The Petkau Effect

Total Page:16

File Type:pdf, Size:1020Kb

The Petkau Effect Page 1 of 8 Is there a safe level of radiation exposure ? – The Petkau effect Dr GOURI GOUTAM BORTHAKUR Department of Physics, Jorhat Institute of Science and Technology Jorhat-785010, Assam Mail [email protected] Summary : Exposure of human body to ionizing electromagnetic radiation was thought to be severe from high-level exposures only , But in 1972, Dr. Abram Petkau showed that pow level exposure for prolonged period have the same effects, and hence there is so safe lower limit to ionizing radiation exposure . Introduction : Radiation or electromagnetic radiation is broadly classified into two classes- ioninsing radiation and nonionising radiation. This classification actually stems from the effect of human body when it is exposed to the radiation. The low frequency or long wavelength radiations, such as radio or microwaves, carry low energy, and hence they cant ionize the chemicals in the cells of the body, on passing through them. Such waves are called nonionising radiation.The other types, that is the high frequency or short wavelength radiations, such as alpha, beta, gamma, or X rays- can ionize the chemicals, in the cells of the body,on passing through them.These ionized chemicals become reactive, in unusual ways and produce new chemicals which are either toxic, or harmful. Thus their incarnation can alter the metabolism of bidy in certain ways that can be Page 2 of 8 carcinogenic, pathetic, or lethal. Each of us is exposed every day to certain quantities of background radiation that are naturally produced. Some of this comes from cosmic radiation from outer space. Two forms of this radiation are speeding protons and neutrons, which enter the earth's atmosphere and collide with the air we breathe. Carbon 14, which can cause long-term biological damage including genetic mutations, is created when a cosmic neutron collides with nitrogen in the atmosphere. People who live in higher altitudes generally receive more cosmic radiation than those in the lowlands because there is less protective atmosphere for shielding. Radiation exposures also result from the natural radioactivity in many of the earth's minerals. There are some extreme examples: thorium-bearing sands in Kerala, India, and soils in Brazil measure as much as twenty times above average background levels. Isotopes present in the body, such as potassium 40 and radium 226, also contribute to background levels. But background is something that cant be erased ! Notorious Human-made radiation can add to that toll. Fallout from nuclear weapons testing, atomic reactor emissions, the mining and milling of uranium, the creation and storage of nuclear wastes, the transportation and use of radioactive materials in industry, and the exposure of millions of people to medical X rays all have their costs in terms of human health. Types of Ionising Radiation Radiation is ionizing when it has enough energy to remove one or more electrons from an atom with which it comes in contact. When this occurs, the ionized atom is made chemically reactive and capable of damaging living tissue. Nonionizing radiation--as in the form of microwaves--falls on the other end of the electromagnetic spectrum and does not have sufficient Page 3 of 8 energy to physically displace electrons of atoms. It can also, however, be damaging to human health. There are essentially five types of ionizing radiation with which we are concerned here: 1. Alpha radiation this is stream of He nucleus emitted form a heavey nucleus. On the average, a thin sheet of paper or two inches of air can usually stop an alpha particle. But, when alpha- emitting elements are inhaled or ingested into the body, the high-energy particles they emit can rip into the cells of sensitive internal soft tissues, creating serious damage. 2. Beta radiation is composed of streams of electrons that often travel at close to the speed of light. In some cases beta particles are emitted from a nucleus when a neutron breaks down into a proton and electron. The proton stays in the atom's core while the electron shoots out. Because they move faster than alpha particles, and weigh much less, beta particles are far more penetrating than alpha particles. Beta emissions to the skin can lead to skin cancer. And like elements that emit alpha particles, beta-emitters can be very dangerous when inhaled or ingested into the body. 3. Neutron emissions occur when the nucleus of an atom is struck by a particle that causes the unsticking of the "binding energy" in the atom's core. The resulting disequilibrium causes neutron particles to be shot out in a way that makes them capable of penetrating solid steel walls. Several feet of water or concrete are required to stop most of