Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers Julia A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
2017 Chicxulub Revealed
THE UNIVERSITY TEXAS OF AUSTIN AT JACKSON• SCHOOL GEOSCIENCES OF 2017 NEWSLETTER• Newsletter2 017 Chicxulub Revealed A first look at rocks from the crater left by the asteroid that wiped out non-avian dinosaurs WELCOME Dear Alumni and Friends he devastation that Hurricane Harvey brought to Texas communities in August was a tragic reminder of how vital it is to understand our planet and T its processes. Shortly after the hurricane struck, our scientists, through our Rapid Response program, began to conduct research to understand how Harvey has impacted the coast and offshore Gulf of Mexico. This research will help determine the best ways to deal with many coastal issues in the aftermath of the storm, and how we might better prepare for such events in the future. You can read more about the mission on page 18. Rapid response efforts on the effects of abrupt, catastrophic geoscience events COVER: GRANITE FROM THE PEAK RING OF provide critical science that can benefit society. This is what we strive to do here at the THE CHICXULUB CRATER FORMED BY THE Jackson School of Geosciences. This year’s Newsletter holds some tremendous examples. ASTEROID STRIKE THAT WIPED OUT ALL NON- AVIAN DINOSAURS I’d like to draw your attention to the story on page 58 about the scientific coring mission led by Peter Flemings to bring back samples of methane hydrate from ABOVE: MEMBERS OF THE JACKSON beneath the Gulf of Mexico. This is a cutting-edge research project on a potential SCHOOL-LED TEAM CORING FOR SAMPLES OF METHANE HYDRATE IN THE GULF OF MEXICO future energy source that very few schools in the world would be able to mount. -
WAVE on Wheels Outreach Penguin Presentation Grades 9 – 12
WAVE on Wheels Outreach Penguin Presentation Grades 9 – 12 Time requirement 1 Hour Group size and grade Up to 50 students maximum Materials 1 African Penguin Penguin Artifacts Bin Penguin Emergency Backpack Penguin Pedestal WAVE Tablecloth Goal Through a live penguin encounter, students will be excited, engaged, and educated about the wonders of aquatic life and the importance of conservation. Objectives 1. Students will be able to list 5 adaptations a penguin has for aquatic life including a combination of internal and external body parts as well as behaviors. 2. Students will be able to define natural selection and discuss its effects on penguin adaptations. 3. Students will be able to list at least 5 species of penguin and identify that some penguins live in warm environments. WAVE Foundation • One Aquarium Way • Newport, KY 41071 • www.wavefoundation.org • (859) 815-1442 Rev 3/16 4. Students will be able to discuss biological factors relating to penguin population numbers, individual growth rates, and reproductive success. 5. Students will be able to discuss social behavior strategies among penguins. 6. Students will be able to discuss penguin conservation efforts as well as how they can help save penguins and other aquatic animals. 7. Students will be able to design and describe a method for monitoring and minimizing human impacts on penguin environments. Theme Penguins are unique aquatic birds that play an important role in their environment. Kentucky Core Academic Standards – Science HS. Interdependent Relationships in Ecosystems HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. -
Acosta Hospitaleche.Vp
vol. 34, no. 4, pp. 397–412, 2013 doi: 10.2478/popore−2013−0018 New crania from Seymour Island (Antarctica) shed light on anatomy of Eocene penguins Carolina ACOSTA HOSPITALECHE CONICET. División Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina <[email protected]> Abstract: Antarctic skulls attributable to fossil penguins are rare. Three new penguin crania from Antarctica are here described providing an insight into their feeding function. One of the specimens studied is largely a natural endocast, slightly damaged, and lacking preserved osteological details. Two other specimens are the best preserved fossil penguin crania from Antarctica, enabling the study of characters not observed so far. All of them come from the uppermost Submeseta Allomember of the La Meseta Formation (Eocene–?Oligocene), Seymour (Marambio) Island, Antarctic Peninsula. The results of the comparative studies suggest that Paleogene penguins were long−skulled birds, with strong nuchal crests and deep temporal fossae. The configuration of the nuchal crests, the temporal fossae, and the parasphenoidal processes, appears to indicate the presence of powerful muscles. The nasal gland sulcus devoid of a supraorbital edge is typical of piscivorous species. Key words: Antarctica, Sphenisciformes, crania, La Meseta Formation, late Eocene. Introduction Penguins (Aves, Sphenisciformes) are the best represented Paleogene Antarc− tic seabirds. This is probably so because of the intrinsic features of their skeletons, dense and heavy bones increase the chance of fossilization, and the presumably gregarious habit, typical of extant species. The oldest penguin record is known from the Paleocene of New Zealand (Slack et al. -
