Stokes's Fundamental Contributions to Fluid Dynamics George Gabriel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lagrangian and Eulerian Representations of Fluid Flow: Part I, Kinematics and the Equations of Motion
Lagrangian and Eulerian Representations of Fluid Flow: Part I, Kinematics and the Equations of Motion James F. Price MS 29, Clark Laboratory Woods Hole Oceanographic Institution Woods Hole, MA, 02543 http://www.whoi.edu/science/PO/people/jprice [email protected] Version 7.4 September 13, 2005 Summary: This essay introduces the two methods that are commonly used to describe fluid flow, by observing the trajectories of parcels that are carried along with the flow or by observing the fluid velocity at fixed positions. These yield what are commonly termed Lagrangian and Eulerian descriptions. Lagrangian methods are often the most efficient way to sample a fluid domain and the physical conservation laws are inherently Lagrangian since they apply to specific material parcels rather than points in space. It happens, though, that the Lagrangian equations of motion applied to a continuum are quite difficult, and thus almost all of the theory (forward calculation) in fluid dynamics is developed within the Eulerian system. Eulerian solutions may be used to calculate Lagrangian properties, e.g., parcel trajectories, which is often a valuable step in the description of an Eulerian solution. Transformation to and from Lagrangian and Eulerian systems — the central theme of this essay — is thus the foundation of most theory in fluid dynamics and is a routine part of many investigations. The transformation of the Lagrangian conservation laws into the Eulerian equations of motion requires three key results. (1) The first is dubbed the Fundamental Principle of Kinematics; the velocity at a given position and time (the Eulerian velocity) is identically the velocity of the parcel (the Lagrangian velocity) that occupies that position at that time. -
Sensitivity Analysis of Non-Linear Steep Waves Using VOF Method
Tenth International Conference on ICCFD10-268 Computational Fluid Dynamics (ICCFD10), Barcelona, Spain, July 9-13, 2018 Sensitivity Analysis of Non-linear Steep Waves using VOF Method A. Khaware*, V. Gupta*, K. Srikanth *, and P. Sharkey ** Corresponding author: [email protected] * ANSYS Software Pvt Ltd, Pune, India. ** ANSYS UK Ltd, Milton Park, UK Abstract: The analysis and prediction of non-linear waves is a crucial part of ocean hydrodynamics. Sea waves are typically non-linear in nature, and whilst models exist to predict their behavior, limits exist in their applicability. In practice, as the waves become increasingly steeper, they approach a point beyond which the wave integrity cannot be maintained, and they 'break'. Understanding the limits of available models as waves approach these break conditions can significantly help to improve the accuracy of their potential impact in the field. Moreover, inaccurate modeling of wave kinematics can result in erroneous hydrodynamic forces being predicted. This paper investigates the sensitivity of non-linear wave modeling from both an analytical and a numerical perspective. Using a Volume of Fluid (VOF) method, coupled with the Open Channel Flow module in ANSYS Fluent, sensitivity studies are performed for a variety of non-linear wave scenarios with high steepness and high relative height. These scenarios are intended to mimic the near-break conditions of the wave. 5th order solitary wave models are applied to shallow wave scenarios with high relative heights, and 5th order Stokes wave models are applied to short gravity waves with high wave steepness. Stokes waves are further applied in the shallow regime at high wave steepness to examine the wave sensitivity under extreme conditions. -
Waves and Structures
WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves. -
THERMODYNAMICS, HEAT TRANSFER, and FLUID FLOW, Module 3 Fluid Flow Blank Fluid Flow TABLE of CONTENTS
Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow blank Fluid Flow TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. iv LIST OF TABLES ................................................... v REFERENCES ..................................................... vi OBJECTIVES ..................................................... vii CONTINUITY EQUATION ............................................ 1 Introduction .................................................. 1 Properties of Fluids ............................................. 2 Buoyancy .................................................... 2 Compressibility ................................................ 3 Relationship Between Depth and Pressure ............................. 3 Pascal’s Law .................................................. 7 Control Volume ............................................... 8 Volumetric Flow Rate ........................................... 9 Mass Flow Rate ............................................... 9 Conservation of Mass ........................................... 10 Steady-State Flow ............................................. 10 Continuity Equation ............................................ 11 Summary ................................................... 16 LAMINAR AND TURBULENT FLOW ................................... 17 Flow Regimes ................................................ 17 Laminar Flow ............................................... -
