli expressing hgbA bound [125I]he- moglobin, establishing HgbA as a receptor. Insertions or deletions in the cloned hgbA gene abolished expres- sion of HgbA and hemoglobin binding in E. coli. Mutagenesis of H. ducreyi by allelic exchange of insertions into hgbA abolished its ability to bind [125I]hemoglobin or utilize hemoglobin as a source of heme. The deduced protein sequence was similar to those of the TonB-dependent family of outer membrane receptors. The most similar member was HutA (heme receptor) from Vibrio cholerae. Tbp1 and Lbp1 (transferrin and lactoferrin receptors, respectively, from pathogenic Neisseria spp.) also showed very significant homology. Thus, by characterizing the hgbA locus, this work elucidates a potentially important role of HgbA in obtaining heme and/or iron from the host.
    [Show full text]
  • The Role of Electrostatics in Siderophore Recognition by the Immunoprotein Siderocalin1 Trisha M
    Published on Web 11/19/2008 The Role of Electrostatics in Siderophore Recognition by the Immunoprotein Siderocalin1 Trisha M. Hoette,† Rebecca J. Abergel,† Jide Xu,† Roland K. Strong,‡ and Kenneth N. Raymond*,† Department of Chemistry, UniVersity of California, Berkeley, California 94720-1460, and DiVision of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 Received September 19, 2008; E-mail: [email protected] Abstract: Iron is required for virulence of most bacterial pathogens, many of which rely on siderophores, small-molecule chelators, to scavenge iron in mammalian hosts. As an immune response, the human protein Siderocalin binds both apo and ferric siderophores in order to intercept delivery of iron to the bacterium, impeding virulence. The introduction of steric clashes into the siderophore structure is an important mechanism of evading sequestration. However, in the absence of steric incompatibilities, electrostatic interactions determine siderophore strength of binding by Siderocalin. By using a series of isosteric enterobactin analogues, the contribution of electrostatic interactions, including both charge-charge and cation-π, to the recognition of 2,3-catecholate siderophores has been deconvoluted. The analogues used in the study incorporate a systematic combination of 2,3-catecholamide (CAM) and N-hydroxypyridinonate (1,2-HOPO) binding units on a tris(2-aminoethyl)amine (tren) backbone, [tren(CAM)m(1,2-HOPO)n, where m ) 0, 1, 2, or 3 and n ) 3 - m]. The shape complementarity of the synthetic analogue series was determined through small-molecule crystallography, and the binding interactions were investigated through a fluorescence-based binding assay. These results were modeled and correlated through ab initio calculations of the electrostatic properties of the binding units.
    [Show full text]
  • Predicting Weakly Stable Regions, Oligomerization State, and Protein–Protein Interfaces in Transmembrane Domains of Outer Membrane Proteins
    Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins Hammad Naveed, Ronald Jackups Jr., and Jie Liang1 Department of Bioengineering, University of Illinois, Chicago, IL 60607 Edited by William F. DeGrado, University of Pennsylvania School of Medicine, Philadelphia, PA, and approved June 11, 2009 (received for review February 26, 2009) Although the structures of many ␤-barrel membrane proteins are membrane proteins, such as voltage-sensing (11), flux control of available, our knowledge of the principles that govern their ener- metabolites, and ion-sensing (9). getics and oligomerization states is incomplete. Here we describe Computational studies have also contributed much to the a computational method to study the transmembrane (TM) do- understanding of ␤-barrel membrane proteins, including the mains of ␤-barrel membrane proteins. Our method is based on a identification of ␤-barrel membrane proteins from sequences of physical interaction model, a simplified conformational space for many microbial genomes, the prediction of their topological efficient enumeration, and an empirical potential function from a orientations, and the characterization of their structural features detailed combinatorial analysis. Using this method, we can identify (12, 13). In addition, numerous spatial and sequence motifs and weakly stable regions in the TM domain, which are found to be ensemble properties of the TM domains have also been studied important structural determinants for ␤-barrel membrane pro- (13–18). As models and algorithms improve, it is natural to ask teins. By calculating the melting temperatures of the TM strands, whether computational studies can reveal further insight on the our method can also assess the stability of ␤-barrel membrane structural organization of ␤-barrel membrane proteins.
