Why Holography?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Holographic Principle and Applications to Fermion Systems
Imperial College London Master Dissertation Holographic Principle and Applications to Fermion Systems Author: Supervisor: Napat Poovuttikul Dr. Toby Wiseman A dissertation submitted in fulfilment of the requirements for the degree of Master of Sciences in the Theoretical Physics Group Imperial College London September 2013 You need a different way of looking at them than starting from single particle descriptions.You don't try to explain the ocean in terms of individual water molecules Sean Hartnoll [1] Acknowledgements I am most grateful to my supervisor, Toby Wiseman, who dedicated his time reading through my dissertation plan, answering a lot of tedious questions and give me number of in- sightful explanations. I would also like to thanks my soon to be PhD supervisor, Jan Zaanen, for sharing an early draft of his review in this topic and give me the opportunity to work in the area of this dissertation. I cannot forget to show my gratitude to Amihay Hanay for his exotic string theory course and Michela Petrini for giving very good introductory lectures in AdS/CFT. I would particularly like to thanks a number of friends who help me during the period of the dissertation. I had valuable discussions with Simon Nakach, Christiana Pentelidou, Alex Adam, Piyabut Burikham, Kritaphat Songsriin. I would also like to thanks Freddy Page and Anne-Silvie Deutsch for their advices in using Inkscape, Matthew Citron, Christiana Pantelidou and Supakchi Ponglertsakul for their helps on Mathematica coding and typesetting latex. The detailed comments provided -
M Theory As a Holographic Field Theory
hep-th/9712130 CALT-68-2152 M-Theory as a Holographic Field Theory Petr Hoˇrava California Institute of Technology, Pasadena, CA 91125, USA [email protected] We suggest that M-theory could be non-perturbatively equivalent to a local quantum field theory. More precisely, we present a “renormalizable” gauge theory in eleven dimensions, and show that it exhibits various properties expected of quantum M-theory, most no- tably the holographic principle of ’t Hooft and Susskind. The theory also satisfies Mach’s principle: A macroscopically large space-time (and the inertia of low-energy excitations) is generated by a large number of “partons” in the microscopic theory. We argue that at low energies in large eleven dimensions, the theory should be effectively described by arXiv:hep-th/9712130 v2 10 Nov 1998 eleven-dimensional supergravity. This effective description breaks down at much lower energies than naively expected, precisely when the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for a covariant, non-perturbative formulation of quantum M-theory. December 1997 1. Introduction M-theory has emerged from our understanding of non-perturbative string dynamics, as a hypothetical quantum theory which has eleven-dimensional supergravity [1] as its low- energy limit, and is related to string theory via various dualities [2-4] (for an introduction and references, see e.g. -
Stephen Hawking: 'There Are No Black Holes' Notion of an 'Event Horizon', from Which Nothing Can Escape, Is Incompatible with Quantum Theory, Physicist Claims
NATURE | NEWS Stephen Hawking: 'There are no black holes' Notion of an 'event horizon', from which nothing can escape, is incompatible with quantum theory, physicist claims. Zeeya Merali 24 January 2014 Artist's impression VICTOR HABBICK VISIONS/SPL/Getty The defining characteristic of a black hole may have to give, if the two pillars of modern physics — general relativity and quantum theory — are both correct. Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape. In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, “There is no escape from which only temporarily holds matter and energy prisoner before eventually a black hole in classical releasing them, albeit in a more garbled form. theory, but quantum theory enables energy “There is no escape from a black hole in classical theory,” Hawking told Nature. Peter van den Berg/Photoshot and information to Quantum theory, however, “enables energy and information to escape from a escape.” black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. -
Quantum Theory Cannot Consistently Describe the Use of Itself
ARTICLE DOI: 10.1038/s41467-018-05739-8 OPEN Quantum theory cannot consistently describe the use of itself Daniela Frauchiger1 & Renato Renner1 Quantum theory provides an extremely accurate description of fundamental processes in physics. It thus seems likely that the theory is applicable beyond the, mostly microscopic, domain in which it has been tested experimentally. Here, we propose a Gedankenexperiment 1234567890():,; to investigate the question whether quantum theory can, in principle, have universal validity. The idea is that, if the answer was yes, it must be possible to employ quantum theory to model complex systems that include agents who are themselves using quantum theory. Analysing the experiment under this presumption, we find that one agent, upon observing a particular measurement outcome, must conclude that another agent has predicted the opposite outcome with certainty. The agents’ conclusions, although all derived within quantum theory, are thus inconsistent. This indicates that quantum theory cannot be extrapolated to complex systems, at least not in a straightforward manner. 1 Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland. Correspondence and requests for materials should be addressed to R.R. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3711 | DOI: 10.1038/s41467-018-05739-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05739-8 “ 1”〉 “ 1”〉 irect experimental tests of quantum theory are mostly Here, | z ¼À2 D and | z ¼þ2 D denote states of D depending restricted to microscopic domains. Nevertheless, quantum on the measurement outcome z shown by the devices within the D “ψ ”〉 “ψ ”〉 theory is commonly regarded as being (almost) uni- lab. -