Bird Fossils from the Takatika Grit, Chatham Island
BIRD FOSSILS FROM THE TAKATIKA GRIT, CHATHAM ISLAND, NEW ZEALAND A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geology At the University of Canterbury By Jacob Christopher Blokland University of Canterbury 2017 Figure I: An interpretation of Archaeodyptes stilwelli. Original artwork by Jacob Blokland. i ACKNOWLEDGEMENTS The last couple years have been exciting and challenging. It has been a pleasure to work with great people, and be involved with new research that will hopefully be of contribution to science. First of all, I would like to thank my two supervisors, Dr Catherine Reid and Dr Paul Scofield, for tirelessly reviewing my work and providing feedback. I literally could not have done it without you, and your time, patience and efforts are very much appreciated. Thank you for providing me with the opportunity to do a vertebrate palaeontology based thesis. I would like to extend my deepest gratitude to Catherine for encouragement regarding my interest in palaeontology since before I was an undergraduate, and providing great information regarding thesis and scientific format. I am also extremely grateful to Paul for welcoming me to use specimens from Canterbury Museum, and providing useful information and recommendations for this project through your expertise in this particular discipline. I would also like to thank Associate Professor Jeffrey Stilwell for collecting the fossil specimens used in this thesis, and for the information you passed on regarding the details of the fossils. Thank you to Geoffrey Guinard for allowing me to use your data from your published research in this study. -
Antarctic Peninsula Paleontology Project Matt Lamanna
Philadelphia College of Osteopathic Medicine DigitalCommons@PCOM PCOM Scholarly Papers 2-11-2016 Science AMA Series: Antarctic Peninsula Paleontology Project Matt Lamanna Julia Clarke Pat O'Connor Ross MacPhee Erik Gorscak See next page for additional authors Follow this and additional works at: http://digitalcommons.pcom.edu/scholarly_papers Part of the Paleontology Commons Recommended Citation Lamanna, Matt; Clarke, Julia; O'Connor, Pat; MacPhee, Ross; Gorscak, Erik; West, Abby; Torres, Chris; Claeson, Kerin M.; Jin, Meng; Salisbury, Steve; Roberts, Eric; and Jinnah, Zubair, "Science AMA Series: Antarctic Peninsula Paleontology Project" (2016). PCOM Scholarly Papers. Paper 1677. http://digitalcommons.pcom.edu/scholarly_papers/1677 This Article is brought to you for free and open access by DigitalCommons@PCOM. It has been accepted for inclusion in PCOM Scholarly Papers by an authorized administrator of DigitalCommons@PCOM. For more information, please contact [email protected]. Authors Matt Lamanna, Julia Clarke, Pat O'Connor, Ross MacPhee, Erik Gorscak, Abby West, Chris Torres, Kerin M. Claeson, Meng Jin, Steve Salisbury, Eric Roberts, and Zubair Jinnah This article is available at DigitalCommons@PCOM: http://digitalcommons.pcom.edu/scholarly_papers/1677 REDDIT Science AMA Series: We’re a group of paleontologists and geologists on our way to Antarctica to look for fossils of non-avian dinosaurs, ancient birds, and more. AUA! ANTARCTICPALEO R/SCIENCE Hi Reddit! Our research team—collectively working as part of the Antarctic Peninsula Paleontology Project, or AP3—is on a National Science Foundation-supported research vessel on its way to Antarctica. This will be our third expedition to explore the Antarctic Peninsula for fossils spanning the end of the Age of Dinosaurs (the Late Cretaceous) to the dawn of the Age of Mammals (the early Paleogene). -
Phylogenetic Characters in the Humerus and Tarsometatarsus of Penguins