    [Show full text]
  • Engineering Antimicrobial Probiotics for the Treatment of Vancomycin-Resistant Enterococcus
    Engineering Antimicrobial Probiotics for the Treatment of Vancomycin-Resistant Enterococcus A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY KATHRYN GELDART IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ADVISOR: YIANNIS N. KAZNESSIS December, 2016 © Kathryn Geldart 2016 ACKNOWLEDGEMENTS I am deeply grateful to my Ph.D. advisor, Yiannis Kaznessis for his guidance, encouragement, and unwavering faith in my abilities throughout my time as his graduate student. His optimism and enthusiasm towards this project provided a constant fuel of inspiration, both in times of success and frustration. The trust he instilled in me gave me confidence and freedom to explore unfamiliar techniques and topics. We now know more about E. faecium resistance than either one of us originally intended. Once again, thank you Yiannis, for everything. I must also thank our collaborator, Gary Dunny, for his support and advice on bacterial techniques used throughout this project. Gary’s expertise on Enterococcus has played a key role in this project and I am incredibly grateful for the time he has taken for all of our discussions. I thank the members of Gary’s lab, especially PostDocs Dawn Manias, Jennifer Dale, and Yuqing Chen who taught me numerous techniques that have been fundamental to this work. I also thank our other collaborators, Nita Salzman and her PostDoc Sushma Kommineni for their expert advice on Enterococcus in in vivo settings and for the vast efforts they have put into the mouse trials. I thank my current lab mates Brittany Forkus and Seth Ritter for your invaluable input, support, and daily comic relief.
    [Show full text]
  • Antibacterial Prodrugs to Overcome Bacterial Resistance
    molecules Review Antibacterial Prodrugs to Overcome Bacterial Resistance Buthaina Jubeh , Zeinab Breijyeh and Rafik Karaman * Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; [email protected] (B.J.); [email protected] (Z.B.) * Correspondence: [email protected] or rkaraman@staff.alquds.edu Academic Editor: Helen Osborn Received: 10 March 2020; Accepted: 26 March 2020; Published: 28 March 2020 Abstract: Bacterial resistance to present antibiotics is emerging at a high pace that makes the development of new treatments a must. At the same time, the development of novel antibiotics for resistant bacteria is a slow-paced process. Amid the massive need for new drug treatments to combat resistance, time and effort preserving approaches, like the prodrug approach, are most needed. Prodrugs are pharmacologically inactive entities of active drugs that undergo biotransformation before eliciting their pharmacological effects. A prodrug strategy can be used to revive drugs discarded due to a lack of appropriate pharmacokinetic and drug-like properties, or high host toxicity. A special advantage of the use of the prodrug approach in the era of bacterial resistance is targeting resistant bacteria by developing prodrugs that require bacterium-specific enzymes to release the active drug. In this article, we review the up-to-date implementation of prodrugs to develop medications that are active against drug-resistant bacteria. Keywords: prodrugs; biotransformation; targeting; β-lactam antibiotics; β-lactamases; pathogens; resistance 1. Introduction Nowadays, the issue of pathogens resistant to drugs and the urgent need for new compounds that are capable of eradicating these pathogens are well known and understood.
    [Show full text]
  • And Iron-Binding Eukaryotic Proteins (Bottom: Molecular Mass 80, 000 - 500,000 D)
    Iron and the Pathogenicity of Bacteria Phillip E. Klebba, Ph. D. and Salete M. C. Newton, Ph. D. I. Gram-negative bacterial iron uptake. We are studying the ability of pathogenic bacteria to obtain the element iron (Fe) in human and animal hosts. This research spans several decades, which may be briefly summarized with a few statements. First, not just microorganisms, but essentially all organisms, require iron for a variety of metabolic processes, including energy generation by cytochrome-containing proteins, DNA synthesis, as a cofactor in metabolic enzymes, and for detoxification of reactive oxygen species. Secondly, humans and animals sequester iron within the body, in forms like transferrin, lactoferrin and ferritin, as a means of defense against prokaryotic infection, but microorganisms synthesize and secrete small organic molecules called siderophores that actively chelate iron and remove it from eukaryotic iron-binding proteins (Fig. 1). Furthermore, some bacterial pathogens may directly utilize the iron in transferrin or lactoferrin. Thus on the molecular level, iron is a valuable commodity that is a key element of bacterial pathogenesis. But unfortunately, the process of iron acquisition is not well understood in either Gram-positive or Gram-negative bacteria. Figure 1. Structure of iron-binding microbial siderophores (top; molecular mass 700 - 1000 D) and iron-binding eukaryotic proteins (bottom: molecular mass 80, 000 - 500,000 D). For comparison, the actual size and structure of ferric enterobactin is shown next to that of ferritin. Regarding Gram-negative organisms, our experiments focus on the uptake of iron through the outer membrane (OM) of Escherichia coli (Fig. 2) , a prototypic bacterium that is like many other pathogens, including Salmonella typhi (typhoid fever), Vibrio cholerae (cholera), Shigella dysenteria (dysentery), Neisseria meningitidis (meningitis) and Yersinia pestis (plague).