them. Because of their tremendous penetrating ability, neutrons can be very damaging to the human body, so forms the principle of a nutron bomb. When neutrons strike atoms of elements that are not fissionable, they can render them radioactive by changing their atomic structure. For example, in a building near a neutron bomb explosion, the neutrons can change stable cobalt in the steel girders to cobalt 60, an emitter of highly penetrating gamma radiation. Page 4 of 8 4. Gamma radiation is a form of electromagnetic or wave energy similar in some respects to X rays, radio waves, and light. Like X rays, gamma radiation is highly energetic and can penetrate matter much more easily than alpha or beta particles. Gamma rays are usually emitted from the nucleus when it undergoes transformations. An inch of lead or iron, eight inches of heavy concrete, or three feet of sod may be required to stop most of the gamma rays from an intense source. 5. X rays are produced whenever high-energy electrons are accelerated or decelerated as they penetrate matter. X rays are produced by machine when electrons are accelerated to extremely high speed and are then crashed into a solid target. They are also produced in nuclear fission when electrons are accelerated out of the fissioning nucleus and are then slowed down by air and other materials. The energy released in the collision is a form of electromagnetic radiation, and is comparable in penetrating power to gamma rays. Because X rays can expose film after passing through some substances--such as human flesh and some building materials--they have been widely used in medicine and some industrial processes. It is believed by many that because they are directly applied to the human body, medical X rays are at present the single greatest source of external exposure to human-made radiation. But unlike radioactive products that can escape into the environment and concentrate in the food chain, X-ray exposure can be controlled more easily than the fallout from a nuclear bomb or power plant. Effect of radiation on cells : Radiation attacks the human body at its most basic level--the cell structure. Cells carry out the vital functions necessary to sustain and develop all living creatures. Over ten trillion cells make up the human body. The cell takes in food, gets rid of wastes, Page 5 of 8 produces protein vital to life, and reproduces itself. Just as all living things are made up of cells, so every new cell is produced from another cell. The nature of the cell is determined by the genetic material in its nucleus. Enormously complex, and not fully understood as yet, the genetic "coding" in each nucleus is carried by a complex protein called DNA--deoxyribonucleic acid. This DNA is tightly coiled in the forty-six chromosomes, which are stored in the cell nucleus. Surrounding the nucleus is the cytoplasm, the "factory" that carries out the directions of the DNA intelligence center. The cytoplasm in turn is contained by a semipermeable membrane, the cell wall. It is the whole of this cell mechanism-- cell wall, cytoplasm, and nucleus--that forms the basis of human life. When a radioactive particle or ray strikes a cell, one of at least four things can happen: 1. It may pass through the cell without doing any damage; 2. It may damage the cell, but in a way that the cell can recover and repair itself before it divides; 3. It may kill the cell; 4. Or, worst of all, it may damage the cell in such a way that the damage is repeated when the cell divides. Last three of those four circumstances can have health effects. The issue of what happens to a cell once it repairs itself, for example, is the subject of scientific debate. Thousands of dead cells are eliminated from the human body every day, and thus the body has a certain tolerance for it when radiation adds to the natural toll. The prime danger from radiation striking a cell, however, comes from the potential for damage to the DNA coding and the creation of cancerous cells. If the DNA is damaged by a ray or particle, it may reproduce itself in an abnormal manner that is, in essence, the basis of radiation-induced cancer. Page 6 of 8 Damage can occur to the cell wall, cytoplasm, and nucleus. There has been considerable debate among radiobiologists about how often a cell must be hit by radiation to mutate into a cancer. There is little dispute, however, over the fact that the cell is most vulnerable when it is dividing. The human fetus, infants, and young children--whose cells are multiplying most frequently--are thus the most sensitive to radiation damage; blood-forming organs such as the bone marrow are also particularly vulnerable. Radiation can also damage the body's immune system and cause a general degeneration in the health of the cell structures.
