Original Paper

dx.doi.org/10.22093/wwj.2018.105082.2531 24

Jouranl of Water and Wastewater, Vol. 30, No.2, pp: 24-35 Presenting a Cooperative Behavior Framework for Increasing the Resilience of Water and Wastewater Treatment Plants in Coastal Floods

M. Karamouz1, P. Khalili2

Prof,FacultyofCivilEngineering,UniversityofTehran,Tehran,Iran (CorrespondingAuthor) Karamouz2@gmailcom 2MScStudentofCivilandWaterResourcesEngineering, UniversityofTehran,Tehran,Iran

(Received Nov. 9, 2017 Accepted Feb. 28, 2018)

To cite this article : Karamouz, M., Khalili, P., 2019, “Presenting a cooperative behavior framework for increasing the resilience of water and wastewater treatment plants in coastal floods.” Journal of Water and Wastewater, 30(2), 24-35 Doi: 10.22093/wwj.2018.105082.2531 (In Persian)

Abstract Wastewater Treatment Plants that are constructed in the coastal regions need more attention since the flood occurrence may cause excessive loads on the infrastructures. These excessive loads may result in the system’s failure and innumerable damages on the infrastructure. In this study, in order to reduce WWTPs’ flood vulnerability, an index called Resiliency was developed to quantify system’s characteristics. Later, two main approaches were considered to enhance the infrastructure performance: the “Resource allocation” and the “Cooperative behavior” method. The former method was applied employing those factors which were improvable with the investment of funds and financial allocations. They were utilized to make the system more robust. In addition, implementing some new agents with potential impacts on funding were described in orderArchive to have a more realistic vision. of As forSID the latter method, the cooperative behavior approach, the cooperation was utilized to demonstrate joint operation among WWTPs and the way they interact. For this purpose, WWTPs’ placement was analyzed to check if they could operate jointly. Thereafter, effectiveness of these two approaches was compared in order to make the best decision regarding different cases. The results showed that in three collaborations among Bowery Bay, Tallman Island, , and Red Hook WWTPs, cooperation has had a significant effect on the resiliency index.

Keywords: Resiliency, Flood, Wastewater Treatment Plant, Resource Allocation, Cooperation.

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir   25 dx.doi.org/10.22093/wwj.2018.105082.2531

24-35 :  2   30      5 %& -D@ 5 @ AB  %C)   (>> ? E  " !3(  EF  

1+ ( _ 6#$ *%# 0 'L

# ,  ,  5/  , K +) 5G  , 2) >= [email protected] (4 EA 5A# ) # ,  ,  5/  ,78 X* > K +) ,' +)'@    >F

( / /  //  )

: -" ./ $ (0 " ' 1 " 23 4" " )80 2 $1 ' )89 ( )* BC$ %&$ HRP B(*) P Q? ' $%OC "# )MM $N "  .L ::& .K *, Doi: 10.22093/wwj.2018.105082.2531 .=T>S (=)< )89 ( )* $:;

 `& N  JK$- •_ .3  a#  3 Q- = 5  8N a#  # 1"- ED 3 Q $PN 4 $  _ QT- = 5T ‚16 43 ;_ /1;& a3 }8  5  9 Q $PN  4  a# #8 +6  JM 4=T-Tƒ;  TR T , $-   3 Q $PN 4   #$ c6$- N E$_ … 4  4 e$U T T 4F  4 /;3 lFN  5 I R  . 9 EC I 43 Q $PN 5$ lFN  I  3 Q- = #T$  †N 4   ' e / |6 ,   .9 6  R 0 /  •  I 43 Q $PN /1;& ,9  ,Bowery Bay4T3 TQ $PTN T9 4 /;3 - ,a3 bU 5    |6 .    _ -   M 4 < G 5T 'T9 T>  J0 T0 . T- '  Fe e8N _ #$   4 MJ N Red Hook Newtown Creek ,Tallman . 9 e$U 1"- ED JKL 43 Q $PN - 4 $  4  a3 bU Archive 8P3 I8Q of I#- AB5 SID IC  I8$+ O5 :8 83!F$ '< ;  4    $;Q " & ]   "  '  Š  G     " # ] D       ); "  J )a .  F E)S M8 "  H ? " H ?  ]  D  * / :  ! HY9 +    " E 8 ^Q)  ' P E3    )a  ;!& .  & 2Y     -Q) H 7    "   ' ! -!  " $;Q " -! ƒ$% ;8D " &   ! HY$8    " " H ?  Y   h f      )a m||o      )a  )& 4$;.  1FON I).   " '  A  &FC )B  *;  .  ' pA M8 \  ) .   "