POTENTIAL FLOW: in Which the Vorticity Is Zero
Chapter 1 Potential flow: 1.1 General formulation Inviscid and irrotational flows in the limit of high Reynolds number are referred to as ‘potential’ or ‘ideal’ flows. The term ‘inviscid’ refers to flows where viscous forces are small compared to inertial forces, so that the fluid viscosity can be neglected in comparison to fluid inertia. ‘Potential’ or ‘ideal’ flows are a class of inviscid flows in which the vorticity ω, which is the curl of the velocity vector, is zero, i. e. ∂uk ωi = ǫijk = 0 (1.1) ∂xj Since the curl of the velocity is zero, the velocity can be expressed as the gradient of a potential φ, ∂φ ui = (1.2) ∂xi and hence the name ‘potential flow’. Using equation 1.2 for the velocity field, the Navier-Stokes mass and mo- mentum equations can be written in terms of the velocity potential. The mass conservation equation, expressed in terms of the velocity potential, is, 2 ∂ui ∂ φ = 2 = 0 (1.3) ∂xi ∂xi Thus, the mass conservation equation simply states that the velocity potential satisfies the Laplace equation, 2φ = 0. Therefore, for potential flow we can use all the techiques developed∇ for solving the Laplace equation earlier. The momentum conservation equation an inviscid flow is, ∂ui ∂ui 1 ∂p fi + uj = + (1.4) ∂t ∂xj −ρ ∂xi ρ where fi is the body force per unit volume acting on the fluid. The second term on the right side of the above equation can be simplified for an irrotational flow 1 2 CHAPTER 1. POTENTIAL FLOW: in which the vorticity is zero. -
A New Class of Exact Solutions of the Navier–Stokes Equations for Swirling Flows in Porous and Rotating Pipes
Advances in Fluid Mechanics VIII 67 A new class of exact solutions of the Navier–Stokes equations for swirling flows in porous and rotating pipes A. Fatsis1, J. Statharas2, A. Panoutsopoulou3 & N. Vlachakis1 1Technological University of Chalkis, Department of Mechanical Engineering, Greece 2Technological University of Chalkis, Department of Aeronautical Engineering, Greece 3Hellenic Defence Systems, Greece Abstract Flow field analysis through porous boundaries is of great importance, both in engineering and bio-physical fields, such as transpiration cooling, soil mechanics, food preservation, blood flow and artificial dialysis. A new family of exact solution of the Navier–Stokes equations for unsteady laminar flow inside rotating systems of porous walls is presented in this study. The analytical solution of the Navier–Stokes equations is based on the use of the Bessel functions of the first kind. To resolve these equations analytically, it is assumed that the effect of the body force by mass transfer phenomena is the ‘porosity’ of the porous boundary in which the fluid moves. In the present study the effect of porous boundaries on unsteady viscous flow is examined for two different cases. The first one examines the flow between two rotated porous cylinders and the second one discusses the swirl flow in a rotated porous pipe. The results obtained reveal the predominant features of the unsteady flows examined. The developed solutions are of general application and can be applied to any swirling flow in porous axisymmetric rotating geometries. -
Lectures in Elementary Fluid Dynamics: Physics, Mathematics and Applications James M
University of Kentucky UKnowledge Mechanical Engineering Textbook Gallery Mechanical Engineering 2009 Lectures In Elementary Fluid Dynamics: Physics, Mathematics and Applications James M. McDonough University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/me_textbooks Part of the Mechanical Engineering Commons Recommended Citation McDonough, James M., "Lectures In Elementary Fluid Dynamics: Physics, Mathematics and Applications" (2009). Mechanical Engineering Textbook Gallery. 1. https://uknowledge.uky.edu/me_textbooks/1 This Book is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion in Mechanical Engineering Textbook Gallery by an authorized administrator of UKnowledge. For more information, please contact [email protected]. LECTURES IN ELEMENTARY FLUID DYNAMICS: Physics, Mathematics and Applications J. M. McDonough Departments of Mechanical Engineering and Mathematics University of Kentucky, Lexington, KY 40506-0503 c 1987, 1990, 2002, 2004, 2009 Contents 1 Introduction 1 1.1 ImportanceofFluids.............................. ...... 1 1.1.1 Fluidsinthepuresciences. ...... 2 1.1.2 Fluidsintechnology .. .. .. .. .. .. .. .. .... 3 1.2 TheStudyofFluids ................................ .... 4 1.2.1 Thetheoreticalapproach . ..... 5 1.2.2 Experimentalfluiddynamics . ..... 6 1.2.3 Computationalfluiddynamics . ..... 6 1.3 OverviewofCourse............................... -