Recommended publications
  • A Study of the Health of the Employees of Atomic Energy of Canada Limited
    124+ AECL-6813 ATOMIC ENERGY flKB L'ENERGIE ATOMIQUE OF CANADA WAITED TA&J DU CANADA UMITEE A STUDY OF THE HEALTH OF THE EMPLOYEES OF ATOMIC ENEMY OF CANADA LIMITED I. SETTING UP THE STUDY ETUDE DE LA SAUTE DU PERSONNEL DE L'ENEtCIE ATOMIQUE DU CANADA UMITEE I. ORGANISATION DE L'ETUDE J. L. Weeks Whiteshell Nuclear Research Etablissement de Recherches Establishment Nuclfaires de Whiteshell Pinawa, Manitoba ROE 1LO September 1981 septembre ATOMIC ENERGY OF CANADA LIMITED A STUDY OF THE HEALTH OF THE EMPLOYEES OF ATOMIC ENERGY OF CANADA LIMITED I. SETTING UP THE STUDY by J.L. Weeks Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1LO 1981 September AECL-6813 ETUDE DE LA SANTE DU PERSONNEL DE L1ENERGIE ATOMIQUE DU CANADA LIMITEE I. ORGANISATION DE L1ETUDE par J.L. Weeks RESUME Ce rapport resume l'etat present de 1'Etude de la sante du personnel de 1'Energie Atomique du Canada Limitee; il est redige sous forme de source de reference pour les personnes travaillant a cette etude. II contient, sous une forme revisee, quelques extraits d'une publication precedente (J.L. Weeks, Un Registre pour 1'Etude de la sante des travailleurs sous rayonnement employes par 1'Energie Atomique du Canada Limitee, AECL-6194 ('1979), de meme que des renselgnements sur les methodes employees lors de 1'organisation de I1etude. Les differences entre ce rapport et AECL-6194 decoulent des developpements du concept de I1etude intervenus au cours d'une periode de deux ans. Certains details de ce rapport pourraient interesser les per- sonnes travaillant a des programmes similaires.
    [Show full text]
  • Effects of Electron Irradiation and Percent Composition on the Glass Transition Temperature and Damping of Boron-Epoxy Composites
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1996 Effects of Electron Irradiation and Percent Composition on the Glass Transition Temperature and Damping of Boron-Epoxy Composites Ian Ivan Nieves College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Physical Chemistry Commons Recommended Citation Nieves, Ian Ivan, "Effects of Electron Irradiation and Percent Composition on the Glass Transition Temperature and Damping of Boron-Epoxy Composites" (1996). Dissertations, Theses, and Masters Projects. Paper 1539626045. https://dx.doi.org/doi:10.21220/s2-rs2j-6j40 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Effects of Electron Irradiation and Percent Composition on the Glass Transition Temperature and Damping of Boron-Epoxy Composites A Thesis Presented to the Department of Chemistry The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts by Ian Ivan Nieves 1996 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Ian Ivan Nieves Approved, September 1996 Richard E. Kiefer William H. Starnes, Jr. Robert D. Pike TABLE OF CONTENTS
    [Show full text]
  • ATOMIC ENERGY M&& L'&IERGIE ATOMIQUE of CANADA UNITED Y
    AECL-6797 ^1^ ATOMIC ENERGY m&& L'&IERGIE ATOMIQUE OF CANADA UNITED Yfi9 DU CANADA LIMlrfE RADIATION EFFECTS ON LIVING SYSTEMS: A BIBLIOGRAPHY OF AECL PUBLICATIONS EFFETS DES RAYONNEMENTS SUR LES ORGANISMES VIVANTS: UNE BIBLIOGRAPHIE DES PUBLICATIONS DE L'EACL Norma J. Hawley Whifeshell Nuclear Research Etablissement de Recherches Establishment Nucteaires de Whiteshell Pinawa, Manitoba ROE 1LO October 1980 ocfobre ATOMIC ENERGY OF CANADA LIMITED RADIATION EFFECTS ON LIVING SYSTEMS: A BIBLIOGRAPHY OF AECL PUBLICATIONS Compiled by Norma J. Hawley Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1L0 1980 October AECL-6797 EFFETS DES RAYONNEMENTS SUR LES ORGANISMES VIVANTS: UNE BIBLIOGRAPHIE DES PUBLICATIONS DE L'EACL par Norma J. Hawley RESUME Cette bibliographie comprend des communications et des comptes- rendus rédigés par des savants de l'Energie Atomique du Canada, Limitée en ce qui a trait aux effets qu'exercent les rayonnements sur les organismes vivants. Elle se divise en trois parties: la Radiobiologie, la Radiobiochimie et la Radiochimie. Il est prévu que cette biblio- graphie sera mise à jour sur une base annuelle. Etablissement de Recherches Nucléaires de Whiteshell Pinawa, Manitoba ROE 1L0 1980 octobre AECL-6797 RADIATION EFFECTS ON LIVING SYSTEMS: A BIBLIOGRAPHY OF AECL PUBLICATIONS by Norma J. Kawley ABSTRACT This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be brought up to date on a yearly basis. Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1L0 1980 October AECL-6797 CONTENTS Page 1.
