The Gal Operon of Streptomyces

Total Page:16

File Type:pdf, Size:1020Kb

The Gal Operon of Streptomyces curopaiscnes raiemami European Patent Office @ Publication number: 0 235 112 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION (21; Application number: 87870026.9 Qn) Int. CI.3: C 12 N 15/00 C 12 N 1/20 © Date of filing: 26.02.87 © Priority: 28.02.86 US 834706 © Applicant: SMITHKUNE BECKMAN CORPORATION 30.01.87 US 9419 One Franklin Plaza PO Box 7929 Philadelphia Pennsylvania 19103(US) 43) Date of publication of application: © Inventor: Adams, Craig W. 02.09.87 Bulletin 87/36 1773 South Buena Vista Corona California 92720(US) m) Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE @ Inventor: Fornwald, James Allan 104 Burnside Avenue Norristown Pennsylvania 19403(US) © Inventor: Brawner, Mary Ellen 126 Valley Stream Circle Wayne Pennsylvania 19087(US) © Inventor: Schmidt, Francis John 1404 Doris Drive Columbia Missouri 65201 (US) © Representative: Tasset, Gerard SMITHKLINE - RIT rue de I'lnstitut, 89 B-1330Rixensart(BE) 64) The gal operon of streptomyces. © A recombinant DNA molecule comprising the Strepto- myces gal operon galK gene; galE gene; p^Tgene; P1 prom- oter; P2 promoter; P2 promoter expression unit; P1 promoter regulated region; or the entire Streptomyces gal operon is prepared. t 4 m J jyuuii rummy uompany LIQ 0235112 -l- TITLE THE GAL OPERON OF 10 — STREPTOMYCES CROSS REFERENCE TO RELATED APPLICATIONS . This application is a continuation-in-part of 15 • v " ' Serial Number 834,706, filed February 28, 1986, which is pending. BACKGROUND OF THE INVENTION 20 This invention relates to a recombinant DNA molecule comprising the Streptomyces gal operon. Hodgson, J. Gen. Micro., 128, 2417-2430 (1982), report that Streptomyces coelicolor A3(2) has a glucose repression system which allows repression at the level of 25 transcription of the arabinose uptake system, one of the glycerol uptake systems, and also repression of the galactose uptake system in wild type strains. There is no report in Hodgson of actual galactose metabolism by S. coelicolor A3 (2).' 30 Okeda et al. MoT. Gen. Genet., 196, 501-507 (1984), report that glucose kinase activity, 2-deoxyglu- cose-sensitivity, glucose utilization and glucose repression were all restored to S_^ coelicolor A3(2) glk (glucose kinase) mutants transformed by a 3.5 kb DNA 35 fragment which contained the glk gene cloned from S . into coelicolor a phage . vector . Seno et al., Mol. Gen, lienec, the glycerol (gyl) operon of Streptomyces (1984) , report substrate- coelicolor, and state that such operon is inducible and catabolite-repressible. 1841-1853 Debouck et al., Nuc. Acids. Res., 13(6), the of coli consists of (1985) , report that g_al operon which specify the three structurally contiguous genes metabolism of galactose, i.e., enzymes required for the gaJLT qalE (uridine diphosphogalactose-4-epimerase) , 0 and (galactose-l-phosphate uridyltransf erase) £a_lK from a (galactokinase); that such genes are expressed that the polycistronic mRNA in the order E, T, K; of the expression of the promoter distal gene operon, to the g_a_lT qalK, is known to be coupled translationally ■5 it; that such translational gene immediately preceding between the end coupling results from a structural overlap ribosome binding of the galT coding sequence and the translational coupling of region of galK; and that the of these qalT and galK ensures the coordinate expression -° metabolism of " galactose. genes during the SUMMARY OF THE INVENTION This invention relates to a recombinant DNA molecule comprising a Streptomyces g_al operon £alK gene; expression unit, or P2 qalE gene; galT gene; P2 promoter derivative thereof as well as a 25 promoter or any functional recombinant DNA molecule comprising a Streptomyces £al regulated region or the operon PI promoter, PI promoter functional entire gal operon or any regulatable and derivative thereof. 