Texas Wild Rice (Zizania Texana) As a Model

Total Page:16

File Type:pdf, Size:1020Kb

Texas Wild Rice (Zizania Texana) As a Model Genet Resour Crop Evol (2007) 54:837–848 DOI 10.1007/s10722-006-9167-4 ORIGINAL PAPER Capturing genetic diversity of wild populations for ex situ conservation: Texas wild rice (Zizania texana) as a model Christopher M. Richards Æ Michael F. Antolin Æ Ann Reilley Æ Jackie Poole Æ Christina Walters Received: 19 November 2005 / Accepted: 13 April 2006 / Published online: 7 December 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Genebanks complement other conser- only 45 individuals, while random sampling along vation programs because they preserve genetic the river captured much less diversity. The early diversity needed for future breeding and resto- conservation collection captured as much diver- ration. We evaluated efficiency of capturing sity as expected from random sampling. Texas genetic diversity, using endangered Zizania wild rice stands resemble a mainland-island texana (Texas wild rice) as a model for plants with metapopulation; our analyses suggest that strati- recalcitrant seeds. This perennial aquatic grass is fied sampling maximizes genetic diversity for this restricted to 4 km of the San Marcos River in population dynamic. Demographic and genetic Texas. An early conservation collection included information is important for validating the design plants from stands throughout the river, based on of efficient ex situ collections and guiding in situ the assumption stands would be unique geno- conservation. types. Using microsatellite markers, we found that genetic diversity was concentrated in five of Key words Stratified sampling Æ Allelic richness Æ 15 large, demographically stable stands; 96 stands Conservation genetics Æ Genetic structure Æ smaller than 2 m2 contributed no unique alleles. Zizania texana High heterozygosity and few duplicate genotypes suggested that sexual reproduction occurs more often than presumed. Simulations of stratified Introduction sampling of large stands captured all alleles in Assembling ex situ collections from wild popula- tions is an important component of wider con- C. M. Richards (&) Æ A. Reilley Æ C. Walters USDA/ARS National Center for Genetic Resources servation goals (Schoen and Brown 2001). Preservation, 1111 South Mason Street, Fort Collins, Conservation collections in botanical gardens, CO 80521, USA zoos, or genebanks are designed to safeguard e-mail: [email protected] genetic diversity, enhance current population size, M. F. Antolin keep useful traits accessible, and re-establish Department of Biology, Colorado State University, populations in restoration projects. As such, col- Fort Collins, CO 80523-1878, USA lection strategies must efficiently capture a high percentage of the extant genetic diversity, as J. Poole Texas Parks & Wildlife, 3000 I-35 South, Austin, TX measured directly by variation in molecular or 78704, USA quantitative traits (Brown and Hardner 2000) or 123 838 Genet Resour Crop Evol (2007) 54:837–848 indirectly through a geographically stratified A conservation collection of 48 Texas wild rice sampling scheme (Shands 1991). Without direct plants from different locations throughout its measurements of genetic variation of phenotypic range was established from 1986 to 1999 at a fish traits or molecular markers, indirect methods hatchery in San Marcos, Texas in raceways with a often provide excellent first approximations of continuous flow-through of water from the river. genetic variation when they take into account the However, this collection of plants was both costly target species’ life history characteristics, repro- to maintain and fraught with inherent risks: by ductive system, and long-term population changes 1999, mortality reduced the conservation collec- (Brown and Briggs 1991; Schoen and Brown tion to 35 plants (for which we have DNA sam- 1991). For instance, if populations are abundant ples and genotypes), and the collection continues but are comprised mainly of a few genotypes that to decline. arise by asexual reproduction, total genetic It is possible to establish genebanks using seeds diversity could be found in relatively small of Z. texana. We have developed cryogenic samples collected from each population. methods to preserve Texas wild rice seeds and Efficiency in collecting is important not just demonstrated that these methods do not reduce because risk of eminent extinction, but also genetic diversity in stored samples for a set of because maintaining large, redundant collections variable microsatellite loci (Walters et al. 2002; may divert resources from other conservation Richards et al. 2004). Further, growth conditions priorities such as habitat protection. Seedbanks that induce flowering and seed production in can provide an important conservation tool controlled environments are known (Power and because the viability of hundreds or thousands of Fonteyn 1995; C. Walters unpublished data). Al- individuals can be maintained for decades with- though cryogenic storage protocols for Texas wild out regeneration (Walters 2004). However, rice are time consuming and costly, developing