    [Show full text]
  • Cell Stress Response to Low-Dose Neutron Radiation
    Magna Scientia Advanced Biology and Pharmacy, 2020, 01(01), 036–042 Magna Scientia Advanced Biology and Pharmacy Cross Ref DOI: 10.30574/msabp Journal homepage: https://magnascientiapub.com/journals/msabp/ (RESEARCH ARTICLE) Cell stress response to low-dose neutron radiation Konstantin Andreevich Kuznetsov 1, *, Pavel Semenovich Kizim 2, Andrey Yurievich Berezhnoy 3, Oleksandr Pilipovich Shchus 2, Gennadiy Michailovich Onyshchenko 2 1Medical Biology Department, Kharkiv National Medical University, Kharkiv, Ukraine. 2Nuclear and Medical Physics Department, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine. 3National Scientific Center, Kharkiv Institute of Physics and Technology, Ukrainian National Academy of Science, Kharkiv, Ukraine. Publication history: Received on 12 November 2020; revised on 23 November 2020; accepted on 26 November 2020 Article DOI: https://doi.org/10.30574/msabp.2020.1.1.0022 Abstract Background. It is a point of discussion whether low-dose ionizing radiation has harmful or stimulating impact on cell. According to high relative biological effectiveness of neutron radiation there is a need of description of any process triggered in the cell by neutrons. Objective. The aim of current work is the investigation of the low dosed neutron radiation effects on human cells by indicators of cell stress such as state of chromatin and cell membrane permeability. Materials and methods. Human buccal epithelium cells from 3 male donors (21, 24, 25 years old) were exposed to fast neutron radiation in dose range 2.3–146.0 mSv from 239Pu-Be source. State of chromatin was evaluated by count of heterochromatin granules quantity in 100 nuclei stained with 2% orcein in 45% acetic acid; ratio of cells with increased membrane permeability stained with 5 mM indigocarmine in 300 cells.
    [Show full text]
  • The Petkau Effect
    NUCLEAR MATERIALS AND DISASTER RESEARCH DEPLETED URANIUM INDUCED PETKAU EFFECT CHALLENGES FOR THE FUTURE NUCLEAR MATERIALS AND DISASTER RESEARCH Additional books in this series can be found on Nova’s website under the Series tab. Additional eBooks in this series can be found on Nova’s website under the eBooks tab. NUCLEAR MATERIALS AND DISASTER RESEARCH DEPLETED URANIUM INDUCED PETKAU EFFECT CHALLENGES FOR THE FUTURE SVETLANA ZUNIC AND LJUBISA RAKIC New York Copyright © 2016 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book.
    [Show full text]
  • Preventing Radiation Toxicity Through Diet
    PREVENTING RADIATION TOXICITY THROUGH DIET A WORLD BUSINESS ACADEMY EBOOK BETH ELLEN DILUGLIO, MS, RDN, CCN, LDN JULIE M. BROWN, MA, LMHC CONTENTS RADIOACTIVE ELEMENTS: NUTRIENT IMPOSTERS 4 RADIOACTIVE ELEMENTS AND THEIR EFFECT ON THE HUMAN BODY 6 TRACKING RADIATION 7 RESOURCES AND REFERENCES 10 ALKALIZING AND ACIDIFYING FOODS 11 PREVENTING RADIATION TOXICITY 13 RADIATION EXPOSURE NUTRITION INTERVENTION STRATEGIES 14 NUTRITION INTERVENTION STRATEGIES REFERENCES 18 ABOUT THE AUTHORS 20 World Business Academy 308 East Carrillo Street Santa Barbara, CA 93101 www.worldbusiness.org www.safeenergyproject.org Preventing Radiation Toxicity Through Diet Beth Ellen DiLuglio, MS, RDN, CCN, LDN Julie M. Brown, MA, LMHC All articles ©2013 Beth Ellen DiLuglio, MS, RDN, CCN, LDN 2008-2013, All rights reserved, except for article on page 13 ©2013 Julie M. Brown, MA, LMHC 2008-2013, All rights reserved, and excluding the CDC’s National Report on Human Exposure to Environmental Chemicals and the National Toxicology Program’s Report on Carcinogens All photographs ©2013 Isaac Hernández/IsaacHernandez.com Book design: Isaac Hernández RADIOACTIVE ELEMENTS: NUTRIENT IMPOSTERS BETH ELLEN DILUGLIO, MS, RD, CCN, LD/N Did you know that radioactive elements mas- active elements and they are eaten by small fish. fruits, vegetables, legumes, nuts, seeds, herbs querade as nutrients and get absorbed by the The small fish will be eaten by larger fish who get and spices are especially good sources. Choose body? Nutrients are indispensable to all process- a “double dose.” Then we eat the large fish and produce that has been allowed to ripen on the es that take place in the body, they are indispens- get an even more concentrated dose of toxins vine to maximize production of antioxidants and able to life.
