REVIEW Empagliflozin: a New Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW Empagliflozin: a New Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes FULL TEXT ARTICLE ISSN 1740-4398 A continuous publication, open access, peer-reviewed journal www.drugsincontext.com REVIEW Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes Joshua J Neumiller Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, WA, USA Citation Provenance Neumiller JJ. Empagliflozin: a new sodium-glucose co- Submitted, externally peer reviewed transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs in Context 2014; 3: 212262. doi: 10.7573/ Dates dic.212262 Submitted: 4 March 2014 Accepted, subject to peer review: 5 March 2014 Copyright Revised manuscript submitted: 28 May 2014 © 2014 Neumiller JJ. This is an open-access article distributed Published: 11 June 2014 under the terms of the Creative Commons Attribution License Deed CC BY NC ND 3.0 which allows anyone to copy, Publisher & contact information distribute, and transmit the article provided it is properly Drugs in Context is published by Just Medical Media Ltd, 11 attributed in the manner specified below. No other uses Redgrove Park, Cheltenham, Gloucestershire GL51 6QY, UK; without permission. ISSN 1740-4398; Just Medical Media Limited is registered in England Number 6891187; VAT GB 945 1713 22 Correct attribution Copyright © 2014 Neumiller JJ. Published by Drugs in Context Julia Savory under Creative Commons Attribution License Deed CC BY NC Head of Digital Publishing and Submissions Management ND 3.0. http://dx.doi.org/10.7573/dic.212262 [email protected]; Tel: +44 (0)1242 910 999 Article URL Abbreviations http://www.drugsincontext.com/empagliflozin-a-new- AE, adverse event; bid, twice daily; CI, confidence interval; sodium-glucose-co-transporter-2-sglt2-inhibitor-for-the- CKD, chronic kidney disease; CV, cardiovascular; DPP-4, treatment-of-type-2-diabetes/ dipeptidyl-peptidase-4; eGFR, estimated glomerular filtration rate; EMA, European Medicines Agency; FDA, Food and Correspondence Drug Administration; FDC, fixed-dose combination; FPG, Joshua J Neumiller. Assistant Professor, Department of fasting plasma glucose; GLP-1, glucagon-like peptide 1; GLUT, Pharmacotherapy, College of Pharmacy, Washington State glucose transporter; HbA1c, glycosylated hemoglobin; MI, University, PO Box 1495, Spokane, WA 99218, USA. myocardial infarction; OAD, oral antidiabetes drug; OGTT, oral [email protected] glucose tolerance test; PPG, post-prandial glucose; qd, once daily; SBP, systolic blood pressure; SD, standard deviation; SE, standard error; SGLT1/2, sodium-glucose co-transporters; UGE, urinary glucose excretion; ZDF, Zucker diabetic fatty (rat). Drugs in Context • www.drugsincontext.com Drugs in Context 2014; 3: 212262 1 ISSN: 1740-4398 ENDOCRINOLOGY ediToriAL BOArd Specialist Editor-in-Chief Group Editor-in-Chief Professor Eva M Vivian, PharmD Christopher Blanchette, PhD, MBA Associate Professor, University of Wisconsin-Madison School of Associate Dean for Research and Research Associate Professor Pharmacy, Madison, WI, USA in the Department of Public Health Sciences at the University of North Carolina and Director of Health Economics & Outcomes Specialist Health Economics Editor Research at Otsuka America Pharmaceutical Inc, USA Dr Won Chan Lee, PhD Principal, Health Economics and Outcomes Research, IMS Expert Advisers – Epidemiology and biostatistics Consulting Group, Alexandria, VA, USA Alex K Exuzides, PhD Director, ICON Clinical Research Inc, California, USA Specialist Advisor – Epidemiology Professor Scott L Friedman, MD Professor Jennifer Robinson, MD Fishberg Professor of Medicine, Dean for Therapeutic Discovery Clinical Assistant Professor, Department of Pharmacotherapy, Chief, Division of Liver Diseases, Mount Sinai School of Washington State University College of Pharmacy, Spokane, Medicine, New York, USA WA, USA Carl De Moor, PhD Specialist editorial board members Senior Principal, Epidemiology and Leader Epidemiology, Safety and Risk Management Center of Excellence Americas, Marlon E Cerf, MD IMS Health Inc, USA Specialist Scientist, Diabetes Discovery Platform, South African Medical Research Council, South Africa Dr John H Walker, OCT, MBA, PhD Professor, Goodman School of Business, Brock