an recalcitrant seeds, which cannot be stored under ex situ collection seems particularly useful as a the standard cold and dry conditions used for complementary tool for other conservation pro- most seeds, require specialized protocols to jects for Texas wild rice because human induced ensure their viability in genebanks. Recalcitrant pressures on this species’ habitat, especially by seeds are common in many of the riparian and increased diversions of water, has accelerated in tropical species (Hong et al. 1998) that are the last few decades (Vaughan 1986). currently under threat because of harvesting or In this study we examined genetic diversity and habitat loss. Developing cryogenic methods for population structure of stands of Texas wild rice storage of recalcitrant seeds requires significant along its entire range in the San Marcos River, investment of time and resources. It is thus critical using six highly variable microsatellite markers. to design efficient collections that optimize the Sampling over three years was designed to sample capture of genetic diversity from wild. among and within stands, test whether reproduction Population genetic analysis of the aquatic within the river is primarily asexual, and evaluate Texas wild rice (Zizania texana Hitchcock) pro- temporal changes in genetic variation and struc- vides a case study for targeted sampling for a ture. We follow this analysis with a sampling species with a narrow geographic range: four km simulation to identify collecting strategies that of the San Marcos River in south central Texas. most efficiently capture the genetic diversity of Texas wild rice seeds are recalcitrant and do not Texas wild rice for ex-situ genebanks. survive in conventional storage. Monitoring of stands since the 1960s has revealed little or no flowering in the river and implied that the pri- Natural history of Z. texana mary mode of reproduction of this perennial grass is asexual (Emery 1977; Power 1996). These Texas wild rice is an aquatic perennial grass observations suggested one approach for ex situ endemic to a four km stretch of the San Marcos conservation was to dig plants from the river and River in Hays CO, TX (Emery 1977) (Fig. 1). The grow them in pots in an artificial aquatic habitat. river’s clear, spring-fed headwaters emerge from 123 Genet Resour Crop Evol (2007) 54:837–848 839 Fig. 1 Map of stands of Z. texana in the San Marcos River in Texas, showing river sections in annual surveys (left) the Edwards Aquifer through the permeable karst comparisons. Estimates of the percent coverage in the Balcones Fault of Texas at an average flow within polygons (m2) were used as relative mea- rate of 157 cu ft/s, and the river flows south to the sures of stand size. Two prominent features confluence of the Blanco River (Terrell et al. emerge from this long term study. First, while 1978). Below this confluence, where the water be- sizes of stands varied from 0.01 to 335 m2 (see comes heavily silted, no Z. texana have been re- Table 3 below), most stands were small (mean corded. The habitat requirements of Z. texana size is 8.5 m2). Second, the distribution and local appear to be confined to the upper reaches of the abundance of this species was highly dynamic river, which varies from 10 to 25 m wide and is up (Poole unpublished data 2003). Over the years, to four m deep in some channels. Texas wild rice the number of stands fluctuated markedly along grows mostly in large vegetative stands that are the river (mean = 206, SD = 45). Small stands submerged in mid-river in relatively swift and experienced higher rates of turnover (extinction shallow water (less than one m) and rooted in and colonization) than larger stands, with several sandy or gravely bottoms (Poole and Bowles 1999). of the largest stands being stable throughout the The spatial distribution of stands has been survey period (Poole unpublished data 2004). In mapped annually for 15 years by the Texas Parks addition, the census revealed that the spatial and Wildlife Department to monitor the abun- arrangement of stands was more clumped in the dance of this species and to describe its habitat upper reaches of the river, in segments A and B, requirements (Poole unpublished data). Occupied and progressively became more dispersed down- reaches of the river were designated as segments stream of segment F. (Emery, Southwest Texas State University Texas wild rice rarely flowers in the river unpublished data 1978) that correspond to phys- (Emery 1977; Power 1996) but it is capable of ical features of the river such as bridges, dams and flowering when grown in fish-rearing raceways other structures (Fig. 1). Stands, which are de- located at the National Fish Hatchery and Tech- fined as continuous masses of Z. texana plants, nology Center in San Marcos, TX, in an old fish were delineated by polygons that enclosed the hatchery on the campus of Texas State University- irregularly-shaped stands, mapped using survey- San Marcos (Power 1996), and in greenhouses at ing equipment, and recorded in GIS for yearly Colorado State University (Walters unpublished 123 840 Genet Resour Crop Evol (2007) 54:837–848 data 2004).
