addenda and errata Acta Crystallographica Section D Biological addenda and errata Crystallography ISSN 1399-0047 The structure of an authentic spore photoproduct lesion in DNA suggests a basis for recognition. Corrigendum Isha Singh,a Yajun Jian,b Lei Lia,b and Millie M. Georgiadisa,b* aDepartment of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, and bDepartment of Chemistry and Chemical Biology, Indiana University–Purdue University at Indianapolis, Indianapolis, IN 46202, USA Correspondence e-mail:
[email protected] The article by Singh et al. [ (2014). Acta Cryst. D70, 752–759] is corrected. In the article by Singh et al. (2014) the name of one of the authors was given incorrectly. The correct name is Yajun Jian as given above. References Singh, I., Lian, Y., Li, L. & Georgiadis, M. M. (2014). Acta Cryst. D70, 752–759. Acta Cryst. (2014). D70, 1173 doi:10.1107/S1399004714006130 # 2014 International Union of Crystallography 1173 research papers Acta Crystallographica Section D Biological The structure of an authentic spore photoproduct Crystallography lesion in DNA suggests a basis for recognition ISSN 1399-0047 Isha Singh,a Yajun Lian,b Lei Lia,b The spore photoproduct lesion (SP; 5-thymine-5,6-dihydro- Received 12 September 2013 and Millie M. Georgiadisa,b* thymine) is the dominant photoproduct found in UV- Accepted 5 December 2013 irradiated spores of some bacteria such as Bacillus subtilis. Upon spore germination, this lesion is repaired in a light- PDB references: N-terminal aDepartment of Biochemistry and Molecular independent manner by a specific repair enzyme: the spore fragment of MMLV RT, SP Biology, Indiana University School of Medicine, DNA complex, 4m94; non-SP Indianapolis, IN 46202, USA, and bDepartment photoproduct lyase (SP lyase).