University, Pamela Daniels, MBA, MPH, PhD St Catharines, Ontario, Canada Epidemiologist, Morehouse School of Medicine, 720 Westview Drive, SW, MRC Annex S-10, Atlanta, GA, USA Expert Adviser – Publication Ethics Professor Stuart T Haines, PharmD Dr Elizabeth (Liz) Wager Professor and Vice Chair for Clinical Services, Department of Publications Consultant, Princes Risborough, UK; Visiting Pharmacy Practice and Science, University of Maryland School Professor, University of Split School of Medicine, Croatia; Former of Pharmacy, Baltimore, MD, USA; Clinical Pharmacy Specialist, Chair (2009-2012), Committee on Publication Ethics (COPE) West Palm Beach VA Medical Center, West Palm Beach, FL, USA Sivaramakrishna Koganti, PhD Editor-in-Chief Emeritus Department of Internal Medicine, Carver College of Medicine, Dr George Kassianos, FRCGP, FESC, FBGTHA, FAcadMEd, University of Iowa, USA FFTM RCPSGlasg General Practitioner, Bracknell, Berkshire, UK; President British Professor Elaena Quattrocchi, PharmD Global & Travel Health Association Fellow of the European Associate Professor, Division of Pharmacy Practice, Arnold and Society of Cardiology Marie Schwartz College of Pharmacy and Health Sciences, Staten Island University Hospital, NY, USA Specialist Advisor – Clinical Pharmacology Evan Sisson, PharmD, MHA, CDE Dr Richard White, MA, PhD Virginia Commonwealth University, School of Pharmacy, Consulting Partner and Director, Oxford PharmaGenesis Ltd, UK Virginia, USA Junhua Yu Assistant Professor, Social, Behavioral and Administrative Sciences,Touro University College of Pharmacy, Vallejo, CA, USA To see the full Drugs in Context Editorial Board, please visit www.drugsincontext.com/editorial-board Drugs in Context • www.drugsincontext.com Drugs in Context 2014; 3: 212262 2 ISSN: 1740-4398 FULL TEXT ARTICLE A continuous publication, open access, peer-reviewed journal REVIEW Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes Joshua J Neumiller Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, WA, USA Citation on pharmacokinetics. In Phase II trials in patients with type 2 Neumiller JJ. Empagliflozin: a new sodium-glucose co- diabetes, empagliflozin provided improvements in glycosylated transporter 2 (SGLT2) inhibitor for the treatment of type 2 hemoglobin (HbA1c) and other measures of glycemic control diabetes. Drugs in Context 2014; 3: 212262. when given as monotherapy or add-on to metformin, as well as doi: 10.7573/dic.212262 reductions in weight and systolic blood pressure. As add-on to basal insulin, empagliflozin not only improved HbA1c levels but Abstract also reduced insulin doses. Across studies, empagliflozin was Type 2 diabetes is increasing in prevalence worldwide, and generally well tolerated with a similar rate of hypoglycemia to hyperglycemia is often poorly controlled despite a number placebo; however, patients had a slightly increased frequency of therapeutic options. Unlike previously available agents, of genital infections, but not urinary tract infections, versus sodium-glucose co-transporter 2 (SGLT2) inhibitors offer an placebo. Phase III studies have also reported a good safety insulin-independent mechanism for improving blood glucose profile along with significant improvements in HbA1c, weight levels, since they promote urinary glucose excretion (UGE) by and blood pressure, with no increased risk of hypoglycemia inhibiting glucose reabsorption in the kidney. In addition to versus placebo. Based on available data, it appears that glucose control, SGLT2 inhibitors are associated with weight loss empagliflozin may be a useful option in a range of patients; and blood pressure reductions, and do not increase the risk of however, clinical decisions will be better informed by the results hypoglycemia. of ongoing studies, in particular, a large cardiovascular outcome study (EMPA-REG OUTCOME™). Empagliflozin is a selective inhibitor of SGLT2, providing dose-dependent UGE increases in healthy volunteers, with Keywords: Blood glucose, combination drug therapy, up to 90 g of glucose excreted per day. It can be administered empagliflozin, hemoglobin A1c protein, hypertension, obesity, orally, and studies of people with renal or hepatic impairment sodium-glucose co-transporter 2 (SGLT2) inhibitors, type 2 indicated empagliflozin