An Essay on Lagrangian and Eulerian Kinematics of Fluid Flow
Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion James F. Price Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 [email protected], http://www.whoi.edu/science/PO/people/jprice June 7, 2006 Summary: This essay introduces the two methods that are widely used to observe and analyze fluid flows, either by observing the trajectories of specific fluid parcels, which yields what is commonly termed a Lagrangian representation, or by observing the fluid velocity at fixed positions, which yields an Eulerian representation. Lagrangian methods are often the most efficient way to sample a fluid flow and the physical conservation laws are inherently Lagrangian since they apply to moving fluid volumes rather than to the fluid that happens to be present at some fixed point in space. Nevertheless, the Lagrangian equations of motion applied to a three-dimensional continuum are quite difficult in most applications, and thus almost all of the theory (forward calculation) in fluid mechanics is developed within the Eulerian system. Lagrangian and Eulerian concepts and methods are thus used side-by-side in many investigations, and the premise of this essay is that an understanding of both systems and the relationships between them can help form the framework for a study of fluid mechanics. 1 The transformation of the conservation laws from a Lagrangian to an Eulerian system can be envisaged in three steps. (1) The first is dubbed the Fundamental Principle of Kinematics; the fluid velocity at a given time and fixed position (the Eulerian velocity) is equal to the velocity of the fluid parcel (the Lagrangian velocity) that is present at that position at that instant. -
Dynamics of Ideal Fluids
2 Dynamics of Ideal Fluids The basic goal of any fluid-dynamical study is to provide (1) a complete description of the motion of the fluid at any instant of time, and hence of the kinematics of the flow, and (2) a description of how the motion changes in time in response to applied forces, and hence of the dynamics of the flow. We begin our study of astrophysical fluid dynamics by analyzing the motion of a compressible ideal fluid (i.e., a nonviscous and nonconducting gas); this allows us to formulate very simply both the basic conservation laws for the mass, momentum, and energy of a fluid parcel (which govern its dynamics) and the essentially geometrical relationships that specify its kinematics. Because we are concerned here with the macroscopic proper- ties of the flow of a physically uncomplicated medium, it is both natural and advantageous to adopt a purely continuum point of view. In the next chapter, where we seek to understand the important role played by internal processes of the gas in transporting energy and momentum within the fluid, we must carry out a deeper analysis based on a kinetic-theory view; even then we shall see that the continuum approach yields useful results and insights. We pursue this line of inquiry even further in Chapters 6 and 7, where we extend the analysis to include the interaction between radiation and both the internal state, and the macroscopic dynamics, of the material. 2.1 Kinematics 15. Veloci~y and Acceleration 1n developing descriptions of fluid motion it is fruitful to work in two different frames of reference, each of which has distinct advantages in certain situations. -
Lagrangian and Eulerian Representations of Fluid Flow: James F