30 This invention also relates to a recombinant DNA molecule comprising the Streptomyces g_al operon or any thereof and a regulatable and functional derivative functional DNA molecule operatively linked to such operon; and such DNA molecule, a recombinant DNA vector comprising replicon; a 35 znd, optionally, additionally comprising a with such method of preparing a host cell transformed - 3 - 02351 12 vector; the transformed host prepared by such method; a method of expressing such functional DNA sequence which comprises cultivating such transformed host under suitable conditions such that the functional DNA sequence is expressed; and to a method of regulating the expression of such functional DNA sequence which comprises cultivating such transformed host under conditions which regulate such expression. This invention also relates to a recombinant DNA 10 molecule comprising the Streptomyces gal operon P2 promoter expression unit or any functional derivative thereof and a functional DNA molecule operatively linked to such unit; a recombinant DNA vector comprising such DNA molecule, and, optionally, additionally comprising a ^15 replicon; a method of preparing a host cell transformed with such vector; the transformed host prepared by such method; and to a method of expressing such functional DNA sequence which comprises cultivating such transformed host under suitable conditions such that the functional DNA 20 • sequence is expressed.j This invention also relates to a recombinant DNA molecule comprising the Streptomyces gal operon PI promoter regulated region or any regulatable and functional derivative thereof and a functional DNA 25 molecule operatively linked to such region; a recombinant DNA vector comprising such DNA molecule, and, optionally, additionally comprising a replicon; a method of preparing a host cell transformed with such vector; the transformed host prepared by such method; a method of expressing such 3° functional DNA sequence which comprises cultivating such transformed host under suitable conditions such that the functional DNA sequence is expressed; and to a method of regulating the expression of such functional DNA sequence which comprises cultivating such transformed host under 35 conditions which regulate such expression. This invention also relates to a recombinant DNA lecule comprisiny t«c ^'^w..., — - and functional derivative omoter or any regulatable DNA molecule operatively ereof and a foreign functional recombinant DNA vector comprising nked to such region; a additionally :ch DNA molecule, and, optionally, method of preparing a host cell uprising a replicon; a the transformed host ransformed with such vector; method of expressing such -epared by such method; a comprises cultivating such actional DNA sequence which conditions such that the ransformed host under suitable and to a method of actional DNA sequence is expressed; of such functional DNA sequence egulating the expression such transformed host under hich comprises cultivating expression. onditions which regulate such recombinant DNA This invention also relates to a g_al operon P2 olecule comprising the Streptomyces derivative thereof and a romoter or any functional molecule operatively linked to such oreign functional DNA vector comprising such DNA egion; a recombinant DNA additionally comprising a lolecule, and, optionally, a host cell transformed -eplicon; a method of preparing transformed host prepared by such ,ith such vector; the such functional DNA nethod; and to a method of expressing cultivating such transformed host sequence which comprises such that the functional DNA ander suitable conditions sequence is expressed. method of This invention also relates to a utilizing host microorganism or enabling a non-galactose which comprises transforming cell to utilize galactose DNA molecule comprising a such host with a recombinant portion of the Streptomyces S^re^myces gal operon or any is functional derivative thereof, which gal operon, or any transformed host to utilize adequate to enable such also relates to the recombinant galactose, This invention method and to the host DNA vector employed in such prepared by such method. BRIEF DtibtKJ.fi iutM ur xrir. uimniimo Figure 1 represents a restriction endonuclease lividans 1326 galactose (sal) ap of the Streptomyces locations for structural peron and indicates approximate enes and promoters within the operon. Figure 2 represents a restriction endonuclease iap of plasmid pK21. Figure 3 represents a comparison of the estriction endonuclease maps of the S. lividans gal containing the S. peron and a restriction fragment :oelicolor galK gene. DETAILED DESCRIPTION OF THE INVENTION It has now been discovered that the Streptomyces the metabolism of galactose jenome contains a operon for structural [i.e., a gal operon) which comprises three and two (PI and jenes (galT, galE and galK) promoters '2). The galT gene product is known as galactose-l- ,' the phosphate