vol. 35, no. 3, pp. 469–496, 2014 doi: 10.2478/popore−2014−0025 Phylogenetic characters in the humerus and tarsometatarsus of penguins Martín CHÁVEZ HOFFMEISTER School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ, Bristol, United Kingdom and Laboratorio de Paleoecología, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile <[email protected]> Abstract: The present review aims to improve the scope and coverage of the phylogenetic matrices currently in use, as well as explore some aspects of the relationships among Paleogene penguins, using two key skeletal elements, the humerus and tarsometatarsus. These bones are extremely important for phylogenetic analyses based on fossils because they are commonly found solid specimens, often selected as holo− and paratypes of fossil taxa. The resulting dataset includes 25 new characters, making a total of 75 characters, along with eight previously uncoded taxa for a total of 48. The incorporation and analysis of this corrected subset of morphological characters raise some interesting questions consider− ing the relationships among Paleogene penguins, particularly regarding the possible exis− tence of two separate clades including Palaeeudyptes and Paraptenodytes, the monophyly of Platydyptes and Paraptenodytes, and the position of Anthropornis. Additionally, Noto− dyptes wimani is here recovered in the same collapsed node as Archaeospheniscus and not within Delphinornis, as in former analyses. Key words: Sphenisciformes, limb bones, phylogenetic analysis, parsimony method, revised dataset. Introduction Since the work of O’Hara (1986), the phylogeny of penguins has been a sub− ject of great interest. During the last decade, several authors have explored the use of molecular (e.g., Subramanian et al. -
Scientific American on the COVER
CLIMATE NEUROSCIENCE BIOLOGY How Feedbacks Growing an Eye How Do Genes for Could Speed Warming in the Lab Autism Spread? ScientificAmerican.com NOVEMBER 2012 The Inner Life of QuarksScience aims to look inside the smallest bits of matter SPECIAL ELECTION REPORT OBAMA & ROMNEY 14 ScienceAnswer Questions © 2012 Scientific American www.diako.ir www.diako.ir ON THE COVER The Standard Model of particle physics holds that quarks (the constituents of protons and neutrons) and leptons (such as the electron) are indivisible. Yet some findings suggest that quarks and leptons actually contain still tinier building blocks, known as preons. If preons exist, they will lead to discoveries of phenomena scientists have yet to imagine. Photograph by Craig Cutler. November 2012 Volume 307, Number 5 42 FEATURES PARTICLE PHYSICS SCIENCE AND SOCIETY 22 The Inner Life of Quarks 48 America’s Science Problem What if the smallest bits of matter actually harbor The U.S. faced down authoritarian governments an undiscovered world of particles? By Don Lincoln on the left and right. The “antiscience” movement is now posing an even greater challenge. NEUROSCIENCE By Shawn Lawrence Otto 30 Grow Your Own Eye Biologists have coaxed cells to form a retina, a step Also: Science in an Election Year Scientific American’s toward growing replacement organs outside the body. editors grade Obama and Romney on their policy acumen. By Yoshiki Sasai BIOLOGY ENVIRONMENT 58 Autism and the Technical Mind 36 Global Warming: Faster Than Expected? Scientists and engineers may be more likely to pass Loss of ice, melting of permafrost and other climate along genes that predispose their children to autism. -
Fossil Cenozoic Crassatelline Bivalves from Peru: New Species and Generic Insights
Fossil Cenozoic crassatelline bivalves from Peru: New species and generic insights THOMAS J. DEVRIES DeVries, T.J. 2016. Fossil Cenozoic crassatelline bivalves from Peru: New species and generic insights. Acta Palae onto- logica Polonica 61 (3): 661–688. Discoveries of new fossil Cenozoic crassatellines in Peru provide a new phylogenetic perspective on “large” Neogene genera, in which four lineages are considered to have arisen independently from different Paleogene Crassatella ances- tors. Latest Oligocene and early Miocene species of the new genus Tilicrassatella gen. nov.―T. ponderosa, T. torrens sp. nov., and T. sanmartini sp. nov. from the East Pisco Basin―probably evolved from the late Eocene species, Crassatella rafaeli sp. nov., which itself differed in significant respects from slightly older species of the East Pisco Basin, C. neo- rhynchus and C. pedroi sp. nov. The paciphilic genus, Hybolophus, is raised to full generic status. Added to its ranks are the East Pisco Miocene species H. maleficae sp. nov., H. terrestris sp. nov., and the oldest species of the genus, the late Eocene or Oligocene H. disenum sp. nov. from the Talara Basin of northern Peru. Kalolophus gen. nov., encompassing circum-Caribbean fossil species, the extant species, K. speciosus, and the trans-isthmus species, K. antillarum, appears to have evolved from the early Oligocene Floridian species, Crassatella portelli sp. nov. The genus Marvacrassatella is a western Atlantic Miocene lineage most likely descended from Kalolophus. The genus Eucrassatella is restricted to Australian and New Zealand taxa. The Eocene New Zealand species, Spissatella media, is transferred to Eucrassatella and deemed a candidate for the most recent common ancestor of younger Eucrassatella and all Spissatella species. -
In the Southeastern Pacific
