First Record of Eutypella Vitis Causing Branch Dieback on New Host Trees in Canada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species and a New Record of Diatrypaceae from Iran
Mycosphere 6(1): 60–68(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/1/7 A new species and a new record of Diatrypaceae from Iran Mehrabi M1, Hemmati R1, Vasilyeva LN2 and Trouillas FP3 1 Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Iran 2 Institute of Biology & Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia 3 Department of Plant Pathology, University of California, Davis, CA 95616, USA Mehrabi M, Hemmati R, Vasilyeva LN, Trouillas FP 2015 – A new species and a new record of Diatrypaceae from Iran. Mycosphere 6(1), 60–68, Doi 10.5943/mycosphere/6/1/7 Abstract Two species of Diatrypaceae (Xylariales) are described and illustrate from Iran. Diatrypella iranensis from dead branches of Quercus brantii is described as a new species based on both morphology and molecular sequence data. It differs from other members of the genus on the basis of stroma morphology and ascus and ascospore sizes. Molecular data of the ITS rDNA region show that the new species is a sister taxon of Diatrypella quercina. Cryptovalsa ampelina is described from dead branches of Juglans regia and is a new record from Iran. This study is the first in a series that investigate the diversity of Diatrypaceae from Iran. Key word – Cryptovalsa – Diatrypella – Iran – Taxonomy Introduction According to the Dictionnary of fungi (Kirk et al. 2008), the Diatrypaceae is a family of the Xylariales order within the Ascomycota phylum. The family contains 13 genera and 229 species and the most common diatrypaceous genera consist of Cryptosphaeria Ces. -
DNA Barcoding of Fungi in the Forest Ecosystem of the Psunj and Papukissn Mountains 1847-6481 in Croatia Eissn 1849-0891
DNA Barcoding of Fungi in the Forest Ecosystem of the Psunj and PapukISSN Mountains 1847-6481 in Croatia eISSN 1849-0891 OrIGINAL SCIENtIFIC PAPEr DOI: https://doi.org/10.15177/seefor.20-17 DNA barcoding of Fungi in the Forest Ecosystem of the Psunj and Papuk Mountains in Croatia Nevenka Ćelepirović1,*, Sanja Novak Agbaba2, Monika Karija Vlahović3 (1) Croatian Forest Research Institute, Division of Genetics, Forest Tree Breeding and Citation: Ćelepirović N, Novak Agbaba S, Seed Science, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia; (2) Croatian Forest Karija Vlahović M, 2020. DNA Barcoding Research Institute, Division of Forest Protection and Game Management, Cvjetno naselje of Fungi in the Forest Ecosystem of the 41, HR-10450 Jastrebarsko; (3) University of Zagreb, School of Medicine, Department of Psunj and Papuk Mountains in Croatia. forensic medicine and criminology, DNA Laboratory, HR-10000 Zagreb, Croatia. South-east Eur for 11(2): early view. https://doi.org/10.15177/seefor.20-17. * Correspondence: e-mail: [email protected] received: 21 Jul 2020; revised: 10 Nov 2020; Accepted: 18 Nov 2020; Published online: 7 Dec 2020 AbStract The saprotrophic, endophytic, and parasitic fungi were detected from the samples collected in the forest of the management unit East Psunj and Papuk Nature Park in Croatia. The disease symptoms, the morphology of fruiting bodies and fungal culture, and DNA barcoding were combined for determining the fungi at the genus or species level. DNA barcoding is a standardized and automated identification of species based on recognition of highly variable DNA sequences. DNA barcoding has a wide application in the diagnostic purpose of fungi in biological specimens. -