needed no dose adjustment based diabetes Introduction [2–4]. Effective glycemic control is therefore considered central to patient management, and a number of glucose-lowering In patients with type 2 diabetes, higher levels of hyperglycemia therapies are available. Yet in clinical practice many patients do are associated with increasing risk of vascular events, with each not achieve glycemic goals [5]. The most frequently cited reason 1% increase in glycosylated hemoglobin (HbA1c) associated is the side-effect profiles of available agents, in particular with as much as 38% increased risk of mortality [1]. In patients hypoglycemia and weight gain, although unwillingness to with type 1 diabetes, intensive diabetes therapy has been begin insulin injections may also play a role [6,7]. Furthermore, clearly shown to reduce the incidence of clinical cardiovascular many patients do not maintain individualized glycemic goals,
Recommended publications
  • Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation
    nutrients Article Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation Danuta Zielinska 1, José Moisés Laparra-Llopis 2, Henryk Zielinski 3, Dorota Szawara-Nowak 3 and Juan Antonio Giménez-Bastida 3,4,* 1 Department of Chemistry, University of Warmia and Mazury, 10-727 Olsztyn, Poland; [email protected] 2 Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain; [email protected] 3 Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland; [email protected] (H.Z.); [email protected] (D.S.-N.) 4 Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CSIC), 30100 Murcia, Spain * Correspondence: [email protected] Received: 25 April 2019; Accepted: 23 May 2019; Published: 25 May 2019 Abstract: Plant-derived food consumption has gained attention as potential intervention for the improvement of intestinal inflammatory diseases. Apple consumption has been shown to be effective at ameliorating intestinal inflammation symptoms. These beneficial effects have been related to (poly)phenols, including phloretin (Phlor) and its glycoside named phloridzin (Phldz). To deepen the modulatory effects of these molecules we studied: i) their influence on the synthesis of proinflammatory molecules (PGE2, IL-8, IL-6, MCP-1, and ICAM-1) in IL-1β-treated myofibroblasts of the colon CCD-18Co cell line, and ii) the inhibitory potential of the formation of advanced glycation end products (AGEs).
    [Show full text]
  • Natural Products As Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors
    Reviews Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors Author ABSTRACT Wolfgang Blaschek Glucose homeostasis is maintained by antagonistic hormones such as insulin and glucagon as well as by regulation of glu- Affiliation cose absorption, gluconeogenesis, biosynthesis and mobiliza- Formerly: Institute of Pharmacy, Department of Pharmaceu- tion of glycogen, glucose consumption in all tissues and glo- tical Biology, Christian-Albrechts-University of Kiel, Kiel, merular filtration, and reabsorption of glucose in the kidneys. Germany Glucose enters or leaves cells mainly with the help of two membrane integrated transporters belonging either to the Key words family of facilitative glucose transporters (GLUTs) or to the Malus domestica, Rosaceae, Phlorizin, flavonoids, family of sodium glucose cotransporters (SGLTs). The intesti- ‑ SGLT inhibitors, gliflozins, diabetes nal glucose absorption by endothelial cells is managed by SGLT1, the transfer from them to the blood by GLUT2. In the received February 9, 2017 kidney SGLT2 and SGLT1 are responsible for reabsorption of revised March 3, 2017 filtered glucose from the primary urine, and GLUT2 and accepted March 6, 2017 GLUT1 enable the transport of glucose from epithelial cells Bibliography back into the blood stream. DOI http://dx.doi.org/10.1055/s-0043-106050 The flavonoid phlorizin was isolated from the bark of apple Published online April 10, 2017 | Planta Med 2017; 83: 985– trees and shown to cause glucosuria. Phlorizin is an inhibitor 993 © Georg Thieme Verlag KG Stuttgart · New York | of SGLT1 and SGLT2. With phlorizin as lead compound, specif- ISSN 0032‑0943 ic inhibitors of SGLT2 were developed in the last decade and some of them have been approved for treatment mainly of Correspondence type 2 diabetes.