Recommended publications
  • Large Trees, Supertrees and the Grass Phylogeny
    LARGE TREES, SUPERTREES AND THE GRASS PHYLOGENY Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Nicolas Salamin Department of Botany University of Dublin, Trinity College 2002 Research conducted under the supervision of Dr. Trevor R. Hodkinson Department of Botany, University of Dublin, Trinity College Dr. Vincent Savolainen Jodrell Laboratory, Molecular Systematics Section, Royal Botanic Gardens, Kew, London DECLARATION I thereby certify that this thesis has not been submitted as an exercise for a degree at any other University. This thesis contains research based on my own work, except where otherwise stated. I grant full permission to the Library of Trinity College to lend or copy this thesis upon request. SIGNED: ACKNOWLEDGMENTS I wish to thank Trevor Hodkinson and Vincent Savolainen for all the encouragement they gave me during the last three years. They provided very useful advice on scientific papers, presentation lectures and all aspects of the supervision of this thesis. It has been a great experience to work in Ireland, and I am especially grateful to Trevor for the warm welcome and all the help he gave me, at work or outside work, since the beginning of this Ph.D. in the Botany Department. I will always remember his patience and kindness to me at this time. I am also grateful to Vincent for his help and warm welcome during the different periods of time I stayed in London, but especially for all he did for me since my B.Sc. at the University of Lausanne. I wish also to thank Prof.
    [Show full text]
  • Literature Cited Robert W. Kiger, Editor This Is a Consolidated List Of
    RWKiger 26 Jul 18 Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 24 and 25. In citations of articles, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbreviated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix "a"; thus, the sequence of explicit suffixes begins with "b". Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. Aares, E., M. Nurminiemi, and C. Brochmann. 2000. Incongruent phylogeographies in spite of similar morphology, ecology, and distribution: Phippsia algida and P. concinna (Poaceae) in the North Atlantic region. Pl. Syst. Evol. 220: 241–261. Abh. Senckenberg. Naturf. Ges. = Abhandlungen herausgegeben von der Senckenbergischen naturforschenden Gesellschaft. Acta Biol. Cracov., Ser. Bot. = Acta Biologica Cracoviensia. Series Botanica. Acta Horti Bot. Prag. = Acta Horti Botanici Pragensis. Acta Phytotax. Geobot. = Acta Phytotaxonomica et Geobotanica. [Shokubutsu Bunrui Chiri.] Acta Phytotax.
    [Show full text]
  • The Utilization of Emergent Aquatic Plants for Biomass Energy Systems Development
    SERI/TR-98281-03 UC Category: 61a The Utilization of Emergent Aquatic Plants for Biomass Energy Systems Development S. Kresovich C. K. Wagner D. A. Scantland S. S. Groet W. T. Lawhon Battelle 505 King Avenue Columbus, Ohio 43201 February 1982 Prepared Under Task No. 3337.01 WPA No. 274-81 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401 Prepared for the U.S. Department of Energy Contract No. EG-77-C-01-4042 Printed in the United States of America Ava ilabl e from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche $3.00 Printed Copy $6.50 NOTICE This report was prepared as an account of work sponsored by the United States Government. Neith~r the United States nor the United States Depart­ ment of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, complete­ ness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. FOREWORD Emergent aquatic plants, such as reeds, cattails, and bull rushes, are highly productive and are potentially significant resources for alcohol and solid fuel production. It has been estimated that if one-half of the 65,600 mi 2 of marshland in the United States were used for emergent biomass energy plantations, approximately 5% of present total national energy requirements might be met.