MEMOIRE DE FIN D'etudes Evaluation De L'activité Antagoniste
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE BLIDA 1 FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE DEPARTEMENT DES BIOTECHNOLOGIES MEMOIRE DE FIN D’ETUDES En vue de l’obtention du diplôme de Master 2 Option : Biologie des Interactions Plantes-Microorganismes Présenté par : BOUKERCHAOUI Saliha Evaluation de l’activité antagoniste des filtrats de cultures d’un isolat de Trichoderma sp. Vis- à-vis de quelques champignons phytopathogénes Soutenu devant le jury : BENCHABANE M. Professeur U. Blida 1 Président AMMAD F. M.C.B. U. Blida 1 Promotrice BOUCHENAK F. M.C.B. U. Blida 1 Examinatrice YALA A. Doctorante U. Blida 1 Invitée ANNEE UNIVERSITAIRE 2016/2017 Remerciements Ce travail a été réalisé au niveau du laboratoire de mycologie du département des Biotechnologies de l’Université de Blida1. Et au laboratoire de mycologie à l’institut national de la protection des végétaux d’El Harrach (INPV). Je remercie, en premier lieu, ALLAH le tout puissant de m’avoir donné le courage, la force et la volonté pour bien mener ce travail. Au terme de ce travail, Je tiens à exprimer toute ma gratitude, ma reconnaissance et mes sincères remerciements à ma promotrice Mme Ammad F. d’avoir accepté de m’encadrer, diriger et donné la chance de travailler ce sujet, sa confiance, sa disponibilité et la générosité qu’elle a m’ont accordée pour faire avancer ce travail. Je remercie sincèrement Pr. BENCHABANE M de m’avoir honoré en acceptant de présider le jury de mon travail. Je remercie également à Mlle BOUCHENAK f. -
Novel Taxa of Diatrypaceae from Para Rubber (Hevea Brasiliensis) in Northern Thailand; Introducing a Novel Genus Allocryptovalsa
Mycosphere 8(10): 1835–1855 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/10/9 Copyright © Guizhou Academy of Agricultural Sciences Novel taxa of Diatrypaceae from Para rubber (Hevea brasiliensis) in northern Thailand; introducing a novel genus Allocryptovalsa Senwanna C1,4, Phookamsak R2,3,4,5, Doilom M2,3,4, Hyde KD2,3,4 and Cheewangkoon R1 1 Department of Plant pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 2 World Agroforestry Centre, East and Central Asia, Heilongtan, Kunming 650201, Yunnan, People’s Republic of China 3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People’s Republic of China 4 Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Senwanna C, Phookamsak R, Doilom M, Hyde KD, Cheewangkoon R. 2017 – Novel taxa of Diatrypaceae from Para rubber (Hevea brasiliensis) in northern Thailand; introducing a novel genus Allocryptovalsa. Mycosphere 8(10), 1835–1855, Doi 10.5943/mycosphere/8/10/9. Abstract Species of Diatrypaceae are widespread on dead wood of plants worldwide. The delineation of this family is rather problematic because the characters of ascostromata are extremely variable and the names of taxa with sequence data are often misleading. In this paper, species of Diatrypaceae were collected from Para rubber in northern Thailand for examination and illustrations. Based on morphological characteristics and phylogenetic analyses, a new genus, Allocryptovalsa, is introduced to accommodate a new species A. -
What If Esca Disease of Grapevine Were Not a Fungal Disease?
Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot. -
Biological Control of Eutypa Dieback of Grapevines: Interactions Between the Pathogen and Fungal Antagonists
Biological control of eutypa dieback of grapevines: interactions between the pathogen and fungal antagonists Sharmini John Thesis submitted for the degree of Doctor of Philosophy at the lJniversity of Adelaide School of Agriculture and Wine Faculty of Sciences May 2003 DECLARATI.N""" """rrr PUBLICATIONS AND CONFERENCE PROCEEDINGS vl CHAPTER I.INTRODUCTION.. ..........1 CHAPTER 2. LITERATURE REVIE\ry. ...........4 2.1. Introduction. .4 2.2,The pathogen 5 2.2.I . Historic al background 5 2.2.2. T axonomy and nomenclature 6 2.2.3. Biology of E.lata .8 2.2.3. 1. Disease cycle..... 8 2.2. 3.2. Histopatholo gy 10 2.2.4. Symptoms 10 2.2.5. Variability of the pathogen. .. .. 11 2.2.6. Environmental factors that affect disease development.... 12 13 2.2.6.1. Temperature and relative humidity. ' 2.2.6.2. Rainfall t4 2.3. The host plant. """'15 2.3.1. Yield loss....... r6 Z.4.Management of eutypa dieback.... """"'16 2.4.I. Cultural practices t6 2.4.2. Chemical control t7 2.4.3. Biological control. .. 2.4.3.1. The needfor biological control 18 2.4.3.2. Microbes tested against eutypa dieback 19 .20 2.4.3.3. Trichoderma spp. in biological control. '.... ' 2.4.3.4. Mechanisms of antagonism by Trichoderma spp. 22 2.5. Other trunk diseases.... .""""""26 2.6. Summary .27 CHAPTER 3. GENERAL MATERIALS AND METHODS. ..28 3.2. The pathogen.. .29 3.2.I. Isolates of E. lata 29 3 .2.2. Extr actions of ascospores ..30 3.2.3. Y iability testing of ascospores. -
Two New Species of Diatrypaceae from Coastal Wattle in Coorong National Park, South Australia
Mycosphere Two new species of Diatrypaceae from coastal wattle in Coorong National Park, South Australia Trouillas FP 1, Sosnowski MR2 and Gubler WD1* 1Department of Plant Pathology, University of California, Davis, California 95616, USA 2South Australian Research and Development Institute, Adelaide, SA 5001, Australia Trouillas FP, Sosnowski MR, Gubler WD 2010 – Two new species of Diatrypaceae from coastal wattle in Coorong National Park, South Australia. Mycosphere 1(2), 183–188. In the present study, two species of Diatrypaceae were isolated from the wood of Acacia longifolia subsp. sophorae shrubs in the Coorong National Park, South Australia. Based on habitat, host, morphological observations and literature review, the isolates are described as the new species Diatrype brunneospora and Eutypella australiensis. These new taxa are fully described and illustrated and sequences of the internal transcribed spacer region of the nuclear ribosomal DNA are also provided. Key words – Australia – Diatrypaceae – New species – Taxonomy Article Information Received 16 June 2010 Accepted 13 July 2010 Published online 3 August 2010 *Corresponding author – Walter D. Gubler – e-mail – [email protected] Introduction been made (Rappaz 1987). Among them, eight Species of Diatrypaceae (Xylariales) are genera have been recognized (Rappaz 1987); commonly found on stems of various woody these include Cryptosphaeria Ces. & De Not. plants around the world. They are generally (four species), Diatrype Fr. (56 species), Dothi- considered to be saprotrophs, although some deovalsa Speg. (three species), Echinomyces F. species seem to be especially well established Rappaz (two species), Eutypa Tul. & C. Tul. in wood of recently dead host plants (Tiffany & (26 species), Eutypella (Nitschke) Sacc. (76 Gilman 1965). -
Early Diagnosis and Detection of Eutypa Dieback of Grapevines