    [Show full text]
  • Summary of Comments, ANPR for 40 CFR Part
    Summary of Public Comments Submitted on the Advance Notice of Proposed Rulemaking for 40 CFR 190 General Summary On February 4, 2014, EPA published an Advance Notice of Proposed Rulemaking (ANPR) which solicited comments on whether the Agency should revise its “Environmental Radiation Protection Standards for Nuclear Power Operations”, also referred to as 40 CFR part 190 standards. The comment period closed on August 3, 2014. EPA received 488 discrete comments on the ANPR. We received comments from all sectors including industry, other federal government regulators, state regulators, and academia. The total number of comments received exceeded 24,000, but the majority of these were form letters written by citizens’ groups and signed by individual members of the public. The majority of commenters did not provide detailed responses to our questions. The majority of commenters did not want EPA to “raise” the protection limits (allow more radiation to be emitted from nuclear power operations). Some commenters did not want EPA to change the standards, generally saying that they did not want the standard to go up (to increase permitted exposure limits), and citing the “Petkau effect” and the “bystander effect” (which indicate that more damage occurs from long-term low radiation doses than from short-term high radiation doses). Some commenters wanted the standard to go up (to increase permitted exposure limits), citing the lack of evidence in support of the linear no-threshold model (LNT)1,2, and studies that indicate there may be a threshold below which radiation will not cause irreparable damage to the cells. Many comments from members of the public confused our notice to update these standards with the update of the manual of Protective Action Guides (PAGs), a non-regulatory guidance document for emergency response planning.
    [Show full text]
  • Influence of Neutron Radiation on the Stability of the Erythrocyte Membrane and an Oxyhemoglobin Formation — Petkau Effect Studies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository Vol. 47 (2016) ACTA PHYSICA POLONICA B No 2 INFLUENCE OF NEUTRON RADIATION ON THE STABILITY OF THE ERYTHROCYTE MEMBRANE AND AN OXYHEMOGLOBIN FORMATION — PETKAU EFFECT STUDIES Magdalena Kaczmarskaa, Iwona Habinaa Aleksandra Orzechowskaa, Katarzyna Niemiec-Murzynb Maria Fornalc, Władysław Pohoreckid, Krzysztof Matlake Józef Koreckie, Tomasz Grodzickic, Květoslava Burdaay aAGH University of Science and Technology Faculty of Physics and Applied Computer Science Department of Medical Physics and Biophysics, Kraków, Poland bAGH University of Science and Technology Multidisciplinary School of Engineering in Biomedicine, Kraków, Poland cJagiellonian University, Collegium Medicum Department of Internal Medicine and Gerontology, Kraków, Poland dAGH University of Science and Technology Faculty of Energy and Fuels, Kraków, Poland eAGH University of Science and Technology Faculty of Physics and Computer Science Department of Solid State Physics, Kraków, Poland (Received November 17, 2015) This paper examines the influence of a low dose of neutron radiation of 111 µGy (1.418 mSv — ICRP21, 1.277 mSv — ICRP74) on the stabil- ity of human red blood cells (RBCs). In the range of µGy doses, ionizing radiation may cause a serious oxidative stress in living organisms due to the Petkau effect. RBCs were chosen because their structure and function are well known, so they can be used as a model system for studying the in- fluence of ionizing radiation on mammalian cell membranes. Atomic force microscopy (AFM) is applied to analyze the topography of RBCs, their shape and membrane-skeleton network, along with the Mössbauer spec- troscopy to monitor different states of hemoglobin (Hb) and its ability to bind or release O2 in untreated and irradiated erythrocytes.