    [Show full text]
  • The Na+/Glucose Co-Transporter Inhibitor Canagliflozin Activates AMP-Activated Protein Kinase by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels
    Page 1 of 37 Diabetes Hawley et al Canagliflozin activates AMPK 1 The Na+/glucose co-transporter inhibitor canagliflozin activates AMP-activated protein kinase by inhibiting mitochondrial function and increasing cellular AMP levels Simon A. Hawley1†, Rebecca J. Ford2†, Brennan K. Smith2, Graeme J. Gowans1, Sarah J. Mancini3, Ryan D. Pitt2, Emily A. Day2, Ian P. Salt3, Gregory R. Steinberg2†† and D. Grahame Hardie1†† 1Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK 2Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada 3Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, UK Running title: Canagliflozin activates AMPK Corresponding authors: Dr. D. G. Hardie, Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK; Dr. G.R. Steinberg, Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada Tel: +44 (1382) 384253; FAX: +44 (1382) 385507; e-mail: [email protected] Tel: +1 (905) 525-9140 ext.21691; email: [email protected] Word count in main text: 3,996 Number of Figures: 7 †these authors made equal contributions to this study ††joint corresponding authors Diabetes Publish Ahead of Print, published online July 5, 2016 Diabetes Page 2 of 37 Hawley et al Canagliflozin activates AMPK 2 ABSTRACT Canagliflozin, dapagliflozin and empagliflozin, all recently approved for treatment of Type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose re- uptake by SGLT2 in the kidney, without affecting intestinal glucose uptake by SGLT1.
    [Show full text]
  • Glucose Transporters As a Target for Anticancer Therapy
    cancers Review Glucose Transporters as a Target for Anticancer Therapy Monika Pliszka and Leszek Szablewski * Chair and Department of General Biology and Parasitology, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-621-26-07 Simple Summary: For mammalian cells, glucose is a major source of energy. In the presence of oxygen, a complete breakdown of glucose generates 36 molecules of ATP from one molecule of glucose. Hypoxia is a hallmark of cancer; therefore, cancer cells prefer the process of glycolysis, which generates only two molecules of ATP from one molecule of glucose, and cancer cells need more molecules of glucose in comparison with normal cells. Increased uptake of glucose by cancer cells is due to increased expression of glucose transporters. However, overexpression of glucose transporters, promoting the process of carcinogenesis, and increasing aggressiveness and invasiveness of tumors, may have also a beneficial effect. For example, upregulation of glucose transporters is used in diagnostic techniques such as FDG-PET. Therapeutic inhibition of glucose transporters may be a method of treatment of cancer patients. On the other hand, upregulation of glucose transporters, which are used in radioiodine therapy, can help patients with cancers. Abstract: Tumor growth causes cancer cells to become hypoxic. A hypoxic condition is a hallmark of cancer. Metabolism of cancer cells differs from metabolism of normal cells. Cancer cells prefer the process of glycolysis as a source of ATP. Process of glycolysis generates only two molecules of ATP per one molecule of glucose, whereas the complete oxidative breakdown of one molecule of glucose yields 36 molecules of ATP.