uridyltransf erase ( transferase) galE gene product is known as uridine diphosphogalactose- is 1-epimerase (epimerase) , and the galK gene product The function tnown as galactose-l-kinase (galactokinase) . and in Df the gene products of galT, galE g_alK galactose netabolism in Streptomyces is explained by the following diagram: 1. galactose + ATP galactokinase galactose-l-phosphate + ADP 2. galactose-l-phosphate + UDP-glucose transferase UDP-galactose + glucose-l-phosphate 3. UDP-galactose epimerase UDP-glucose By the term "promoter" is meant any region binding of RNA upstream of a structural gene which permits polymerase and transcription to occur. gy tile LC1IU oliui-i.---- which serves to be the template sequence for a polypeptide of mRNA. for the synthesis
Recommended publications
  • Transcriptional Units
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 7, pp. 3194-3197, July 1979 Biochemistry Cyclic AMP as a modulator of polarity in polycistronic transcriptional units (positive regulation/rho factor/lactose and galactose operons/catabolite repression) AGNES ULLMANNt, EVELYNE JOSEPHt, AND ANTOINE DANCHINt tUnite de Biochimie Cellulaire, Institut Pasteur, 75724 Paris Cedex 15, France; and tInstitut de Biologie Physico-Chimique, 75005 Paris, France Communicated by Frangois Jacob, April 16, 1979 ABSTRACT The degree of natural polarity in the lactose scribed by Watekam et al. (7, 8) in sonicated bacterial extracts. and galactose operons of Escherichia coli is affected by aden- One unit is the amount of enzyme that converts 1 nmol of osine 3',5'-cyclic monophosphate (cAMP). This effect, mediated substrate per min at 280C (except for UDPGal epimerase, for by the cAMP receptor protein, is exerted at sites distinct from the promoter. Experiments performed with a mutant bearing which the assay temperature was 220C). a thermosensitive rho factor activity indicate that cAMP relieves Reagents and Enzymes. They were obtained from the fol- polarity by interfering with transcription termination. Con- lowing companies: trimethoprim from Calbiochem; all radio- flicting results in the literature concerning the role of cAMP active products from Amersham; isopropyl-f3-D-thiogalactoside receptor protein and cAMP in galactose operon expression can (IPTG), D-fucose, cAMP, UDPglucose dehydrogenase, and all be reconciled by the finding that cAMP stimulates the expres- substrates from Sigma; and all other chemicals from Merck. sion of operator distal genes without significantly affecting the proximal genes. Therefore, it appears necessary to reevaluate the classification o(the galactose operon as exhibiting cAMP- RESULTS mediated catabolite repression at the level of transcription Natural Polarity in Lactose Operon.
    [Show full text]
  • Sudips Revised Thesis
    Investigation Of The Behavior Of The Gal4 Inhibitor Gal80 Of The GAL Genetic Switch In The Yeast Saccharomyces Cerevisiae Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sudip Goswami, M.S. Graduate Program in Molecular Genetics The Ohio State University 2014 Dissertation Committee Dr. James Hopper, Advisor Dr. Stephen Osmani Dr. Hay-Oak Park Dr. Jian-Qiu Wu ii Copyright by Sudip Goswami 2014 iii ABSTRACT The DNA-binding transcriptional activator Gal4 and its regulators Gal80 and Gal3 constitute a galactose-responsive switch for the GAL genes of Saccharomyces cerevisiae. Gal4 binds to upstream activation sequences or UASGAL sites on GAL gene promoters as a dimer both in the absence and presence of galactose. In the absence of galactose, a Gal80 dimer binds to and masKs the Gal4 activation domain, inhibiting its activity. In the presence of galactose, Gal3 interacts with Gal80 and relieves Gal80’s inhibition of Gal4 activity allowing rapid induction of expression of GAL genes. In the first part of this work (Chapter 2) in-vitro chemical crosslinking coupled with SDS PAGE and native PAGE analysis were employed to show that the presence of Gal3 that can interact with Gal80 impairs Gal80 self association. In addition, live cell spinning disK confocal imaging showed that dissipation of newly discovered Gal80-2mYFP/2GFP clusters in galactose is dependent on Gal3’s ability to interact with Gal80. In the second part (Chapter 3), extensive analysis of Gal80 clusters was carried out which showed that these clusters associate strongly with the GAL1-10-7 locus and this association is dependent on the presence of the UASGAL sites at this locus.