life Article Extensive Diversity and Disparity of the Early Miocene Platanistoids (Cetacea, Odontoceti) in the Southeastern Pacific (Chilcatay Formation, Peru) Giovanni Bianucci 1,* , Christian de Muizon 2, Mario Urbina 3 and Olivier Lambert 4 1 Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy 2 CR2P (CNRS, MNHN, SU), Muséum National d’Histoire Naturelle, Département Origines et Évolution, 75005 Paris, France; [email protected] 3 Departamento de Paleontología de Vertebrados, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima 15072, Peru; [email protected] 4 Institut Royal des Sciences Naturelles de Belgique, D.O. Terre et Histoire de la Vie, 1000 Brussels, Belgium; [email protected] * Correspondence: [email protected] Received: 14 February 2020; Accepted: 16 March 2020; Published: 18 March 2020 Abstract: Several aspects of the fascinating evolutionary history of toothed and baleen whales (Cetacea) are still to be clarified due to the fragmentation and discontinuity (in space and time) of the fossil record. Here we open a window on the past, describing a part of the extraordinary cetacean fossil assemblage deposited in a restricted interval of time (19–18 Ma) in the Chilcatay Formation (Peru). All the fossils here examined belong to the Platanistoidea clade as here redefined, a toothed whale group nowadays represented only by the Asian river dolphin Platanista gangetica. Two new genera and species, the hyper-longirostrine Ensidelphis riveroi and the squalodelphinid Furcacetus flexirostrum, are described together with new material referred to the squalodelphinid Notocetus vanbenedeni and fragmentary remains showing affinities with the platanistid Araeodelphis. Our cladistic analysis defines the new clade Platanidelphidi, sister-group to Allodelphinidae and including E. -
East Pisco Basin, Peru): Paleogeographic and Paleoceanographic Implications of New Data
14 Boletín de la Sociedad Geológica del Perú, v. 112, p. 014-038 (2017) ____________________________________________________________________________________________________________________ Boletín de la Sociedad Geológica del Perú journal homepage: www.sgp.org.pe ISSN 0079-1091 ____________________________________________________________________________________________________________________ The Eocene-Oligocene Otuma Depositional Sequence (East Pisco Basin, Peru): Paleogeographic and Paleoceanographic Implications of New Data Thomas J. DeVries1, Mario Urbina2, and Nathan A. Jud3 1Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 98195, USA. Corresponding address: Box 13061, Burton, Washington 98013 USA ([email protected]) 2Departamento de Paleontología de Vertebrados, Museo de Historia Natural Javier Prado, Universidad Nacional Mayor de San Marcos, Lima, Peru 3 L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA ([email protected]) ____________________________________________________________________________________________________________ ABSTRACT RESUMEN The Otuma depositional sequence (East Pisco Basin, La secuencia deposicional Otuma (Cuenca Pisco Este, southern Peru) comprises late Eocene basal mollusk- sur del Perú) comprende areniscas basales con bearing sandstones and overlying silty sandstones moluscos del Eoceno tardío recubiertas por areniscas with pelagic microfossils and clupeoid fish scales. Field -
Redalyc.First Bird Remains from the Eocene of Algarrobo, Central Chile
Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Yury-Yáñez, Roberto E.; Otero, Rodrigo A.; Soto-Acuña, Sergio; Suárez, Mario E.; Rubilar-Rogers, David; Sallaberry, Michel First bird remains from the Eocene of Algarrobo, central Chile Andean Geology, vol. 39, núm. 3, septiembre, 2012, pp. 548-557 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173924966011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 39 (3): 548-557. September, 2012 Andean Geology doi: 10.5027/andgeoV39n3-a10 formerly Revista Geológica de Chile www.andeangeology.cl PALEONTOLOGICAL NOTE First bird remains from the Eocene of Algarrobo, central Chile Roberto E. Yury-Yáñez1, Rodrigo A. Otero2, Sergio Soto-Acuña3, Mario E. Suárez4, David Rubilar-Rogers2, Michel Sallaberry1* 1 Laboratorio de Zoología de Vertebrados, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile. [email protected]; [email protected] 2 Área Paleontología, Museo Nacional de Historia Natural. Casilla 787, Santiago. [email protected]; [email protected] 3 Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile. Las Palmeras 3425, Santiago, Chile. [email protected] 4 Museo Paleontológico de Caldera. Av. Wheelwright 001, Caldera, Atacama, Chile. [email protected] * Corresponding author. [email protected] ABSTRACT. Paleogene records of birds in the Eastern margin of the Pacific Ocean have increased in recent years, being almost exclusively restricted to fossil Sphenisciformes (penguins).