    [Show full text]
  • Evaluation of Comparative Efficacy and Pleiotrophy of the Available Three Sglt2 Inhibitors in Type 2 Dm Subjects
    EVALUATION OF COMPARATIVE EFFICACY AND PLEIOTROPHY OF THE AVAILABLE THREE SGLT2 INHIBITORS IN TYPE 2 DM SUBJECTS Dissertation submitted in partial fulfillment of the Requirement for the award of the degree of MASTER OF PHARMACY IN PHARMACY PRACTICE OF THE TAMILNADU Dr M.G.R MEDICAL UNIVERSITY, CHENNAI DEPARTMENT OF PHARMACY PRACTICE K.M.COLLEGE OF PHARMACY UTHANGUDI, MADURAI-625107 OCTOBER - 2016 CERTIFICATE This is to certify that the dissertation entitled “EVALUATION OF COMPARATIVE EFFICACY AND PLEIOTROPHY OF THE AVAILABLE THREE SGLT2 INHIBITORS IN TYPE 2 DM SUBJECTS” submitted by Mr.R.NATARAJAN (Reg. No.261440058) in partial fulfillment for the award of Master of Pharmacy in Pharmacy Practice under The Tamilnadu Dr.M.G.R Medical University, Chennai, done at K.M College of Pharmacy, Madurai-625107. It is a bonafide work carried out by him under my guidance and supervision during the academic year OCTOBER-2016. The dissertation partially or fully has not been submitted for any other degree or diploma of this university or other universities. GUIDE Mrs. K.Jeyasundari, M.Pharm., Assistant Professor, Dept. of Pharmacy Practice, K.M. College of Pharmacy, Madurai-625107. HEAD OF DEPARTMENT PRINCIPAL (Incharge) Prof.K.Thirupathi,M.Pharm., Dr.M.Sundarapandian.,M.Pharm.,Ph.D., Professor and HOD, Professor and HOD, Dept. of Pharmacy Practice, Dept. of Pharmaceutical Analysis, K.M. College of Pharmacy, K.M. College of Pharmacy, Madurai- 625107. Madurai- 625107. CERTIFICATE This is to certify that the dissertation entitled “EVALUATION OF COMPARATIVE EFFICACY AND PLEIOTROPHY OF THE AVAILABLE THREE SGLT2 INHIBITORS IN TYPE 2 DM SUBJECTS” submitted by Mr.R.NATARAJAN (Reg.
    [Show full text]
  • The Synthesis of Gliflozins
    GERALD L. LARSON Gelest Inc., 11 East Steel Road, Morrisville, PA 19067, USA Gerald L. Larson The synthesis of gliflozins KEYWORDS: Gliflozins, diabetes 2, glucose transporters, silane reductions. Some of the general approaches to the key steps in the synthesis of gliflozins, a class of glucose Abstracttransporters, are discussed. In particular the glycosidation step for the introduction of the key aryl moiety onto the glucose and the reduction steps are presented. INTRODUCTION signifi cantly reduced (3). (Figure 1b) Nevertheless, this led to investigations of structurally similar, more hydrolytically stable Glifl ozins constitute a class of compounds that is useful derivatives of phlorizin as SGLT2 inhibitors (4,5). as sodium glucose co-transporter-2 (SGLT2) inhibitors. The glifl ozins have shown particular expediency in the treatment of diabetes 2. They accomplish this through blocking of sodium glucose transport proteins, which, in turn, inhibit the kidneys from resorbing glucose back into the blood stream. The excess, non-resorbed glucose is then eliminated with the urine with the net result being a dosage-regulated glucose Figure 1b. Phloretin decomposition. level. It has been shown that a key feature of the glifl ozins is their ability to distinguish between the inhibition of the SGLT1 transporter, a low-capacity, high-affi nity transporter Five of the glifl ozins have now been approved for prescribed that is expressed in the gut, heart and kidney, and the SGLT2 use. These are dapaglifl ozin 4, Farxica or Forxica, (Bristol Myers- transporter, a high-capacity, low-affi nity transporter expressed Squibb/AstraZeneca), canaglifl ozin 5, Invokana, (Janssen mostly in the kidney.
    [Show full text]
  • Review Article
    KYAMC Journal Vol. 6, No.-1, July 2015 Review Article Glucuretics: A New Class of Drug for the Treatment of Type 2 Diabetes Hoque MA1, Rahman SMT 2, Islam MD 3, Akter N4 Abstract Type 2 diabetes is a common, chronic disease with a prevalence that is increasing at epidemic proportions. Management involves advice on lifestyle changes, oral anti-hyperglycaemic agents and/or insulin. The kidney plays an important role in glucose homeostasis via its production, utilization, and, most importantly, reabsorption of glucose from glomerular filtrate which is largely mediated via the sodium glucose co- transporter 2 (SGLT2). Competitive inhibition of SGLT2 induces glucosuria in a dose dependent manner and appears to have beneficial effects on glucose regulation in individuals with type 2 diabetes. Agents that inhibit SGLT2 represent a novel class of drugs, which has recently become available for treatment of type 2 diabetes. This article summarizes the rationale for use of these agents and reviews available clinical data on their efficacy, safety, and risks/benefits. Introduction pharmacological adjuncts are often required early in the Type 2 diabetes is a common, chronic disease and the management in the majority of patients. The choice of global prevalence of type 2 diabetes mellitus (T2DM) is drug depends on clinical and biochemical factors; as increasing at epidemic proportions1. It is a progressive with all pharmacological agents, anti-hyperglycaemic disease of the endocrine system with a significant therapy should only be initiated following careful economic burden, is estimated to affect more than 371 consideration of the possible benefits and risks of million people worldwide and close to one-fifth of all treatment for the individual patient.