1 Katrina   EO  I &4Y  !  "   " 2 CA 2 Sandy

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 ...  R # 7  Y 26 e  M Xa    .  & '  I D  F  0    h*  )a m||d    f\  )a m|lm . )! GV   ! Y ^Q) )& &$#  G    )a   ' ! m|l€    y   )a  m|ll l|d ƒ?  ' P E3    )a * E 8A ) .  ? F%+ g a +hA#hi  ( .I.I  F N ;;  '  -! ƒ$% ;8D  E 8 3  $ I4/ " qA ),- & ) @  ] Q E)S     .(Karamouz et al., 2019)  &;$.       9 9 #  /F"    r? $;Q " -!   "  G " &!  ^ * U   " 2A 9 #  84! " /F"  . @  ,8  "  8 1A^  GV    )! &  ! •)#    r ! * M- ) .  H * . !  )  !   " EO   # 9 # * &3)a  ?     '  .(Karamouz et al., 2012) &GV   ' /  GV  $% ^, ' ;. )a EON    &9  ' ! W ‰ 9) 5)      &?a    EON * .)! &   ' !   " &;8D  .(Holling, 1973)   Q  + I $;Q " &@,a w)  L I9    g')B  : GV  $% M8   ‘ /F  . &$S —YQ  -:      )– !  ) ';   / 1AZ  &F)9  GS  fk " "  EY-L *!  Ž ") E  4 *! F   HY9 3  ) & ; .(Karamouz et al., 2016a) '); M8? (4Rs) ff /F"   $ ?  M8 &… & ) . & 2Y  G \8    &! .(Bruneau et al., 2003)     \8 G \8    )Q  GF FB   4Rs H)- F  +  Y  4;  *˜ ˆZ  &. ;QR  D ) I ! z 1AZ &$S ;8D  r ! @)  *) &! W    H)-    M8?   &49   &4”)9   @ I !  - „  . A  /   @ *@  fh / 2A \ 8    ? *  @  &4”)9     \;  & , ) & ' ! ' @) M8 *   '  / .(Gilard and Givone, 1997) A ƒ$%  4  M   ';   & -       FM; *) 6 &  Y  4;  "  .(Qien et al., 2010) !  &    A : x4  &;8 ' 7  \8   A V.  M8      "     ‡));  ‰  6   * X$  ' " >  ' "   6 ) .  & .Ga   "  Š  4,!   : x4  •Y M8 \  ) .  M8 FB 1A & O 7 4 "  1F & O M   & M8 .(Sayers et al., 2002) + & F' "   / Y ; .  A u , *  )79    1A Z H  F    Y  4;  q )  ') & " M8  5, & "  4,!    G \8   & "   1A^ j ) ‹@ .(Kong and Simonovic, 2016) .(Koks et al., 2015) A " )&     ƒArchive$% I). O *@ )B    M 8of    +SID " ^Q) G " ' E 8    " &[; . '   ,  &  " 6 $;Q "    .)!&  -! ƒ$%   " " F   Y  O†  )  FB      )!& )8P -! M-  8  " 2 CA *  .)!&  ƒ @  !  Y M8 &FC 1 Ike 2 Irene 8 Rapidity 3 Irma 9 Redundancy 4 Combined sewer systems 10 Resourcefulness 5 Vulnerability 11 Robustness 6 Hazard 12 REWI 7 Exposure