    [Show full text]
  • Mechanisms of the Antibacterial Activity of Lactoferrin and Lactoferrin-Derived Peptides
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268421952 MECHANISMS OF THE ANTIBACTERIAL ACTIVITY OF LACTOFERRIN AND LACTOFERRIN-DERIVED PEPTIDES Article CITATIONS READS 0 408 3 authors: Anca Roseanu Maria Damian Institutul de Biochimie Cantacuzino Institute 39 PUBLICATIONS 711 CITATIONS 50 PUBLICATIONS 308 CITATIONS SEE PROFILE SEE PROFILE Robert W Evans 129 PUBLICATIONS 4,253 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CEEX 47 - Programme of Romanian Ministry of Education and Research View project Modeling and Simulation of Proteins Structure and Interactions View project All content following this page was uploaded by Anca Roseanu on 15 April 2015. The user has requested enhancement of the downloaded file. MECHANISMS OF THE ANTIBACTERIAL ACTIVITY OF LACTOFERRIN AND LACTOFERRIN-DERIVED PEPTIDES ANCA ROŞEANU1*, MARIA DAMIAN2, ROBERT W. EVANS3 1Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei 296, Bucharest, Romania 2“I. Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, Splaiul Independenţei 103, Bucharest, Romania 3Metalloprotein Research Group, Division of Biosciences, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK (Received October 15, 2010) Lactoferrin (Lf), a member of the transferrin family of iron-binding proteins, is now known to have a number of properties, including antibacterial activity towards a broad spectrum of Gram-negative and Gram-positive bacteria. The mechanism of the antibacterial activity of Lf is complex and involves beside iron-chelation, direct action on bacteria and/or the activation of the immune system. Lactoferricin (Lfcin) and other peptides derived from Lf or Lfcin are more potent antibacterial agents, a property exhibited by interaction with and penetration of bacterial membrane.
    [Show full text]
  • Ferric Enterobactin Binding and Utilization by Neisseria Gonorrhoeae SUSAN D
    JOURNAL OF BACTERIOLOGY, May 1999, p. 2895–2901 Vol. 181, No. 9 0021-9193/99/$04.0010 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Ferric Enterobactin Binding and Utilization by Neisseria gonorrhoeae SUSAN D. BIEGEL CARSON,1 PHILIP E. KLEBBA,2 SALETE M. C. NEWTON,2 1,3 AND P. FREDERICK SPARLING * Department of Microbiology and Immunology1 and Department of Medicine,3 University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 730192 Received 23 December 1998/Accepted 19 February 1999 FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows se- quence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 mM, but growth stimulation was abolished when an omega (V) cassette was inserted within fetA or when tonB was insertionally interrupted. 59 m FA1090 FetA specifically bound Fe-enterobactin, with a Kd of approximately 5 M. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting sidero- phores through the periplasmic space of gram-negative bacteria.
    [Show full text]
  • Ligand-Specific Opening of a Gated
    REPORTS brane (11) and TonB promotes uptake Ligand-Specific Opening of a Gated-Porin through channels in the outer membrane, Channel in the Outer Membrane of TonB-mediated transport reactions in- volve energy transduction between two Living Bacteria distinct bilayers. The outer leaflet of the OM contacts Xunqing Jiang, Marvin A. Payne, Zhenghua Cao, the external environment, and various nu- Samuel B. Foster, Jimmy B. Feix, Salete M. C. Newton, trients, noxious agents, and small molecules Phillip E. Klebba* interact with OM proteins during the initial stages of transport (12). Because ferric en- Ligand-gated membrane channels selectively facilitate the entry of iron into prokaryotic terobactin binds to the outside of a closed cells. The essential role of iron in metabolism makes its acquisition a determinant of channel, through which it subsequently bacterial pathogenesis and a target for therapeutic strategies. In Gram-negative bacteria, passes, conformational changes in FepA TonB-dependent outer membrane proteins form energized, gated pores that bind iron surface loops are a fundamental part of chelates (siderophores) and internalize them. The time-resolved operation of the Esch- its suspected transport mechanism. To in- erichia coli ferric enterobactin receptor FepA was observed in vivo with electron spin vestigate this possibility, we reacted ni- resonance spectroscopy by monitoring the mobility of covalently bound nitroxide spin troxide spin labels with a genetically en- labels. A ligand-binding surface loop of FepA, which normally closes its transmembrane gineered cysteine residue in a ligand-bind- channel, exhibited energy-dependent structural changes during iron and toxin (colicin) ing surface loop [PL5 (13)] and analyzed transport.