    [Show full text]
  • Atomic Energy ££"A L'energie Atomique of Canada Limited \^Jt Du Canada,Limitee
    AECL-6797-Rev. 1 ATOMIC ENERGY ££"A L'ENERGIE ATOMIQUE OF CANADA LIMITED \^JT DU CANADA,LIMITEE RADIATION EFFECTS ON LIVING SYSTEMS: A BIBLIOGRAPHY OF AECL PUBLICATIONS EFFETS DES RAYONNEMENTS SUR LES ORGANISMES VIVANTS: UNE BlbLIOGRAPHIE DES PUBLICATIONS DE L'EACL Norma J. Hawley Whiteshell Nuclear Research Etablissement de recherches Establishment nucleaires de Whiteshell Pinawa, Manitoba ROE HO April 1984 avril Copyright © Atomic Energy of Canada Limited, 1984 ATOMIC ENERGY OF CANADA LIMITED RADIATION EFFECTS ON LIVING SYSTEMS: A BIBLIOGRAPHY OF AECL PUBLICATIONS Compiled by Norma J. Hawley Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1LO 1984 April AECL-6797-Rev.l EFFETS DES RAYONNEMENTS SUR LES ORGANISMES VIVANTS: UNE BIBLIOGRAPHIE DES PUBLICATIONS DE L'EACL par Norma J. Hawley RESUME Cette bibliographie comprend des communications et des comptes- rendus rédigés par des savants de l'Energie Atomique du Canada, Limitée en ce qui a trait aux effets qu'exercent les rayonnements sur les organismes vivants. Elle se divise en trois parties: la Radiobiologie, la Radiobio- chimie et la Radiochimie. Il est prévu que cette bibliographie sera lièrement mise à jour* L'Énergie Atomique du Canada, Limitée Etablissement de recherches nucléaires de Whiteshell Pinawa, Manitoba ROE 1L0 1984 avril AECL-6797-Rev.l RADIATION EFFECTS ON LIVING SYSTEMS: A BIBLIOGRAPHY OF AECL PUBLICATIONS by Norma J. Hawley ABSTRACT This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems* It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly. Atomic Energy of Canada Limited Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1L0 1984 April AECL-6797-Rev.l CONTENTS 1.
    [Show full text]
  • Environmental Toxicants and Infant Mortality in the USA
    Open Journal of Biological Sciences David Kennedy1, Stephanie Seneff2, Review Article Robert M Davidson3*, John W Oller Jr,4, Boyd E Haley5, and Roger D Masters6 Environmental Toxicants and Infant 11068 Alexandria Drive, San Diego, CA 92107, USA 2Computer Science and Artificial Intelligence Mortality in the USA Laboratory, MIT, Cambridge, MA 01890, USA 3Independent physician/medical scientist, P.O. Box 1785, Kilgore, TX 75663-1785, USA Abstract 4 Hawthorne/LEQSF Endowed Professor of Despite enjoying a high standard of living, the United States ranks 46th among nations reporting Communicative Disorders, University of Louisiana, infant survival rates to the World Health Organization. Among factors that increase infant mortality are Lafayette, LA 70504-3170, USA environmental toxicants. Toxic metals such as mercury, aluminum, and lead interact synergistically 5 Department of Chemistry, University of Kentucky, with fluoride compounds to produce metal fluoride complexes (e.g., AlF3 and AlF4−). Such toxicants act Lexington, KY 40506-0174, USA as biophosphate mimetics disrupting biological signaling processes governing development, immune 6Department of Government, Dartmouth College, defenses, and ordinary maintenance systems. Sources for the metals include mother’s mercury amalgams, mercury and aluminum in injected medicines, and lead contaminated drinking water. All Hanover, NH 03755, USA of them are made even more toxic by fluorides as evidenced recently by water contamination in Flint, Dates: Received: 05 November, 2016; Accepted: Michigan. Fluorides interact with other toxins increasing their harmful impact. Among the interactants 22 November, 2016; Published: 24 November, 2016 are glyphosate and phosphate containing fertilizers that end up in the food and water because of their widespread use in agriculture.