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 + # %  8@6 27

' pA M8 \  O† I). & ;     M8 ƒ @ - "    )   .  ? ^       H . )-b) 4 * &$S ”)9)W  . )!& F   .)!& FB   & IW 8  4  )x  ' 7 &$% 6  " O† )   ,   %   & . ;Q IW 8 " M. M8 &@D  &F pA " ;$ .)!& '  f' @ : FM; 6   & ,  "   6 *  .   @ … ƒ$% FM; &9  hq8A   MCDM 6 " '   )$F&p   & M8 \  1 A  ON  1FON ƒ$%  2%  W     yY ™F     ]      \   )!& F B   %) &$). ) .  Y   4;  7 4  .(Yilmaz and Harmancioglu, 2010) . 8 Et  -Q)  )  r% 4    MCDM   .);L" " &4  H e) g&A 6 " I ?  &@;Q   " '  u ,  4;  "        ] Q   \  ' '    .  D & )   0  )PI .   \ .(Mutikanga et al., 2011) ); W E  &  "    " /  ')   2 CA * K -! l| E .Ga  )! n    4;  )$    , I .     ! & 78  -    !   -!  M 8 1A /F &FC ,  )   .(Edwards et al.,  D & )   E .Ga  W -! ])Q &?,Z b ),- )B   .2005) .(Da Silva et al., 2012) 5) ' ! ' @)   " '   ‰F   , Xa "    " &[;  &): : \šA  ‡));   *   .  @)      *  4;  " )  o - U  W & 4  M 8 & )A " ,! FB   9  " / &ZP 8" &$S I .   F B  & "   G &. ;Q   D &4Y *  .  ' ! F B  7 4 " 1AON  1FON  Y 24;#"  ")  .(Simonovic and Peck, 2013) " J  # 0   "  -  V)# " ,! " qA      r ! @)  MCDM H)- " F \;  " J  #  )! " ID # " /  r% )  oc F    •))  ]D q4 ?Z    " ,! &$;4   \  8"5P  &Q .(Karamouz and Zahmatkesh, 2016b) A 1FON  , ) .  " /    r%  Y . F H L 4$;. ),-  " &[; )B   2 CA *  &  )  5) 2% * "   , *  . F D  E @9 Z " F \;   G  -Q)    wP &. ;Q 5  6")  ;Q  Š)/ I,D " O†  ! ' @)    r ! !1F  FE)S  1A /F  r  !  4 1FON „   !  &9 r% 4   4$;.  ),-  L )B    ! 8 ? &) @ V     ;a $ D  1AZ    4;    L      ƒ$%  2% .(Akhbari and Grigg, 2013) &  4 *-    ! 8 ?  L     & ,  6  " '  Archive      2 CA *  of SID .)! … %  )  F     (MCDM) ' @ : FM;         Q* ) M8    '  ƒ S )  zF& F% (/ ' ;1;*     " \     r ! Y (GV  XD  X;. • )B    " ,!    " qA . ! }% &Q" 8 ?  &A 6 " '  1 Multi-Criteria Decision Making (MCDM) &7: x4 FB    4; 6 " '   2 TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) " qA   @"  ? }%   L       3 Gediz 4 PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)  ! 9)"  M8        4; 5 Agent-Based Modeling

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 ...  R # 7  Y 28

  &9  r% . F D & ) r ! * 2Y Y WWTP 1-Bowery Bay Y 2Y ^Q)   & 6  7 "    2-Hunts Point Bronx 1- 3-TallmanBowery Bay Island (Karamouz et al., 2017) 2- Hunts Point . )!& M8   4-Wards Island 6 3- 5-NewtownTallman Island Creek 4- 6Wards-North RiverIsland 2 5- 7-OakwoodNewtown BeachCreek 4   & , &  6  F     6 *  " '   6- 8-PortNorth Richmond River 1 3 7- 9-RedOakwood Hook Beach \  ) .     FB   , I . "    8- 10-26Port tRichmondh Ward 9- 1Red1-Coney Hook Island 10-12-Jamaica26th Ward 5 )&   r% Q) Y " 1AON  1FON I . 11-13-OwlsConey Head Island 12-14-RockawayJamaica 13- Owls Head 9 . D & " )    2Y Y 14- Rockaway Brooklyn 12 10 8 13 F# Cj ;1

11 ll~m€ # 8   •)) -!  * & @9 Z ' P Staten 14 Island Y ) *-  *$  q4 #  „ A I !  ] )$ 7 Atl antic ocean $;Q "  8 MB.   )a -! * .  $ *   2km      m|ll    * m||•    )8™