    [Show full text]
  • NADP, Corepressor for the Bacillus Catabolite Control Protein Ccpa
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9590–9595, August 1998 Microbiology NADP, corepressor for the Bacillus catabolite control protein CcpA JEONG-HO KIM,MARTIN I. VOSKUIL, AND GLENN H. CHAMBLISS* Department of Bacteriology, University of Wisconsin-Madison, E. B. Fred Hall, Madison, WI 53706 Communicated by T. Kent Kirk, University of Wisconsin, Madison, WI, June 10, 1998 (received for review February 12, 1998) ABSTRACT Expression of the a-amylase gene (amyE)of (18), and the presence of a conserved effector-binding domain Bacillus subtilis is subject to CcpA (catabolite control protein in CcpA (3) together strongly suggest the necessity of an A)-mediated catabolite repression, a global regulatory mech- effector(s) such as a corepressor to activate CcpA. To date, anism in Bacillus and other Gram-positive bacteria. To deter- HPr, a phosphocarrier protein in the phosphoenolpyruvate- mine effectors of CcpA, we tested the ability of glycolytic :sugar phosphotransferase system, and two glycolytic metab- metabolites, nucleotides, and cofactors to affect CcpA binding olites, fructose-1,6-diphosphate (FDP) and glucose-6- to the amyE operator, amyO. Those that stimulated the phosphate, have been proposed as effectors of CcpA (19–22). DNA-binding affinity of CcpA were tested for their effect on HPr is phosphorylated in two different fashions: ATP- transcription. HPr-P (Ser-46), proposed as an effector of dependent phosphorylation at Ser-46 and phosphoenolpyru- CcpA, also was tested. In DNase I footprint assays, the affinity vate-dependent phosphorylation at His-15 (23). In the ptsH1 of CcpA for amyO was stimulated 2-fold by fructose-1,6- mutant strain, the serine residue at position 46 of HPr is diphosphate (FDP), 1.5-fold by oxidized or reduced forms of replaced with an alanine, which eliminates phosphorylation of NADP, and 10-fold by HPr-P (Ser-46).
    [Show full text]
  • Studies with the Escherichia Coli Galactose Operon Regulatory Region Carrying a Point Mutation That Simultaneously Inactivates T
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 219, number 1, 189-196 FEB 04899 July 1987 Studies with the Escherichia coli galactose operon regulatory region carrying a point mutation that simultaneously inactivates the two overlapping promoters Interactions with RNA polymerase and the cyclic AMP receptor protein Sreenivasan Ponnambalarn, Annick Spassky* and Stephen Busby Department of Biochemistry, University of Birmingham, PO Box 363, Birmingham B15 2TT, England and *D~partement de Biologie Molbculaire, lnstitut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France Received 22 April 1987 We report in vitro studies of the interactions between purified E. coli RNA polymerase and DNA from the regulatory region of the E. coli galactose operon which carries a point mutation that simultaneously stops transcription initiation at the two normal start points, $1 and $2. In the presence of this point muta- tion, transcription initiates at a third start point 14/15 bp downstream of $1, showing that inactivation of the two normally active promoters, P1 and P2, unmasks a third weaker promoter, P3. Transcription initia- tion in the gal operon is normally regulated by the cyclic AMP receptor protein, CRP, that binds to the gal regulatory region and switches transcription from P2 to PI. With the point mutation, CRP binding swit- ches transcription from P3 to P1, although the formation of transcriptionally competent complexes at P1 is very slow. The results are discussed with respect to the mechanism of transcription activation by the CRP factor and the similarities between the regulatory regions of the galactose and lactose operons.