    [Show full text]
  • Appendices, Glossary
    APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0373993 A1 Von Maltzahn Et Al
    US 20150373993A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0373993 A1 VOn MaltZahn et al. (43) Pub. Date: Dec. 31, 2015 (54) ENDOPHYTES, ASSOCIATED (60) Provisional application No. 62/017.796, filed on Jun. COMPOSITIONS, AND METHODS OF USE 26, 2014, provisional application No. 62/017,809, THEREOF filed on Jun. 26, 2014, provisional application No. 62/017.816, filed on Jun. 26, 2014, provisional appli (71) Applicant: Symbiota, LLC, Cambridge, MA (US) cation No. 62/017,813, filed on Jun. 26, 2014, provi (72) Inventors: Geoffrey von Maltzahn, Boston, MA sional application No. 62/017,815, filed on Jun. 26, (US); Richard Bailey Flavell, Thosand 2014, provisional application No. 62/017.818, filed on Oaks, CA (US); Gerardo V. Toledo, Jun. 26, 2014. Belmont, MA (US); Jonathan W. Leff, Cambridge, MA (US); Philip Samayoa, Cambridge, MA (US); Luis Miguel Publication Classification Marquez, Belmont, MA (US); David Morris Johnston, Cambridge, MA (US); (51) Int. Cl. Slavica Djonovic, Malden, MA (US); AOIN 63/04 (2006.01) Yves Alain Millet, Newtonville, MA AOIN 63/00 (2006.01) (US); Craig Sadowski. Somerville, MA C05F II/08 (2006.01) (US); Jeffrey Lyford, Hollis, NH (US); (52) U.S. Cl. Karen V. Ambrose, Cambridge, MA CPC ................ A0IN 63/04 (2013.01); C05F II/08 (US); Xuecheng Zhang, Brookline, MA (2013.01); A0IN 63/00 (2013.01) (US) (21) Appl. No.: 14/752,829 (57) ABSTRACT (22) Filed: Jun. 26, 2015 Materials and methods for improving plant traits and for Related U.S. Application Data providing plant benefits are provided. In some embodiments, (63) Continuation-in-part of application No.
    [Show full text]
  • Note Evaluation of Copper on Texas
    J. Aquat. Plant Manage. 55: 113–115 Note Evaluation of copper on Texas wild rice, creeping primrose-willow and waterstargrass JEFFREY T. HUTCHINSON AND KENNETH G. OSTRAND* INTRODUCTION of outdoor raceways, and 720 m2 of outdoor ponds by manually removing algae on a daily basis. Algae manage- Texas wild rice (Zizania texana Hitchc.; TWR) is a federally ment at SMARC staff consumes a minimum of 12 to 14 h endangered plant endemic to the upper reach of the San wkÀ1. Marcos River, Hays County, Texas (Poole et al. 2007). The The most common method of algae control in ponds and U.S. Fish and Wildlife Service’s San Marcos Aquatic 0 00 0 00 natural water bodies is the use of copper-based products Resources Center (SMARC; 29850 23.9 N, 97858 33.8 W) (Lembi 2009). Copper is a contact algaecide and herbicide maintains refugia populations of TWR for reestablishment that at low concentrations ( 1.0 ppm) controls algae with in the San Marcos River in the event of catastrophic floods no harm to most vascular plants. Cutrine-PlusÓ1 is a liquid or droughts. In addition, the SMARC propagates TWR and chelated copper algaecide that controls a broad range of other native aquatic plants for restoration efforts in the San species. The product contains ethanolamine, a chelating Marcos River that include floating waterprimrose (Ludwigia agent that slows the precipitation of copper with carbonates repens Frost) and waterstargrass [Heteranthera dubia (Jacq.) and bicarbonates in water and is labeled for use in fish MacM.]. Control and maintenance of algae infestations in ponds and raceways (Applied Biochemists 2012).
    [Show full text]
  • Current Status of Texas Wild Rice (Zizania Texana Hitchc.) Author(S): H
    Southwestern Association of Naturalists Current Status of Texas Wild Rice (Zizania texana Hitchc.) Author(s): H. P. Emery Reviewed work(s): Source: The Southwestern Naturalist, Vol. 22, No. 3 (Jun. 15, 1977), pp. 393-394 Published by: Southwestern Association of Naturalists Stable URL: http://www.jstor.org/stable/30054808 . Accessed: 10/01/2012 14:02 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Southwestern Association of Naturalists is collaborating with JSTOR to digitize, preserve and extend access to The Southwestern Naturalist. http://www.jstor.org LITERATURE CITED BERRY, E. W. 1928. Fossil nutlets of the genus Lithospermum. United States Nat. Mus. Proc. 73: art. 13, pp. 1-3, 1 pl. BROOKS, B. P. 1928. A new species of hackberry ( Celtis) from the "Loup Fork" Miocene of Philips (sic) County, Kansas, Annals, Carnegie Mus. (Pitts­ burgh) 18:299, pl. 17, fig. 1. COCKERELL, T. D. A. 1933. The name of a fossil boraginaceous plant. Tor­ reya 33: no. 1, pl. 15. ELIAS, M. K. 1931. The geology of Wallace County, Kansas. State Geol. Surv. Kansas, Bull. 18: 1-254, 41 pls. ----. 1932. Grasses and other plants from the Tertiary of Kansas and Colorado.