    [Show full text]
  • Extraction, Identification, and Antioxidant and Anticancer Tests Of
    Food Chemistry 231 (2017) 324–331 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus ‘Red Splendor’ fruit ⇑ Zhengcao Xiao a, Yunyuan Zhang b, Xian Chen b, Yule Wang a, Weifeng Chen a, Qipeng Xu a, Pengmin Li a, , Fengwang Ma a a State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China b Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, China article info abstract Article history: Five dihydrochalcone compounds, including phlorizin, trilobatin, 3-hydroxyphlorizin, sieboldin and Received 4 January 2017 phloretin 20-xyloglucoside, were isolated from ornamental Malus ‘Red Splendor’ fruit. The chemical struc- Received in revised form 17 March 2017 tures of these compounds were elucidated by LC-ESI-MS and NMR. Phloretin and 3-hydroxyphloretin Accepted 21 March 2017 were produced by hydrolysis. The antioxidant capacities of these seven compounds were examined by Available online 23 March 2017 DPPH and ABTS assays, while their cytotoxicity to five cancer cell lines were evaluated by the MTT assay. The results showed that the DPPH assay mainly reflected the antioxidant capacity of the B ring, whereas Keywords: the ABTS assay was mostly related to the A ring of the dihydrochalcone molecule. Moreover, Antioxidant capacity 3-hydroxyphloretin was the best antioxidant among the seven compounds. Both glycosylation of the A Cytotoxicity Dihydrochalcone ring and the ortho phenolic hydroxyl groups of the B ring were important for the cytotoxicity of Extraction dihydrochalcone molecules.
    [Show full text]
  • The Synthesis of Gliflozins
    GERALD L. LARSON Gelest Inc., 11 East Steel Road, Morrisville, PA 19067, USA Gerald L. Larson The synthesis of gliflozins KEYWORDS: Gliflozins, diabetes 2, glucose transporters, silane reductions. Some of the general approaches to the key steps in the synthesis of gliflozins, a class of glucose Abstracttransporters, are discussed. In particular the glycosidation step for the introduction of the key aryl moiety onto the glucose and the reduction steps are presented. INTRODUCTION signifi cantly reduced (3). (Figure 1b) Nevertheless, this led to investigations of structurally similar, more hydrolytically stable Glifl ozins constitute a class of compounds that is useful derivatives of phlorizin as SGLT2 inhibitors (4,5). as sodium glucose co-transporter-2 (SGLT2) inhibitors. The glifl ozins have shown particular expediency in the treatment of diabetes 2. They accomplish this through blocking of sodium glucose transport proteins, which, in turn, inhibit the kidneys from resorbing glucose back into the blood stream. The excess, non-resorbed glucose is then eliminated with the urine with the net result being a dosage-regulated glucose Figure 1b. Phloretin decomposition. level. It has been shown that a key feature of the glifl ozins is their ability to distinguish between the inhibition of the SGLT1 transporter, a low-capacity, high-affi nity transporter Five of the glifl ozins have now been approved for prescribed that is expressed in the gut, heart and kidney, and the SGLT2 use. These are dapaglifl ozin 4, Farxica or Forxica, (Bristol Myers- transporter, a high-capacity, low-affi nity transporter expressed Squibb/AstraZeneca), canaglifl ozin 5, Invokana, (Janssen mostly in the kidney.