    [Show full text]
  • Expression of Iron, the Salmochelin Siderophore Receptor, Requires
    Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues Roberto Balbontín, Nicolás Villagra, Maria Pardos de la Gándara, Guido Mora, Nara Figueroa-Bossi, Lionello Bossi To cite this version: Roberto Balbontín, Nicolás Villagra, Maria Pardos de la Gándara, Guido Mora, Nara Figueroa- Bossi, et al.. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Molecular Microbiology, Wiley, 2016, 100 (1), pp.139 - 155. 10.1111/mmi.13307. hal-01412678 HAL Id: hal-01412678 https://hal.archives-ouvertes.fr/hal-01412678 Submitted on 8 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues Roberto Balbontın,1† Nicolas Villagra,2 to the polychromatic landscape of sRNA-mediated Maria Pardos de la Gandara, 1‡ Guido Mora,2 regulation. Nara Figueroa-Bossi1* and Lionello Bossi1 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universite Paris-Sud, Universite Paris- Introduction Saclay, 91198 Gif-sur-Yvette, France. Rewiring of gene expression networks in response to 2Laboratorio de Patogenesis Molecular y chemical or physical cues is central to the ability of bac- Antimicrobianos, Facultad de Medicina, Universidad terial pathogens to adapt to environmental changes.
    [Show full text]
  • Cloning, Mapping and Identification of the Aeromonas Salmonicida Fsta
    魚 病 研 究 Fish Pathology,33(4),239-246,1998.10 Cloning,Mapping and Identificationof theAeromonas salmonicidafstA,fepA and irpAGenes, Encoding the 86,82 and 74 kDa Iron-regulated Outer Membrane Proteins,Respectively R.J. Collighan, A. J. Bennett and G. Coleman Department of Biochemistry,NottinghamUniversity Medical School,Queen'sMedical Centre, Clifton Boulevard, Nottingham,NG7 2UH,U.K. (Received February 23,1998) Three iromps(iron-regulatedouter membrane proteins)ofAeromonas salmonicidawere identifiedby the use of specificantibodies together with Southernhybridization analysis and limitednucleotide sequencing of their genes. The resultsof theseexperiments together with a searchof the internationaldatabase for homologous sequencesled to theiridentification as follows: 86 kDa iromp(FstA)as a Vibrioanguillarum Fat A homologue 82 kDa iromp(FepA)as an Escherichiacoli FepA homologue 74kDa iromp(IrpA)as an Escherichiacoli Cir homologue Key words : gene cloning,gene mapping,Aeromonas salmonicida,iron-regulated outer membrane protein,iromp Pathogenic bacteria require iron for growth in a host such are considered as potential vaccine components where the only source of this element is tightly com (Banerjee-Bhatnagar and Frasch, 1990; Robinson and plexed in a number of iron-binding proteins such as Melling, 1993). An earlier study by Chart and Trust haemoglobin, transferrin and lactoferrin. Two major (1983) detected an inducible siderophore-mediatedtrans mechanisms for acquiring iron from the host proteins port system in the fish pathogen,Aeromonas salmonicida, have been described. The first, present in Escherichia the causative agent of furunculosis in salmonid fish. coli requires the formation of soluble factors with a high Hirst et al. (1991) later identified the siderophore as a affinity for iron such that they are able to remove it from 2,3 diphenol-catechol derivative.
    [Show full text]
  • Three Paradoxes of Ferric Enterobactin Uptake
    P.E.Klebba, completion of the crystal structures of FepA, a ferric catecholate transporter, FhuA, a ferric hydroxamate Three Paradoxes of Ferric transporter, FecA, the ferric citrate (FeCit) Enterobactin Uptake transporter, and the C-terminal domain of the protein that they require for functionality, TonB. Over many Phillip E. Klebba* preceding years microbiologists, geneticists, molecular biologists and biochemists described the multiple protein components of cell envelope iron Department of Chemistry & Biochemistry, uptake systems, their energetic requirements, the University of Oklahoma, 620 Parrington dichotomy of beneficial and toxic ligands that enter Oval, Norman, OK 73019 USA, and Faculte the cell via their OM receptor proteins, the unique de Medecine, Institut Necker Enfants high-affinity nature of their uptake mechanism, their dependence on another cell envelope protein, TonB, Malades, 156, rue de Vaugirard 75015, their channel-forming properties, and their Paris France . *Corresponding author: Tel: 405- conformational dynamics in response to ligand 325-4969, Fax: 405-325-6111, [email protected] binding. This research provided a conceptual foundation for the structural framework that the Bacteria need iron for so many critical crystallography revealed. metabolic processes, including glycolysis, energy The first siderophore receptor that was generation by electron transport, DNA synthesis, and crystallized and solved, FepA, contained, as expected defense against toxic reactive oxygen species, that and previously demonstrated, the largest known $- the element is indispensable to their survival. Several barrel of the OM, covered on the exterior surface by decades ago this iron requirement was correlated to large loops that bind ligands, and closed on the bacterial pathogenesis in animals and man, and periplasmic side by its own N-terminus.
    [Show full text]