    [Show full text]
  • Field Release of the Arundo Scale, Rhizaspidiotus Donacis
    United States Department of Agriculture Field Release of the Marketing and Regulatory Arundo Scale, Programs Animal and Rhizaspidiotus donacis Plant Health Inspection Service (Hemiptera: Diaspididae), an Insect for Biological Control of Arundo donax (Poaceae) in the Continental United States Environmental Assessment, December 2010 Field Release of the Arundo Scale, Rhizaspidiotus donacis (Hemiptera: Diaspididae), an Insect for Biological Control of Arundo donax (Poaceae) in the Continental United States Environmental Assessment, December 2010 Agency Contact: Shirley Wager-Page, Branch Chief Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 __________________________________________________________ The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. __________________________________________________________ Mention of companies or commercial products in this report does not imply recommendation or endorsement by USDA over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information.
    [Show full text]
  • James H. Locklear Lauritzen Gardens 100 Bancroft Street Omaha, Nebraska 68108, U.S.A
    ENDEMIC PLANTS OF THE CENTRAL GRASSLAND OF NORTH AMERICA: DISTRIBUTION, ECOLOGY, AND CONSERVATION STATUS James H. Locklear Lauritzen Gardens 100 Bancroft Street Omaha, Nebraska 68108, U.S.A. [email protected] ABSTRACT This paper enumerates the endemic plants of the Central Grassland of North America. The Central Grassland encompasses the full extent of the tallgrass, mixed-grass, and shortgrass prairie ecological systems of North America plus floristically related plant communities that adjoin and/or interdigitate with the midcontinental grasslands including savanna-open woodland systems, shrub-steppe, and rock outcrop communities. There are 382 plant taxa endemic to the Central Grassland, 300 endemic species (eight of which have multiple subspecific taxa endemic to the region) and 72 endemic subspecies/varieties of more widely distributed species. Nine regional concentrations of en- demic taxa were identified and are described as centers of endemism for the Central Grassland: Arkansas Valley Barrens, Edwards Plateau, Llano Estacado Escarpments, Llano Uplift, Mescalero-Monahans Dunes, Niobrara-Platte Tablelands, Raton Tablelands, Red Bed Plains, and Reverchon Rocklands. In addition to hosting localized endemics, these areas are typically enriched with more widely-distributed Central Grassland endemics as well as peripheral or disjunct occurrences of locally-rare taxa, making them regions of high floristic diversity for the Central Grassland. Most of the endemics (299 or 78%) are habitat specialists, associated with rock outcrop, sand, hydric, or riparian habi- tats. There is a strong correlation between geology and endemism in the Central Grassland, with 59% of the endemics (225 taxa) associated with rock outcrop habitat. Of the 382 Central Grassland endemics, 124 or 33% are of conservation concern (NatureServe ranking of G1/T1 to G3/T3).