    [Show full text]
  • Sodium-Dependent Glucose Cotransporters
    SGLT Sodium-dependent glucose cotransporters SGLTs (Sodium-dependent glucose cotransporters) are a family of glucose transporters and contribute to glucose reabsorption. The two most well-known members of SGLT family are SGLT1 and SGLT2, which are members of the SLC5A gene family. The two transporters are of primary importance for glucose homeostasis by absorbing glucose from the diet in the small intestine (via SGLT1) and by reabsorbing the filtered glucose in the tubular system of the kidney (primarily SGLT2; to smaller extent via SGLT1); the latter process returns glucose into the blood stream and prevents urinary glucose loss. SGLT1 and SGLT2 have been proposed as a novel therapeutic strategy for diabetes and cardiomyopathy. www.MedChemExpress.com 1 SGLT Inhibitors Bexagliflozin Canagliflozin (EGT1442; EGT0001442; THR-1442) Cat. No.: HY-17604 (JNJ 28431754) Cat. No.: HY-10451 Bexagliflozin (EGT1442) is a potent, selective and Canagliflozin (JNJ 28431754) is a selective SGLT2 orally active sodium glucose co-transporter 2 inhibitor with IC50s of 2 nM, 3.7 nM, and 4.4 nM (SGLT2) inhibitor, with IC50s of 2 nM and 5.6 μM for mSGLT2, rSGLT2, and hSGLT2 in CHOK cells, for human SGLT2 and SGLT1, respectively. respectively. Bexagliflozin can be used for the research of type 2 diabetics. Purity: 99.48% Purity: 99.61% Clinical Data: Phase 3 Clinical Data: Launched Size: 10 mM × 1 mL, 2 mg, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 50 mg, 100 mg Canagliflozin D4 Canagliflozin hemihydrate (JNJ 28431754 D4) Cat. No.: HY-10451S (JNJ 28431754 hemihydrate) Cat.
    [Show full text]
  • Phloretin Suppresses Neuroinflammation by Autophagy
    Dierckx et al. Journal of Neuroinflammation (2021) 18:148 https://doi.org/10.1186/s12974-021-02194-z RESEARCH Open Access Phloretin suppresses neuroinflammation by autophagy-mediated Nrf2 activation in macrophages Tess Dierckx1, Mansour Haidar1, Elien Grajchen1, Elien Wouters1, Sam Vanherle1, Melanie Loix1, Annick Boeykens2, Dany Bylemans3,4, Kévin Hardonnière5, Saadia Kerdine-Römer5, Jeroen F. J. Bogie1 and Jerome J. A. Hendriks1* Abstract Background: Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. Methods: Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2– related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. Results: We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5′ AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. Conclusions: This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS.
    [Show full text]
  • The Kidney As a Treatment Target for Type 2 Diabetes Betsy Dokken, NP, Phd, CDE
    Feature Article / Dokken The Kidney as a Treatment Target for Type 2 Diabetes Betsy Dokken, NP, PhD, CDE Abstract Type 2 diabetes is a complex and stages of clinical development for the progressive disease that affects 8.3% treatment of type 2 diabetes. Results of the U.S. population. Despite the from clinical trials show that these availability of numerous treatment compounds decrease plasma glucose options for type 2 diabetes, the and body weight in treatment-naive proportion of patients achieving patients and in patients receiving glycemic goals is unacceptably low; metformin or insulin and insulin therefore, new pharmacotherapies are sensitizers. Overall, SGLT2 inhibitors needed to promote glycemic control appear to be generally well tolerated, in these patients. but in some studies, signs, symptoms, The kidney normally reabsorbs and other reports of genital and 99% of filtered glucose and returns urinary tract infections have been it to the circulation. Glucose reab- more frequent in drug-treated groups sorption by the kidney is mediated than in placebo groups. by sodium-glucose co-transporters Additional clinical trials will (SGLTs), mainly SGLT2. SGLT2 determine whether this class of inhibition presents an additional compounds with a unique, insulin- option to promote glycemic control independent mechanism of action in patients with type 2 diabetes. becomes a treatment option for A number of SGLT2 inhibitors have reducing hyperglycemia in type 2 been synthesized and are in various diabetes. Worldwide, more than 220 million Randomized, controlled people have diabetes.1 In the United clinical trials from the 1990s, States, diabetes is present in 8.3% including the Diabetes Control and of the population.2 Type 2 diabetes Complications Trial (DCCT)9 and accounts for 90–95% of all diag- the U.K.
    [Show full text]