    [Show full text]
  • Chapter 21 Operons: Fine Control of Bacterial Transcription
    Chapter 21 Operons: Fine Control of Bacterial Transcription The E. coli genome contains over 3000 genes. Some of these are active all the time because their products are in constant demand. But some of them are turned off most of the time because their products are rarely needed. For example, the enzymes required for the metabolism of the sugar arabinose would be useful only when arabinose is present and when the organism’s favorite energy source, glucose, is absent. Such conditions are not common, so the genes encoding these enzymes are usually turned off. Why doesn’t the cell just leave all its genes on all the time, so the right enzymes are always there to take care of any eventuality? The reason is that gene expression is an expensive process. It takes a lot of energy to produce RNA and protein. In fact, if all of an E. coli cell’s genes were turned on all the time, production of RNAs and proteins would drain the cell of so much energy that it could not compete with more effi cient organisms. Thus, control of gene expression is essential to life. Gene regulation is the device to insure that proteins are synthesized in exactly the amounts they are needed and only when they are needed. Transcriptional regulation: gene expression is controlled by regulatory proteins Negative regulation: - A repressor protein inhibits transcription of a specific gene. - In this case, inducer (antagonist of the repressor) is needed to allow transcription. Positive regulation: - Activator works to increase the frequency of transcription of an gene (operon) Transcriptional regulation: gene expression is controlled by regulatory proteins Operons Operons and the resulting transcriptional regulation of gene expression permit prokaryotes to rapidly adapt to changes in the environment: new carbon sources, lack of an amino acid, etc.
    [Show full text]
  • The Regulation of Transcription Initiation in Bacteria
    Annual Reviews www.annualreviews.org/aronline Ann.Rev. Genet. 1985. 19:35547 Copyright© 1985 by AnnualReviews Inc. All rights reserved THE REGULATION OF TRANSCRIPTIONINITIATION IN BACTERIA William S. Reznikoff I, Deborah A. Siegele 2, Deborah W. Cowingz, and2 Carol A. Gross Departmentsof Biochemistry~ andBacteriology 2, Collegeof Agriculturaland Life Sciences, Universityof Wisconsin,Madison, Wisconsin 53706 CONTENTS INTRODUCTION..................................................................................... 355 PROMOTERSTRUCTURE ......................................................................... 356 THEREGULATION OF E~TM TRANSCRIPTIONINITIATION ............................ 360 NegativeRegulation of TranscriptionInitiation ............................................. 361 Positive Regulationof TranscriptionInitiation .............................................. 363 DNATopology Regulation of TranscriptionInitiation ...................................... 365 DNAModification and the Regulationof GeneExpression ............................... 366 MODIFICATION OF HOLOENZYMESTRUCTURE AND THE REGULATION OF GENEEXPRESSION ................................................................... 366 E. coil ~r7° .......................................................................................... 367 ~2 by University of Wisconsin - Madison on 03/29/07. For personal use only. The HeatShock Response and ~r ............................................................. 368 The E. coli ntrA (glnF) Protein: AnotherSigma Factor ..................................
    [Show full text]
  • Molecular Mechanisms of Transcription Initiation at Gal Promoters and Their Multi-Level Regulation by Galr, CRP and DNA Loop
    Biomolecules 2015, 5, 2782-2807; doi:10.3390/biom5042782 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review Molecular Mechanisms of Transcription Initiation at gal Promoters and their Multi-Level Regulation by GalR, CRP and DNA Loop Dale E.A. Lewis * and Sankar Adhya Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-301-496-9129; Fax: +1-301-496-2212. Academic Editors: Sivaramesh Wigneshweraraj and Deborah M. Hinton Received: 11 May 2015 / Accepted: 25 September 2015 / Published: 16 October 2015 Abstract: Studying the regulation of transcription of the gal operon that encodes the amphibolic pathway of D-galactose metabolism in Escherichia coli discerned a plethora of principles that operate in prokaryotic gene regulatory processes. In this chapter, we have reviewed some of the more recent findings in gal that continues to reveal unexpected but important mechanistic details. Since the operon is transcribed from two overlapping promoters, P1 and P2, regulated by common regulatory factors, each genetic or biochemical experiment allowed simultaneous discernment of two promoters. Recent studies range from genetic, biochemical through biophysical experiments providing explanations at physiological, mechanistic and single molecule levels. The salient observations highlighted here are: the axiom of determining transcription start points, discovery of a new promoter element different from the known ones that influences promoter strength, occurrence of an intrinsic DNA sequence element that overrides the transcription elongation pause created by a DNA-bound protein roadblock, first observation of a DNA loop and determination its trajectory, and piggybacking proteins and delivering to their DNA target.