Appendix: the Interaction Picture
Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc. -
Quantum Violation of Classical Physics in Macroscopic Systems
Quantum VIOLATION OF CLASSICAL PHYSICS IN MACROSCOPIC SYSTEMS Lucas Clemente Ludwig Maximilian University OF Munich Max Planck INSTITUTE OF Quantum Optics Quantum VIOLATION OF CLASSICAL PHYSICS IN MACROSCOPIC SYSTEMS Lucas Clemente Dissertation AN DER Fakultät für Physik DER Ludwig-Maximilians-Universität München VORGELEGT VON Lucas Clemente AUS München München, IM NoVEMBER 2015 TAG DER mündlichen Prüfung: 26. Januar 2016 Erstgutachter: Prof. J. IGNACIO Cirac, PhD Zweitgutachter: Prof. Dr. Jan VON Delft WEITERE Prüfungskommissionsmitglieder: Prof. Dr. HarALD Weinfurter, Prof. Dr. Armin Scrinzi Reality is that which, when you stop believing in it, doesn’t go away. “ — Philip K. Dick How To Build A Universe That Doesn’t Fall Apart Two Days Later, a speech published in the collection I Hope I Shall Arrive Soon Contents Abstract xi Zusammenfassung xiii List of publications xv Acknowledgments xvii 0 Introduction 1 0.1 History and motivation . 3 0.2 Local realism and Bell’s theorem . 5 0.3 Contents of this thesis . 10 1 Conditions for macrorealism 11 1.1 Macroscopic realism . 13 1.2 Macrorealism per se following from strong non-invasive measurability 15 1.3 The Leggett-Garg inequality . 17 1.4 No-signaling in time . 19 1.5 Necessary and sufficient conditions for macrorealism . 21 1.6 No-signaling in time for quantum measurements . 25 1.6.1 Without time evolution . 26 1.6.2 With time evolution . 27 1.7 Conclusion and outlook . 28 Appendix 31 1.A Proof that NSIT0(1)2 is sufficient for NIC0(1)2 . 31 2 Macroscopic classical dynamics from microscopic quantum behavior 33 2.1 Quantifying violations of classicality . -
Particle Or Wave: There Is No Evidence of Single Photon Delayed Choice
Particle or wave: there is no evidence of single photon delayed choice. Michael Devereux* Los Alamos National Laboratory (Retired) Abstract Wheeler supposed that the way in which a single photon is measured in the present could determine how it had behaved in the past. He named such retrocausation delayed choice. Over the last forty years many experimentalists have claimed to have observed single-photon delayed choice. Recently, however, researchers have proven that the quantum wavefunction of a single photon assumes the identical mathematical form of the solution to Maxwell’s equations for that photon. This efficacious understanding allows for a trenchant analysis of delayed-choice experiments and denies their retrocausation conclusions. It is now usual for physicists to employ Bohr’s wave-particle complementarity theory to distinguish wave from particle aspects in delayed- choice observations. Nevertheless, single-photon, delayed-choice experiments, provide no evidence that the photon actually acts like a particle, or, instead, like a wave, as a function of a future measurement. And, a recent, careful, Stern-Gerlach analysis has shown that the supposition of concurrent wave and particle characteristics in the Bohm-DeBroglie theory is not tenable. PACS 03.65.Ta, 03.65.Ud 03.67.-a, 42.50.Ar, 42.50.Xa 1. Introduction. Almost forty years ago Wheeler suggested that there exists a type of retrocausation, which he called delayed choice, in certain physical phenomena [1]. Specifically, he said that the past behavior of some quantum systems could be determined by how they are observed in the present. “The past”, he wrote, “has no existence except as it is recorded in the present” [2]. -
Black Hole Weather Forcasting
NTU Physics Department Chih-Hung Wu 吳智弘 I. Spacetime Locality and ER=EPR Conjecture II. Construction of the Counter-example III. Debate with Professor J. Maldacena J. Maldacena and L.Susskind, “Cool horizon for entangled black holes”, Fortsch. Phys. 61 (2013) 781-811 arXiv:1306.0533 Pisin Chen, Chih-Hung Wu, Dong-hanYeom. ”Broken bridges: A counter-example of the ER=EPR conjecture”, arXiv:1608.08695, Aug 30, 2016 Locality(Impossibility of superluminal signal) 1.Quantum Theory-EPR entanglement 2.General Relativity-ER bridge Violation of Locality?---NO! ER bridge should remain un-traversable even in the quantum theory. En /2 e nLR m n In AdS/CFT framework, an eternal AdS- Schwarzschild BH and the Penrose diagram: En /2 e nLR m n Maximally entangled J. Maldacena, “Eternal black hole in AdS” JHEP 0304 (2003) 021 ,arXiv:0106112 Consider such a scenario: A large number of particles, entangled into separate Bell pairs, and separate them when we collapse each side to form two distant black holes, the two black holes will be entangled. Now they make a conjecture that they will also be connected by an Einstein-Rosen bridge. ER=EPR Known: EREPR Conjecture: EPRER How to realize in the usual Hawking radiation scenario? Second black hole= early half of HR. Step 1: Generate an entangled system Step 2: Formation of the ER bridge Step 3: Collapsing of the bubble Step 4: Evaporation of the black hole Step 5: Communication via ER bridge Assumption: GR with N massless scalar fields 11N S gd4 x ()()() 2 U f 2 i 22i1 The potential has two minima: (AdS space) Background (false vacuum) True vacuum 0 Prepared in advance (e.g. -