Early diagnosis and detection of eutypa dieback of grapevines Richard Lardner Thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide Discipline of Plant and Pest Science Faculty of Sciences November 2003 Table of contents Abstract i Declaration iii Acknowledgments iv Abbreviations v Chapter 1 General Introduction 1 1.1 Introduction 1 1.2 History of Eutypa as a pathogen 2 1.3 Eutypa dieback of grapevines 3 1.3.1 Host Pathogen Interactions 3 1.3.1.1 Disease cycle 3 1.3.2 Symptoms of eutypa dieback 5 1.3.2.1 Woody tissue symptoms 5 1.3.2.2 Foliar symptoms 6 1.3.3 Relative susceptibility of V. vinifera cultivars to E. lata 7 1.4 Control of eutypa dieback 7 1.5 Significance of the pathogen to the grape growing industry 8 1.6 Production of secondary metabolites by E. lata 10 1.7 Diagnosis of eutypa dieback 12 1.8 Early diagnosis of fungal plant pathogens 13 1.8.1 Immunological techniques 14 1.8.2 Isozyme analysis 15 1.8.3 Nucleic acid-based diagnosis 15 1.8.3.1 RFLP-based techniques 16 1.8.3.2 PCR-based generation of markers 17 1.8.3.3 Generation of species-specific primers for diagnostic purposes 19 1.8.4 Molecular analysis of E. lata 20 1.9 Spectroscopy 21 1.10 Summary and objectives 22 Chapter 2 General materials and methods 23 2.1 Collection and maintenance of E. lata isolates 23 2.2 Fungal isolates 24 2.3 Growth of isolates for DNA extraction 26 2.4 DNA extraction from fungal mycelium 26 2.5 Southern hybridisation 27 2.5.1 Southern transfer of genomic DNA to nylon membranes 27 2.5.2 Preparation and digestion of plasmid DNA 27 2.5.3 DNA hybridisation techniques 28 Chapter 3 Development of SCAR markers specific to E. -
Emarcea Castanopsidicola Gen. Et Sp. Nov. from Thailand, a New Xylariaceous Taxon Based on Morphology and DNA Sequences
STUDIES IN MYCOLOGY 50: 253–260. 2004. Emarcea castanopsidicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences Lam. M. Duong2,3, Saisamorn Lumyong3, Kevin D. Hyde1,2 and Rajesh Jeewon1* 1Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China; 2Mushroom Research Centre, 128 Mo3 Ban Phadeng, PaPae, Maetaeng, Chiang Mai 50150, Thailand 3Department of Biology, Chiang Mai University, Chiang Mai, Thailand *Correspondence: Rajesh Jeewon, [email protected] Abstract: We describe a unique ascomycete genus occurring on leaf litter of Castanopsis diversifolia from monsoonal forests of northern Thailand. Emarcea castanopsidicola gen. et sp. nov. is typical of Xylariales as ascomata develop beneath a blackened clypeus, ostioles are papillate and asci are unitunicate with a J+ subapical ring. The ascospores in Emarcea cas- tanopsidicola are, however, 1-septate, hyaline and long fusiform, which distinguishes it from other genera in the Xylariaceae. In order to substantiate these morphological findings, we analysed three sets of sequence data generated from ribosomal DNA gene (18S, 28S and ITS) under different optimality criteria. We analysed this data to provide further information on the phylogeny and taxonomic position of this new taxon. All phylogenies were essentially similar and there is conclusive mo- lecular evidence to support the establishment of Emarcea castanopsidicola within the Xylariales. Results indicate that this taxon bears close phylogenetic affinities to Muscodor (anamorphic Xylariaceae) and Xylaria species and therefore this genus is best accommodated in the Xylariaceae. Taxonomic novelties: Emarcea Duong, R. Jeewon & K.D. -
PWV Jan/Feb 2005 Final
1 JANUARY/FEBRUARY 2005 GRAPEGROWING RESEARCH UPDATE Grapevine trunk diseases in California BY W. D. Gubler, P.E. Rolshausen, F. P. Trouillase, J. R. Urbez, T. Voegel Dept. of Plant Pathology, University of California, Davis, CA G. M. Leavitt, University of California Cooperative Extension, Madera, CA E. A. Weber, University of California Cooperative Extension, Napa, CA rapevine trunk diseases are responsible for significant eco- nomic losses to the wine industry Gworldwide. Symptoms of these diseases include dead spurs, arms, and cordons and eventual vine death due to canker formation in the vascular tis- sue. In Eutypa dieback, deformed leaves and shoots occur as the pathogen invades spur positions. As cankers develop, yield reductions occur due to the loss of productive wood. The impact of grapevine wood diseases can be significant in older for most canker development in California Figure I: Fruiting bodies (perithecia) of E. vineyards, and usually becomes more vineyards. However, recent findings have lata on a grapevine previously grafted for variety change. The large pruning wound severe as vineyards become older. highlighted the importance of other fungi favored formation of E. lata perithecia on Eutypa dieback, caused by Eutypa lata involved in the death and decline of the dead trunk of the old variety. was originally thought to be responsible grapevines in California. In this regard, Botryosphaeria species have also been recovered from cankers, and were determined to be the main cause of canker diseases in some California vineyards. Recent research has also indicated the occurrence of several new fungal trunk disease pathogens of grapevine belong- ing to the family Diatrypaceae (the same family as Eutypa). -