Fig. 1. 14 WWTPs’ placements in  -! * 3   1AZ 7  ;  ' L  m|lm (Adapted from NYC DEP, 2013) .   )a  •))    ' -: & 4 ' P ;*D` q$a n) D  ' ! ,O  )a * •Y   )a (NYC DEP, 2013 " F) ^Q)  '  L   c/~ e   &  }) +  •))  7 4 "      $S  ;* '2 *   .  ' ! 3  $ lo/•  #  &;B. E 8 Table 1. WWTPs’ distances from each other in New &   ! Q ^  : -!    & ;  )a York City 2? GV     . 8 Q A  p;  EO Number of WWTPs’ distances (Km) coalition M8 .  &  -! G    '8F  8 Newtown Tallman Bowery     lc I ! •)) -! GV    Creek Island Bay 1,2 6.7 9.3  "    -! GV  *9 F )$ l/~  #  26th Ward Red Hook Newtown 3,4 2Y 9 &   )9 " &4  *  . & 10.3 4.6 Creek Port I )p; # 9 #  -Q)   " * & Oakwood Richmond 5 Beach 9.76 7 4 "    $S   M    " \  4 .  Owls . ' ! ' l  Q  l I4!  Head Red Hook 6 7.84 Archive4$;. of),- 6 SID F  @9 Z *  &  0 Coney Jamaica . ! &    Island 26th Ward 7,8 6.6 9 &    5) 'S P  &) /?  Q)  1 A  4 lc  • c m            4;  L "E   # ;5 \  ;  '  ;D      l|  )B  *;    8 Y & "     &;8 4$;. ? )B  & "  L  "   $S  fIF)F &) /? '    r ! "  " * " \  &F  . !  ' ! W E :)$   )a  ;    )B  *  . ! 1 Google Earth

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 + # %  8@6 29

  D & 8 "5P &4”)9  ƒ$% I).  1- Quantifying the Resiliency index

" \ &  n   .  ! F B  &. ;Q IW 8 1-1- Factors Identification I ! &$S   -:   ? *       @" 1-2-2- Estimating (Ra ) (Ra ) 1-2-1- Assigning weights *!  2 M8 &   …  ?  1 /F  . values for factors D (Ra4) ") E  4 *!  (Ra3) " "  EY-L 11-3--3 stimtingEstimating " \  1FON   / )B   @ H D   F ResiliencyResileince index E)Sf &Q" 8 ? " '      &  " I). 2-2- ImprovingImproving thethe . F ResiliencyResilience 1F   &,  S  1A /F " &[;

! M8  E)D  ƒ@V u ? " - • + + &  L 2-1- Joint operation 2-2- Resource Allocation  2%    : 1F    !  among WWTPs

" 0  *     )B   . F  +  M8 ƒ$% 2-2-1- Sub-criteria 2-1-1- Feasible selection with WWTPs to exercise '  ' @  : FM; 6 " &4 &A 4 investment potential redundancy  7    "  YF *  -  *  )B   6 *  . ! 2-1-2- Selecting 2-2-2- Resource effected sub-criteria )B  *  . F H L     &Q" 8 ?   YF allocation among    YF  I . \   E  *  &  H D WWTPs 2-1-3- Updating values of factors  -  .   YF  ,   ƒ$% (  ) *Offering solutions through cooperation , P " E)S Hi     1A /F r ! toto increase higher the the methods accuracy 2-1-4- Costs )!& (l) 3-3- Resilience Resiliency improvementimprovement

(m) 4- Results comparisons  Fig. 2. The methodology algorithm for quantifying the Resilience index and its improvement   +    *   ' ! F   6 M)79 ;1D` ' ;! j  i  @"  ? f Hi   1A /F Resi  2Y \  0G */  *; dn,max  dn,min   M  N  @" ' ;! n ƒArchive$%       @"   ' !of ƒ@ SID  r !   ' ! '  / m I4!  Hn  @" " wn       @"  @ ^ 4$;. ? )B   .)!& Y ;  " &[;   

l 9 @  o|  m  O  (fi-fj) fj  fi 0G dn(fi,fj)  4;   L  &9  r% 4  r ! * .  l||  | * r ! *  ? FD )B   . F& D & " )     

A_ (OkN ." I + l(kmN ;1;5 F N F%+ g a ;*;5    2Y )B  F  I D 6  " &4 " &[; )B      r%/ m  Q   )Z ; M8 4$;. ')P r%/  & !  1A /F 1 AHP (Analytical Hierarchy Process)