Lagrangian and Eulerian Representations of Fluid Flow: James F. Price MS 29, Clark Laboratory Woods Hole Oceanographic Institution Woods Hole, Massachusetts, USA, 02543 http://www.whoi.edu/science/PO/people/jprice [email protected] Version 3.5 December 22, 2004 Summary: This essay considers the two major ways that the motion of a fluid continuum may be described, either by observing or predicting the trajectories of parcels that are carried about with the flow – which yields a Lagrangian or material representation of the flow — or by observing or predicting the fluid velocity at fixed points in space — which yields an Eulerian or field representation of the flow. Lagrangian methods are often the most efficient way to sample a fluid domain and most of the physical conservation laws begin with a Lagrangian perspective. Nevertheless, almost all of the theory in fluid dynamics is developed in Eulerian or field form. The premise of this essay is that it is helpful to understand both systems, and the transformation between systems is the central theme. The transformation from a Lagrangian to an Eulerian system requires three key results. 1) The first is dubbed the Fundamental Principle of Kinematics; the velocity at a given position and time (sometimes called the Eulerian velocity) is equal to the velocity of the parcel that occupies that position at that time (often called the Lagrangian velocity). 2) The material or substantial derivative relates the time rate of change observed following a moving parcel to the time rate of change observed at a fixed position; D()/Dt = ∂()/∂t + V ·∇(), where the advective rate of change is in field coordinates. -
Geometric Lagrangian Averaged Euler-Boussinesq and Primitive Equations 2
Geometric Lagrangian averaged Euler-Boussinesq and primitive equations Gualtiero Badin Center for Earth System Research and Sustainability (CEN), University of Hamburg, D-20146 Hamburg, Germany E-mail: [email protected] Marcel Oliver School of Engineering and Science, Jacobs University, D-28759 Bremen, Germany E-mail: [email protected] Sergiy Vasylkevych Center for Earth System Research and Sustainability (CEN), University of Hamburg, D-20146 Hamburg, Germany E-mail: [email protected] 11 September 2018 Abstract. In this article we derive the equations for a rotating stratified fluid governed by inviscid Euler-Boussinesq and primitive equations that account for the effects of the perturbations upon the mean. Our method is based on the concept of geometric generalized Lagrangian mean recently introduced by Gilbert and Vanneste, combined with generalized Taylor and horizontal isotropy of fluctuations as turbulent closure hypotheses. The models we obtain arise as Euler-Poincar´e equations and inherit from their parent systems conservation laws for energy and potential vorticity. They are structurally and geometrically similar to Euler-Boussinesq-α and primitive equations-α models, however feature a different regularizing second order operator. arXiv:1806.05053v2 [physics.flu-dyn] 10 Sep 2018 Keywords: Lagrangian averaging, stratified geophysical flows, turbulence, Euler- Poincar´eequations 1. Introduction The goal of this article is to derive a self-consistent system of equations for the flow of an inviscid stratified fluid that accounts for the effects of the perturbations upon the mean. To this end, each realization of the flow is decomposed into the mean part and a small fluctuation. The effects of the fluctuations on the mean flow is then described by an appropriate mean flow theory. -
Fluid Kinematics 4
cen72367_ch04.qxd 10/29/04 2:23 PM Page 121 CHAPTER FLUID KINEMATICS 4 luid kinematics deals with describing the motion of fluids without nec- essarily considering the forces and moments that cause the motion. In OBJECTIVES Fthis chapter, we introduce several kinematic concepts related to flow- When you finish reading this chapter, you ing fluids. We discuss the material derivative and its role in transforming should be able to the conservation equations from the Lagrangian description of fluid flow I Understand the role of the (following a fluid particle) to the Eulerian description of fluid flow (pertain- material derivative in ing to a flow field). We then discuss various ways to visualize flow fields— transforming between Lagrangian and Eulerian streamlines, streaklines, pathlines, timelines, and optical methods schlieren descriptions and shadowgraph—and we describe three ways to plot flow data—profile I Distinguish between various plots, vector plots, and contour plots. We explain the four fundamental kine- types of flow visualizations matic properties of fluid motion and deformation—rate of translation, rate and methods of plotting the of rotation, linear strain rate, and shear strain rate. The concepts of vortic- characteristics of a fluid flow ity, rotationality, and irrotationality in fluid flows are also discussed. I Have an appreciation for the Finally, we discuss the Reynolds transport theorem (RTT), emphasizing its many ways that fluids move role in transforming the equations of motion from those following a system and deform to those pertaining to fluid flow into and out of a control volume. The anal- I Distinguish between rotational ogy between material derivative for infinitesimal fluid elements and RTT for and irrotational regions of flow based on the flow property finite control volumes is explained.