A Hole in the Black Hole
Open Journal of Mathematics and Physics | Volume 2, Article 78, 2020 | ISSN: 2674-5747 https://doi.org/10.31219/osf.io/js7rf | published: 7 Feb 2020 | https://ojmp.wordpress.com DA [microresearch] Diamond Open Access A hole in the black hole Open Physics Collaboration∗† April 19, 2020 Abstract Supposedly, matter falls inside the black hole whenever it reaches its event horizon. The Planck scale, however, imposes a limit on how much matter can occupy the center of a black hole. It is shown here that the density of matter exceeds Planck density in the singularity, and as a result, spacetime tears apart. After the black hole is formed, matter flows from its center to its border due to a topological force, namely, the increase on the tear of spacetime due to its limit until it reaches back to the event horizon, generating the firewall phenomenon. We conclude that there is no spacetime inside black holes. We propose a solution to the black hole information paradox. keywords: black hole information paradox, singularity, firewall, entropy, topology, quantum gravity Introduction 1. Black holes are controversial astronomical objects [1] exhibiting such a strong gravitational field that nothing–not even light–can escape from inside it [2]. ∗All authors with their affiliations appear at the end of this paper. †Corresponding author: [email protected] | Join the Open Physics Collaboration 1 2. A black hole is formed when the density of matter exceeds the amount supported by spacetime. 3. It is believed that at or near the event horizon, there are high-energy quanta, known as the black hole firewall [3]. -
Naked Firewalls Phys
Naked Firewalls Phys. Rev. Lett. 116, 161304 (2016) Pisin Chen, Yen Chin Ong, Don N. Page, Misao Sasaki, and Dong-han Yeom 2016 May 19 Introduction In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the `teleological' event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that a firewall is the `most conservative' solution to the information loss paradox. The AMPS Argument Almheiri, Marolf, Polchinski and Sully (AMPS) argued that local quantum field theory, unitarity, and no-drama (the assumption that infalling observers should not experience anything unusual at the event horizon if the black hole is sufficiently large) cannot all be consistent with each other for the Hawking evaporation of a black hole with a finite number of quantum states given by the Bekenstein-Hawking entropy. AMPS suggested that the `most conservative' resolution to this inherent inconsistency between the various assumptions is to give up no-drama. Instead, an infalling observer would be terminated once he or she hits the so-called firewall. This seems rather surprising, because the curvature is negligibly small at the event horizon of a sufficiently large black hole, and thus one would expect nothing special but low energy physics. -
Firewalls and the Quantum Properties of Black Holes
Firewalls and the Quantum Properties of Black Holes A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by Dylan Louis Veyrat Advisor: Marc Sher Senior Research Coordinator: Gina Hoatson Date: May 10, 2015 1 Abstract With the proposal of black hole complementarity as a solution to the information paradox resulting from the existence of black holes, a new problem has become apparent. Complementarity requires a vio- lation of monogamy of entanglement that can be avoided in one of two ways: a violation of Einstein’s equivalence principle, or a reworking of Quantum Field Theory [1]. The existence of a barrier of high-energy quanta - or “firewall” - at the event horizon is the first of these two resolutions, and this paper aims to discuss it, for Schwarzschild as well as Kerr and Reissner-Nordstr¨omblack holes, and to compare it to alternate proposals. 1 Introduction, Hawking Radiation While black holes continue to present problems for the physical theories of today, quite a few steps have been made in the direction of understanding the physics describing them, and, consequently, in the direction of a consistent theory of quantum gravity. Two of the most central concepts in the effort to understand black holes are the black hole information paradox and the existence of Hawking radiation [2]. Perhaps the most apparent result of black holes (which are a consequence of general relativity) that disagrees with quantum principles is the possibility of information loss. Since the only possible direction in which to pass through the event horizon is in, toward the singularity, it would seem that information 2 entering a black hole could never be retrieved. -
Is String Theory Holographic? 1 Introduction
Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5].