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 ...  R # 7  Y 30

  *;% )B   ' ! F B )  ;1 '2 Table 2. Factors assumed for quantifying the Resilience index Sub- Critera Explanation about sub-criteria Unit criteria Ra1 Hurricane flood elevation Meter Ra2 Adverse environmental impacts R Million cubic Ra Plant design capacity Rapdity 3 meters per day Ra4 Post-stress recovery hr Ra5 Number of residents served by the WWTP # Million cubic Ra Bypass or partially treated flows 6 meter Million cubic Ro Additional load in time of flooding 1 meters per day Ro2 Critical flood elevation Meter Ro3 Maximum WWTPs inundation depth Meter Robustness Ro4 Percentage of equipment not-at-risk %

Ro5 DMR violations % Damage cost from the most severe historical hurricane to Ro Dollar 6 the WWTP Rs1 Number of plant technical staff # Resourcefulness Rs2 Availability of dewatering facilities R Rs3 Total risk avoided for every single dollar in 50 years Dollar Rd1 Existence of underground tunnel systems R Redundancy Rd2 Availability of WWTPs in the neighboring areas Meter Rd3 On-site storage Cubic meters

7 4 "   lc & 4 $S     )B  *  , P " qA .  &9  r% 6 F      " *    u , D  4  ! }%  "  r ! * 2Y 0      r !  ?   f0GW    4;  L  0 * M- .)! &  &9  r%  4;  ") „  " '   I e)D )a ;8D  )   V wZ 3    "   *  .F& E)S  " ƒ$% ;8D e!  ( ) 7"   ID #  0GW  . YL Ro4 Ra3)  @" „ A ' !FB   @" ld  

0GW  !   " \ &$S 0 . "   4;   .  ' ! &  !  D S   (Rd3  Rs2 Rs1  9 #  ,8 / )   V   )B   #  "     ? 2Y  1F  Y   &      * 2% *  &  ‹ .  -   ! }%  @" * " \  &9  r%  &  : x4   œ)ArchiveE)S   &  4; 7 4   -  ofY MATLAB SIDYH " F\;  "  -  . )!& F B  }%      @" " \  )A r%   @"  ? F      ? 9) "   W  4;  ") 5) 6 * " XD E .Ga . !  ? (h  f E3 @) ' ! ' !    9 @ " '   .(Karamouz et al., 2017)  ' ! }% I D       4; 9 #      5, ' ! '" *;%   Y 7 0a " .) ) " A_ (OkN F`" ;5;5 *   !  Q) I D  )& u ,   4; *  L   &7: x4 FB              4; . 1A H L  ' !     4;   &   1 Coalition

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 + # %  8@6 31

 &9  r% 6  8 ? ')P    ! W   Y Rf I ! u ,  L  ' ! FB   Y 2Y )B       4;   / FB .  ! F B  9)9  u)  Y Rh ,   5, '   - &@,a Ea % "  G  "      ? FB   &$%  6 'G.   6 " \ &   &   &$#  Xa    4;  "    &… E S)  Q)   @"  ' ! W 6 &$ )a . ! & " ƒ$% ;8D M8? &$S     @" I9 *;  U  ) I D -!   " 4$;. wZ ? )B  2 CA * " '  )Q   8  @" " & F   .  !  6 .  M;@ I D Š ]ZD  9Y9" G  "  * . 8 *@ X$Z E)S    ? ƒ$% 6YF

ƒ$% M8   2Y ^Q) ' ! W  - /A Rs3  Ro5 Ro4 Ro1 Ra6 Ra4 Ra2 UI !   @" P  $ ?  Y    ƒ$% B  " -! " qA ),-  " E   &%/  ?  J )a . ! &

.)!& &@,a Ea %  I .>  A    )Q      4;   H 7  (Ra4) O #  "    @ " * .)!& F B  ? "  '"  FN l_ '< .m& ;*;8  8  @" " & F H  .   8# I$P  m  Q  @" ld FB     r !  ? .  *;% I D  ! ? ƒ$%  6YF " '   ^$ Y H " F \;  &    M8 &FC  ' / ' !   @" &D  I !  *  @"