    [Show full text]
  • Isolation of the Gal Repressor (E
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 8, pp. 1891-1895, August 1971 Isolation of the gal Repressor (E. coli/lac repressor/fucose/galactose/affinity chromatography) J. S. PARKS*, M. GOTTESMAN*, K. SHIMADAt, R. A. WEISBERGt, R. L. PERLMAN$, AND I. PASTAN* * Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health;t Laboratory of Biomedical Sciences, National Institute of Child Health and Human Development, National Institutes of Health; and $ Clinical Endocrinology Branch, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland 20014 Communicated by E. R. Stadtman, June 11, 1971 ABSTRACT The repressor of the galactose operon of I867Sam7) (6); Xh8Odlacp8 from PP70, F-,strRA(lac-proA),- Escherichia coli has been partially purified and identified Su- (Xh8OdlacpscJ857St68,Xh8Ocl857St68) (9); and X from as a protein. Induction of a lysogen in which X was linked N1383, Su-,galK-, Cultures were grown in to the bacterial gaiR and lysine genes resulted in a large (XcI857Sam7). increase in the production of the gal repressor. Single-step IL broth (10 g Bacto-tryptone-5 g yeast extract-5 g NaCl purification by affinity chromatography, using the ligand per liter) and induced by heating log-phase cultures at 40'C p-aminophenyl-B3-D-thiogalactoside linked to beaded agar- for 3-4 hr. Isolation and purification of bacteriophage and ex- ose, provided a convenient method of separating the gal traction of bacteriophage DNA have been described (10). To repressor from other DNA-binding proteins. Binding of gal repressor to Xpgal [32PJDNA was studied by assay of binding label phage DNA, 5 mCi Of 32p was added to 100 ml of cul- to a nitrocellulose filter.
    [Show full text]
  • Spot 42 RNA Mediates Discoordinate Expression of the E. Coli Galactose Operon
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon Thorleif Møller, Thomas Franch, Christina Udesen, Kenn Gerdes, and Poul Valentin-Hansen1 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark The physiological role of Escherichia coli Spot 42 RNA has remained obscure, even though the 109-nucleotide RNA was discovered almost three decades ago. Structural features of Spot 42 RNA and previous work suggested to us that the RNA might be a regulator of discoordinate gene expression of the galactose operon, a control that is only understood at the phenomenological level. The effects of controlled expression of Spot 42 RNA or deleting the gene (spf) encoding the RNA supported this hypothesis. Down-regulation of galK expression, the third gene in the gal operon, was only observed in the presence of Spot 42 RNA and required growth conditions that caused derepression of the spf gene. Subsequent biochemical studies showed that Spot 42 RNA specifically bound at the galK Shine-Dalgarno region of the galETKM mRNA, thereby blocking ribosome binding. We conclude that Spot 42 RNA is an antisense RNA that acts to differentially regulate genes that are expressed from the same transcription unit. Our results reveal an interesting mechanism by which the expression of a promoter distal gene in an operon can be modulated and underline the importance of antisense control in bacterial gene regulation. [Key Words: Antisense RNA; galactose operon; riboregulation; small RNAs; Spot 42RN A; translational regulation] Received March 22, 2002; revised version accepted May 13, 2002.