An Overview of the Systematics of the Sordariomycetes Based on a Four-Gene Phylogeny
Mycologia, 98(6), 2006, pp. 1076–1087. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny Ning Zhang of 16 in the Sordariomycetes was investigated based Department of Plant Pathology, NYSAES, Cornell on four nuclear loci (nSSU and nLSU rDNA, TEF and University, Geneva, New York 14456 RPB2), using three species of the Leotiomycetes as Lisa A. Castlebury outgroups. Three subclasses (i.e. Hypocreomycetidae, Systematic Botany & Mycology Laboratory, USDA-ARS, Sordariomycetidae and Xylariomycetidae) currently Beltsville, Maryland 20705 recognized in the classification are well supported with the placement of the Lulworthiales in either Andrew N. Miller a basal group of the Sordariomycetes or a sister group Center for Biodiversity, Illinois Natural History Survey, of the Hypocreomycetidae. Except for the Micro- Champaign, Illinois 61820 ascales, our results recognize most of the orders as Sabine M. Huhndorf monophyletic groups. Melanospora species form Department of Botany, The Field Museum of Natural a clade outside of the Hypocreales and are recognized History, Chicago, Illinois 60605 as a distinct order in the Hypocreomycetidae. Conrad L. Schoch Glomerellaceae is excluded from the Phyllachorales Department of Botany and Plant Pathology, Oregon and placed in Hypocreomycetidae incertae sedis. In State University, Corvallis, Oregon 97331 the Sordariomycetidae, the Sordariales is a strongly supported clade and occurs within a well supported Keith A. Seifert clade containing the Boliniales and Chaetosphaer- Biodiversity (Mycology and Botany), Agriculture and iales. Aspects of morphology, ecology and evolution Agri-Food Canada, Ottawa, Ontario, K1A 0C6 Canada are discussed. Amy Y. -
Stem-Inhabiting Fungal Communities Differ Between Intact and Snapped
Forest Ecology and Management 475 (2020) 118350 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Stem-inhabiting fungal communities differ between intact and snapped trees T after hurricane Maria in a Puerto Rican tropical dry forest François Maillarda,b,c, Erin Andrewsa, Molly Morana, Peter G. Kennedyb,c, Skip J. Van Bloemd, ⁎ Jonathan S. Schillinga, a Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA b Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA c Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA d Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC 29442, USA ARTICLE INFO ABSTRACT Keywords: Hurricanes impact forests by damaging trees and altering multiple ecosystem functions. As such, predicting Tropical cyclone which individuals are likely to be most affected has crucial economic importance as well as conservation value. Predisposition factor Tree stem-inhabiting fungal communities, notably rot-causing agents, have been mentioned as a potential factor Tree holobiont of tree predisposition to hurricane damage, but this assumption remains poorly explored. To examine this re- Caribbean Island lationship, we sampled the stem wood of intact and damaged trees shortly after Hurricane Maria in a Puerto Tropical forest Rican dry tropical forest in 2017. We categorized samples depending on two types: trees with intact stems and trees in which stems were snapped. We extracted fungal environmental DNA of wood from 40 samples consisting of four different tree species. Fungal community taxonomic and functional richness and composition was as- sessed using high-throughput DNA metabarcoding.