    [Show full text]
  • Concerning the Draft Environmental Impact
    Richard Emch - Millstone EIS Page 1 a lichrd Ech -Milston EISPaa 1 314 7/t, !)r From: <NancyBurtonEsq @aol.com> To: <[email protected]> Date: 3/22105 3:02PM Subject: Millstone EIS Dear Mr. Emch: Attached is a corrected version of the CCAM comments submitted on March 16, 2005. Attachments as referenced are being mailed for delivery tomorrow to the d/5USES A41 871 NRC, with one exception, that being a report on cobalt-60 found in Jordan Cove sediment by Yale University researchers. That study will be submitted separately. Please await CCAM's further supplement, to be filed shortly, addressed to issues not covered by the March 16 submission. Sincerely, Nancy Burton CC: <ajkl @nrc.gov> c7---o:o-A"c =: A-C - 3, -7r. -/d J /fft ' / r,-.\temp\GW)00001 .TMP IPage-... 13 :\temp\GW 100001 .TMP Pg6 111 Mail Envelope Properties (424079C5.746: 8: 5958) Subject: Millstone EIS Creation Date: 3/22/05 3:01PM From: <NancyBurtonEsqc @aol .com> Created By: NancyBurtonEsq @aol.com Recipients nrc.gov OWGWPOO2.HQGWDOO1 RLE (Richard Ernch) nrc.gov owf4_po.OWFN_DO AJK1 CC (Andrew Kugler) Post Office Route OWGWPOO2.HQGWDOO1 nrc.gov owf4_po.0WFNDO nrc.gov Files Size Date & Time MESSAGE 502 03/22/05 03:01PM TEXT.htm 1066 MillstoneEISCCAMWrittenComments31605.doc 160768 Mime.822 223445 Options Expiration Date: None Priority: Standard Reply Requested: No Return Notification: None Concealed Subject: No Security: Standard Richard Emch - MillstoneEISCCAMWrittenComments3l605.doc Page1 ~ichrd mch Milstne~lCCA~riten~mmets~605docPaq ij CONNECTICUT COALITION AGAINST MILLSTONE www.mothballmillstone.org March 16, 2005 Chief Rules and Directives Branch Division of Administrative Services Office of Administration Mallstop T-6D59 U.S.
    [Show full text]
  • Documents Submitted by Dr. Sternglass During the Beaver
    Indian Point Public Health Risks Pulc Heft, Rikz Of Exedfn Licen[ses Of Ttde Dý.nr Ponn 2, aan 3 ulrRatr Joseph J. Mangano, MPH, MBA Executive Director Radiation and Public Health Project November 12, 2007 Advisors: Rosalie Bertell PhD, founder of the International Institute of Concern for Public Health. Marci Culley PhD, associate professor of psychology, Georgia State University Samuel Epstein MD, professor emeritus of public health, Univ. of Illinois-Chicago Sam Galewsky PhD, associate professor of biology, Millikin (IL) University Donald Louria MD, professor of preventive medicine, New Jersey Medical School Kay Kilburn MD, retired professor of medicine, University of Southern California Janette Sherman MD, adjunct professor, Environmental Institute, Western Michigan Univ. EXECUTIVE SUMIARY The Indian Point nuclear plant, 35 miles north of midtown Manhattan, has three reactors, two of which remain in operation. Entergy Nuclear, which operates the plant, has requested that the federal gov~ernment extend the operating licenses of the two reactors for 20 additional years beyond their 2013 and 2015 expiration dates. To date, federal officials have not acknowledged any public health risks of license extension at Indian Point. This report explores risks from extending the Indian Point licenses. Continued operation of Indian Point raises the risk of radioactivity exposure in two ways. e First, the reactor cores wouldproduce high-level waste to be added to the 1,500 tons already at the site, worsening the consequences of a large-scale release. - * Second, because 'reactors routinely release radioactivity, keeping Indian Point in service would mean greater releases and risks to local residents. The principal findings of this report are: 1.
    [Show full text]