    [Show full text]
  • Region Immediately Adjacent to the L-Arabinose Operator in Escherichia Coli B/R' MARIANNE ELEUTERIO, BARBARA GRIFFIN, and DAVID E
    JOURNAL OF BACTERIOLOGY, Aug. 1972. p. 383-391 Vol. 111, No. 2 Copyright 0 1972 American Society for Microbiology Printed in U.S.A. Characterization of Strong Polar Mutations in a Region Immediately Adjacent to the L-Arabinose Operator in Escherichia coli B/r' MARIANNE ELEUTERIO, BARBARA GRIFFIN, AND DAVID E. SHEPPARD Department of Biological Sciences, University of Delaware, Newark, Delaware 19711 Received for publication 12 April 1972 Seven L-arabinose-negative mutations are described that map in three genet- ically distinct regions immediately adjacent to the araO (operator) region of the L-arabinose operon. All seven mutants revert spontaneously, exhibit a cis-dom- inant, trans-recessive polarity effect upon the expression of L-arabinose isom- erase (gene araA), and fail to respond to amber, ochre, or UGA suppressors. Three of these mutants exhibit absolute polarity and are not reverted by the mutangens 2-aminopurine, diethyl sulfate, and ICR-191. These may have arisen as a consequence of an insertion mutation in gene araB or in the initi- ator region of the L-arabinose operon. The four remaining mutants exhibit strong but not absolute polarity on gene araA and respond to the mutagens di- ethyl sulfate and ICR-191. Three of these mutants are suppressible by two in- dependently isolated suppressors that fail to suppress known nonsense codons. Partially polar Ara+ revertants with lesions linked to ara are obtained from three of the same four mutants. These polar mutants, their external suppres- sors, and their partially polar revertants are discussed in terms of the mecha- nism of initiation of expression of the L-arabinose operon.
    [Show full text]
  • Local and Global Regulation of Transcription Initiation in Bacteria Browning, Douglas F; Busby, Stephen J W
    University of Birmingham Local and global regulation of transcription initiation in bacteria Browning, Douglas F; Busby, Stephen J W DOI: 10.1038/nrmicro.2016.103 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Browning, DF & Busby, SJW 2016, 'Local and global regulation of transcription initiation in bacteria', Nature Reviews Microbiology. https://doi.org/10.1038/nrmicro.2016.103 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked 11/08/2016 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • Escherichia Coli LUCIA B
    JOURNAL oF BAcTERIOLoGY, June 1973, p. 1040-1044 Vol. 114, No. 3 Copyright 0 1973 American Society for Microbiology Printed in U.SA. Role of Cyclic Adenosine 3', 5'-Monophosphate in the In Vivo Expression of the Galactose Operon of Escherichia coli LUCIA B. ROTHMAN-DENES, JOANNE E. HESSE, AND WOLFGANG EPSTEIN Departments of Biophysics and Biochemistry, The University of Chicago, Chicago, Illinois 60637 Received for publication 22 December 1972 Studies of levels of galactokinase in Escherichia coli with mutations affecting synthesis of, or response to, cyclic adenosine 3', 5'-monophosphate show that this nucleotide does not play a major role in expression of the galactose operon, causing at most a twofold stimulation. The discrepancy between our in vivo results and the marked stimulation by cyclic adenosine 3', 5'-monophosphate in in vitro systems indicates that current cell-free systems lack a factor which allows efficient expression of the galactose operon even in the absence of cyclic adenosine 3', 5'-monophosphate or of the binding protein for this nucleotide. Genetic (7, 19, 20) and biochemical (2, 4, 6, 7) except for the presence of the araC+ and araCc67 evidence has accumulated in recent years, mutations, respectively. L104 is a strain constitutive showing that the catabolite repression of in- for the fl-methylgalactosidase transport system (13). ducible enzymes is mediated by cyclic adeno- Chemicals. [1-_4C]galactose was obtained from Calbiochem, and [U-_4C]glycerol was obtained from sine 3', 5'-monophosphate (c-AMP) and a pro- International Chemical and Nuclear Corp. tein factor (CRP) that specifically binds c-AMP. Bacterial growth and preparation of extracts.
    [Show full text]