    [Show full text]
  • Txstate 202103
    DAVID E. LEMKE PROFESSOR OF BIOLOGY Texas State Vita ACADEMIC/PROFESSIONAL BACKGROUND Educational Background Ph.D. 1983 Botany The University of Texas at Austin B.S. 1975 Biology Bucknell University University Experience 1997–present Professor Texas State University 1992–1997 Associate Professor Texas State University 1991 Visiting Assistant Professor Texas Tech University 1984–1992 Assistant Professor Texas State University 1983–1984 Visiting Assistant Professor University of Texas at El Paso 1980–1981 Instructor Louisiana State University 1976–1980 Teaching Assistant University of Texas, Austin Relevant Professional Experience 2016–present Research Associate Botanical Research Institute of Texas 2016–present Research Affiliate Plant Resources Center, The University of Texas at Austin 1984–present Independent Botanical Consultant 1982–1983 Environmental Consultant Morrison-Knudsen Co., Inc. 1981–1982 Botanical Consultant Texas Department of Health 1981–1982 Environmental Consultant Camp Dresser & McKee, Inc. TEACHING Teaching Honors and Awards: 2020 Everette Swinney Faculty Senate Excellence in Teaching Award 2020 Alpha Chi Favorite Professor 2014 Alpha Chi Favorite Professor 1999 Texas State Nominee, Carnegie Foundation Professor of the Year Award 1998 Presidential Award for Excellence in Teaching, Texas State University 1996 Tri-Beta Teaching Award Courses Taught: Bio 1310 General Biology Bio 1320 Modern Biology I Bio 1321 Ecology, Evolution and Society (Laboratory Coordinator) Bio 1410 Introduction to Plant Biology Bio 1421 Modern
    [Show full text]
  • Dr. Thom Hardy Title: Professor
    PPS 8.10 Form 1A TEXAS STATE VITA I. Academic/Professional Background A. Name: Dr. Thom Hardy Title: Professor B. Educational Background Degree Year University Major Thesis/Dissertation PHD 1988 Utah State Civil Engineering, State-parameter University General estimation of real time river water quality MS 1985 University of Biological and Nevada, Las Vegas Physical Sciences BS 1978 University of Biological and Nevada, Las Vegas Physical Sciences BSED 1977 University of Secondary Nevada, Las Vegas Education and Teaching C. University Experience Position University Dates Professor, Department of Texas State University. San 2014 - Present Biology Marcos, TX Chief Science Officer, Texas State University. San 2009 - Present Meadows Center for Water Marcos, TX and the Environment Research Professor/Senior Texas State University. San 2009 - 2014 Lecturer, Department of Marcos, TX Biology Associate Director, Utah Utah State University 2002 - 2009 Water Research Laboratory Professor, Department of Civil Utah State University 2002 - 2009 and Environmental Engineering Director, Institute for Natural Utah State University 1987 - 2009 Systems Engineering Associate Professor, Utah State University 1995 - 2002 Department of Civil and Environmental Engineering Assistant Professor, Utah State University 1990 - 1995 Department of Civil and Environmental Engineering Research Assistant Professor, Utah State University 1988 - 1990 Department of Civil and Environmental Engineering Page 1 of 48 PPS 8.10 Form 1A Acting Research Assistant Utah State University 1987 - 1988 Professor, Department of Civil and Environmental Engineering Research Scientist, Aquatic University of Nevada at Las 1980 - 1982 Biology Vegas D. Relevant Professional Experience Position Entity Dates Principal Watershed Systems Group, 1978 - Present INC Principal Environmental Mapping and 1994 - 1999 Remote Sensing, Inc.
    [Show full text]
  • Instream Habitat Use and Management of Invasive Armored Catfishes in the Upper San Marcos River
    Copyright by Kristopher John Philip Warner 2018 INSTREAM HABITAT USE AND MANAGEMENT OF INVASIVE ARMORED CATFISHES IN THE UPPER SAN MARCOS RIVER by Kristopher John Philip Warner, B.S. THESIS Presented to the Faculty of The University of Houston-Clear Lake In Partial Fulfillment Of the Requirements For the Degree MASTER OF SCIENCE in Environmental Science THE UNIVERSITY OF HOUSTON-CLEAR LAKE DECEMBER, 2018 Dedication This manuscript is dedicated to my mother, Cheryl A. Warner: the first person to encourage my interest in the natural world, and the one who’d be proudest to see this chapter of my life completed. I’ll carry your memory to the summits and across the sea. Acknowledgements I would like to acknowledge the City of San Marcos, the Edwards Aquifer Authority, the Environmental Institute of Houston, and Texas State University for support in performing this research. I’d like to further acknowledge my fellow students and staff at EIH for assistance in field work and data management related to this research. Thank you to University of Houston Clear Lake for the opportunity to seek a graduate degree, and the introduction to lifelong friends. I’d like to thank Justin Hansen for his patience and guidance in teaching me to code. I’d like to thank my family, particularly my father and Dr. Sissy for their unwavering faith and support. I’d like to thank my partner Rebekah for facing this chapter of my life with me. Without you to keep me anchored, I doubt I would have succeeded. Finally, a big thank you to my two furry friends Saoirse and Col.
    [Show full text]