•))  ]D   lc  PROMETHEE 6  (Ra1)    G e   J )a . ! &  'F B  ƒ$%  " )B  *   .  }% I D : !   4;   :  r%/   O  ? ' ! '  / ~  Q  )  ld " \  ' ! F . 4; > .  „   L ^Q)        4; F  2Y      ? 2Y   &  @"  *  FB   .)!&   2Y   -   Q ^Q)   2Y  &   @"   ,J "   & 7 4         &;8 " '    4; .F& X$@ &  " )!&    r !  ? 2   9)9 5)   ? )B   M8 * .  "  ) " ' ! }%)   @" " \  ? " '   " \ & V    ?  * "  ' ! ,@   " (•)) 8"5P " b #  ; A 6YF .  G  "   L       r ! & - „  &A 6  \     r% * „  c  Q  . ! }%       PLI  Q6&A ;8 .  ' ! ' @9 Z )      -:  r ! \ 4    „  }% ')P    ;8D *  Archive  @"   @  " ;of5'2 SID Table 3. Weights of criteria and sub-criteria Redundancy Resourcefulness Robustness Rapidity (Rd) (Rs) (Ro) (Ra)

WRd=0.136 WRs=0.13 WRo=0.341 WRa=0.395 Sub- Sub- Weight Weight Sub-criterion Weight Weight Sub-criterion criterion criterion 0.06 Rd1 0.034 Rs1 0.042 Ro1 0.076 Ra1 0.042 Rd2 0.068 Rs2 0.076 Ro2 0.017 Ra2 0.034 Rd3 0.028 Rs3 0.026 Ro3 0.076 Ra3 0.034 Ro4 0.068 Ra4 0.082 Ro5 0.076 Ra5 0.081 Ro6 0.082 Ra6

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 ...  R # 7  Y 32

       r ! ;8'2 Table 4. The resiliency index in WWTPs The resiliency Number of the WWTP index’s value WWTP depicted in Figure 1 (%) 52.1 Bowery Bay 1 51.1 Tallman Island 3 52.6 Newtown Creek 5 55.1 Red Hook 9

 ' ! $%  8A Y ' G.  " * &F   "  WWTP

• History of the WWTP G H 7  .    &$,D L  &   in previous floods Failure Bypass flows   ' -: "   '"   m|lm     • Adjacent WWTPs’  ;   ' !   L   !  Q ^ impact      *   " . !  $% &    ' ! Residents Management Organizations Rockaway North River Coney Island    I !   • The WWTP’s • Indicator of Urban Strategic Position Development ) e)  ?  e);L  .    " " " & .  • Government Force • Best Management &  I . \ ) . !1F #      Practices .  ‚Z @V ),- )B  Q) r%  1FON Fig. 3. Different agents with impacts on the resources allocated to each WWTP  F" A_ (OkN +-&2 =.(TUN ;8;8  r% I D Q)   1FO  I;P I). ;5D`    1FO I . \ ) .  L   &. ;Q EON E D H * .    ‚Z  Q  )  r% Y  A_ (OkN ." I + l(kmN ;1;8 )F"     \   L   1FO Y ? )B    & 6 " &4  ! ' !  )Z ;   9 &9  r% " q A  ^ *   .  &  s  )!& F         r !  YL )a ;8D   V H .    V    $ D Q) 0S       " & 2%  Q) .)! & *@ "  )  ?    r%  ? 8 ? r%  e)V) *  Q)  .   r ! * ),-      V ) r% Y "  &    2Y    -   , 9 5)     Q)       V  &     !  4; )B    !    0  -  ) .       "   8;  V H .  Archive  V . ! )  4; > Q) ofY   SID1FON  I I). 7 FB )       ) 2%   r% Q) X)  9 H )p; &$).  H"3 r% I D   " 7  )  Q)  /% "   V  B &9  r% Y *@  !1F  )a    .) ) 1FO )   .(~ I<!) )! F B      .  ! w/ SG )a 1FO

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 + # %  8@6 33

) @9 Z ;8D   )Q     u , D &4C @D) . )! & *@   & - ' FM;  9  ?  FB      .  F D & ) *  .  ;8D * &$S  ! " 9  ,Q  ?Z    Y * p;   4; 9 #   @" " \  H .    ;a wZ ]D   ?Z  ;  Y  ^ &    '  o  Q   )Z ;  *  I;P ) .  9 'G.  . !  E  )& 84!   @"  &9  r% 6 1FON Y 7  Q)   Q) r% & ) & - ' FM; 6YF " F  @"  ? .  ' ! A  D .    IW 8  7  5,  6YF &  8" 5P b #  "       )  ^   & - E TD #/4I F"o .7 ;W;8 .(Kenward et al., 2013, NYC DEP, 2013) 0     ƒ$% &   ‚a I !  ‚a * l 9 @ " '       r ! 9) "   F     ^  *  . )!& I;.  Z 2 I !  4;      ? (  4; 6) 2   Xa   &7F  X;. )& ƒ$%  4  Bowery Bay Tallman Island  Bowery Bay     "  )& '>    *! 1A…) *" ,@ .  Red Hook Newtown Creek Newtown Creek &7F X;. 2 ‚a * L . !  ‚a * $;Q . ' ! ' •  Q      !  Et # */ # 9 #  $ ?    &9  "  2 = ,D @  "  @"   F E)S    Q)  'G.  .)!&  ] D e) * E ! " "  

 4; FB  I;P  Y ;K '2 (Krzys, 2010) R(C2 ' l_ ;[;8 Table 5. Costs of joint operation (Krzys, 2010)  FB   &@D 5!  L )B  Y r ! * Newtown Creek and Bowery Bay '"     ^  *  .)!& F   & " )  Unit price Estimated Items Unit Quantity ($) cost (M$) Q)  ?  #   &@;Q  -! ! r !   & " Excavation Cubic meter 53.592 158.9207 8.52 .)! Et 6)% )& r% I D 24'' pipe Meter 6.698 675.2625 4.52  ‚a F    @;Q &$D # 2Y    *  * Total 13.04 (&7F X ; . 2  ) @ V  ),- )B    &  Tallman Island and Bowery Bay   ! ]D)    ' -: " \ &4C @D) Unit price Estimated  ?  ( !  ! ; ;  &4C B "   ?Z  Items Unit Quantity ($) cost (M$) " \  ,J EON  !1F  )a  ; : & Excavation Cubic meter 74.390 158.9207 11.82 • $ ,  "    8 ; " \   V  )  L       24'' pipe Meter Archive9.297 675.2625 6.28 of SID &  •9 ,  ! ;  )& () 2%    r% Total 18.1 Red Hook and Newtown Creek .  ; &  ! \; (&9  r%) Unit price Estimated Items Unit Quantity ($) cost (M$) F`" F9G.(TUN ?J( ;\;8 Excavation Cubic feet 36.795 158.9207 5.85 24'' pipe Foot 4.598 675.2625 3.1 2 L F " '      4$;. wZ ? )B   Total 8.95 D     u , &P ]D)   L   * Other costs where ignored  4  8 7 4 E L   &   .)! &

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 ...  R # 7  Y 34 u , D 5!    '   " 8 ? *   4; 4  ;. " qA    ? ;W '2 Bowery Bay Table 6. The resiliency index after cooperation             4;   !  The The Resiliency resiliency’s resiliency’s WWTP Newtown Creek Bowery Bay Tallman Island index upper limit lower limit . ! - ^  &Z! Red Hook  Newtown Creek Bower Bay 58.6 55.5 57.3 & Tallman " \  " X D @9 Z H L  )!&  - /A   Island ) XD )a  @" " \  "  ?    Bowery Bay 57.69 54.81 56.4 & Newtown &, Q    Y }% ')P  4 #   F D & Creek Newtown ' ! ƒS) 6  XD & * p; .)! & / 59.89 57.89 59 Creek &    ,  I   .    F    = S) &9  r% Red Hook 4   F \;  ] Q &! W )B   4; . F B &?$Z  ? )&; ' ! W  @" ' L .)! H L   / : 2Y )B     /   ;   ! B " '   )B  *;     ;. I D ' ! W ): :    …  H"3 *     Y  ' ! F B  ) * " \ &   " &$ 9 #   GV      .)!& 9)"   ? . ! &  8 G \8 Z ‹@   &$#  -! O† I).  &  ! 6 * " '   M- 4 F.(G (&A ;K &4”)9  ƒ$% ' ) )Q)   "  5,       4$;. ),- )B   2 CA *  4$;. ?   EY -L " M. @9 Z ) E 8N  ?Z  W \4    " * " \     r ! .  . ! A r ! * ),- 6  &     !   @ " }% " qA (&9  r  %  )  6  +A'Y ;e   &9  r% ^$ Y H " F\;    D ) .  ! & ! +     A " &/% 2 CA * *  2Y */  L 0      " \   " H)D  H 2Y n  &9  ]  r%" ?  Y (  4; ) H 6  . 1A E)S r ! " 'G.  .  - ' 7/ &  '

References Akhbari, M. & Grigg, ArchiveN. S. 2013. A framework for an agent-based of model to manageSID water resources conflicts, Water Resources Management, 27(11), 4039-4052. Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., et al. 2003. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19 (4), 733-752. Da Silva, J., Kernaghan, S. & Luque, A. 2012. A systems approach to meeting the challenges of urban climate change. International Journal of Urban Sustainable Development, 4(2), 125-145. Edwards, M., Ferrand, N., Goreaud, F. & Huet, S. 2005. The relevance of aggregating a water consumption model cannot be disconnected from the choice of information available on the resource. Simulation Modelling Practice and Theory, 13(4), 287-307.

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir dx.doi.org/10.22093/wwj.2018.105082.2531 + # %  8@6 35

Gilard, O. & Givone, P. 1997. Flood risk management: New concepts and methods for objective negotiations. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 239, 145-158. Holling, C. S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1-23. Karamouz, M., Nazif, S. & Falahi, M. 2012. Hydrology and hydroclimatology: Principles and applications, CRC Press. Karamouz, M., Rasoulnia, E., Zahmatkesh, Z., Olyaei, M. A. & Baghvand, A. 2016a. Uncertainty-based flood resiliency evaluation of wastewater treatment plants. Journal of Hydroinformatics, 18(6), 990-1006. Karamouz, M. & Zahmatkesh, Z. 2016b. Quantifying resilience and uncertainty in coastal flooding events: Framework for assessing urban vulnerability. Journal of Water Resources Planning and Management, 143(1), 04016071. Karamouz, M., Rasoulnia, E., Olyaei, M.-A. & Zahmatkesh, Z. 2017. Financial resource allocation for wastewater treatment plants' resiliency improvement. Journal of Infrastructure Systems, 24 (4), Article No. 040418021. Karamouz, M., Taheri, M., Khalili, P. & Chen, X. 2019. Building infrastructure resilience in coastal flood risk management. Journal of Water Resources Planning and Management, DOI: 10.10611 (ASCE) WR. 1943- 5452. 0001043. Kenward, A., Yawitz, D. & Raja, U. 2013. Sewage overflows from hurricane sandy, Climate Central, Princenton, N.J. Koks, E. E., Jongman, B., Husby, T. G. & Botzen, W. J. 2015. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science and Policy, 47, 42-52. Kong, J. & Simonovic, S. P. 2016. An original model of infrastructure system resilience, NDM-515: Resilience Infrastructure, London. Krzys, B. P. 2010. PVC Duct fittings & PVC Duct pipe List Price Catalog, (March 2017) Mutikanga, H. E., Sharma, S. K. & Vairavamoorthy, K. 2011. Multi-criteria decision analysis: A strategic planning tool for water loss management. Water Resources Management, 25(14), Article No. 3947. NYC DEP. 2013. NYC wastewater resiliency plan, climate risk assessment and adaptation 191 Study, Chapter 2: Wastewater treatment plants, Department of Environmental Protection, 192 New York City. Qien, K., Massaiu, S., Tinmannsvik, R. K. & Størseth, F. 2010. Development of early warning indicators based on resilience engineering. In Submitted to PSAM10, International Probabilistic Safety Assessment and Management Conference, Seattle, Washington, USA. Sayers, P. B., Hall, J. W.Archive & Meadowcroft, I. C. 2002. Towards risk-basedof flood SID hazard management in the UK. Proceedings of the Institution of Civil Engineers-Civil Engineering, 150 (5), 36-42. Thomas Telford Ltd. Simonovic, S. P. & Peck, A. 2013. Dynamic resilience to climate change caused natural disasters in coastal megacities quantification framework. British Journal of Environmental and Climate Change, 3(3), 378-401. Yilmaz, B. & Harmancioglu, N. 2010. Multi-criteria decision making for water resource management: A case study of the Gediz River Basin, Turkey, Water SA, 36(5), 563-576.

Journal of Water and Wastewater    Vol. 30, No. 2, 2019      

www.SID.ir