Seaweed Adaptations to Herbivory Author(S): J

Total Page:16

File Type:pdf, Size:1020Kb

Seaweed Adaptations to Herbivory Author(S): J Seaweed Adaptations to Herbivory Author(s): J. Emmett Duffy and Mark E. Hay Source: BioScience, Vol. 40, No. 5 (May, 1990), pp. 368-375 Published by: American Institute of Biological Sciences Stable URL: http://www.jstor.org/stable/1311214 Accessed: 06/01/2010 15:17 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aibs. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Institute of Biological Sciences is collaborating with JSTOR to digitize, preserve and extend access to BioScience. http://www.jstor.org Seaweed Adaptations to Herbivory Chemical,structural, and morphologicaldefenses are often adjustedto spatial or temporalpatterns of attack J. EmmettDuffy and Mark E. Hay erbivoryon seaweedscan be kelp beds along several kilometersof intense,with nearly100% of and coastline (Tegnerand Dayton 1987), production being consumed Fish, urchins, these events are rare. Mesograzer in some habitats (Carpenter1986). gastropods can each populationsare usuallymaintained at Seaweedsminimize damage from her- low densities by predation, and they bivores by any of three strategies strongly affect seaweed commonly have little obvious effect (Lubchencoand Gaines 1981). They communities on most seaweeds (Duffy in press, can escapein space or time so they do Hay et al. 1988c). However, meso- not co-occur with important herbi- . grazerscan have subtle but important vores or are not detected when they effects on some seaweeds, and the do co-occur. They can deter feeding ture; in temperate communities, ur- types of effectscan differdramatically by herbivoresthat encounterand rec- chins and gastropods tend to be most among mesograzer species (Brawley ognize the plant. And they can mini- important (Carpenter 1986, Gaines and Adey 1981, Duffy in press). mize the decrease in fitness that re- and Lubchenco 1982, Hawkins and Fish may have been especially im- sults from herbivoreattack. Hartnoll 1983, Hay 1984a, in press a, portant in selecting for antiherbivore Herbivory'sprofound effects on the Lubchenco and Gaines 1981). Al- traits in seaweeds (Hay in press a, organizationof seaweedcommunities though mesograzers such as amphi- Steneck1983) becauseof their mobil- has been extensively reviewed (Car- pods can dramatically affect seaweed ity, abundance,high metabolic rate, penter 1986, Dayton 1975, Hay communities by destroying entire and, for some abundanttropical spe- 1985, Lewis 1986, Lubchenco and Gaines 1981). In this article, we de- scribeseaweed characteristicsthat di- minish losses to herbivores. Seaweeds are consumed by a di- verse assemblage of herbivores that includes fishes, urchins, gastropods, crabs, and numerous smaller herbi- vores such as amphipods, isopods, and polychaetes (collectivelytermed mesograzers). In tropical habitats, fish and urchins have the greatest effect on seaweed community struc- J. EmmettDuffy is a postdoctoralfellow in the Departmentof InvertebrateZool- ogy, NationalMuseum of NaturalHis- tory, SmithsonianInstitution, Washing- ton, DC 20560.Mark Hay is an associate professorof marinesciences, biology, and ecology at the Universityof North Caro- lina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC 28557. ? 1990 AmericanInstitute of Biological Sciences. A dense school of parrotfishgraze algae on a coral reef. Photo: M. Hay. 368 BioScienceVol. 40 No. 5 cies, fused teeth (Figure 1), which Hypnea musciformis was quickly allow them to feed on tough or calci- eaten by fish when growing alone, but fied seaweeds. Urchins and gastro- it grew more rapidlythan it was con- pods can also be importantin habi- sumedwhen placedin contactwith its tats where they reach high densities unpalatable competitor, the brown (Carpenter1986, Hawkins and Hart- alga Sargassum filipendula (Hay noll 1983). 1986). During the yearlypeak in her- Fish, urchins, and gastropods can bivore abundance,Hypnea and other each strongly affect present-daysea- palatableseaweeds were found exclu- weed communities (Carpenter1986, sively in associationwith unpalatable Hawkins and Hartnoll 1983, Hay plants; at times of year when herbi- 1985, Lewis 1986, Lubchenco and vores were less active, palatable Gaines 1981), and the fossil record plants were not strongly associated suggests they have played a major with unpalatablespecies. role throughout evolutionary time In communities where associa- (Steneck 1983). In this article, we tional refuges are important, species discuss how seaweeds escape, deter, richnesscan increase rather than de- or tolerate herbivory. The depth in crease as the community becomes which we cover each of these topics dominatedby a few unpalatablesea- reflects the availability of rigorous weeds (Hay 1986). In these cases, experimentalstudies; we know little palatablealgae that would have been of the relative importance of these eliminatedby grazerscan persistonly differenttraits. in association with their unpalatable competitors.Similarly, on coral reefs, Figure1. The beak-liketeeth (top) and twice as taxa occur from herbivores mill and in nearly many Escaping pharyngeal (middle bottom) within 10 cm of the chemically de- Seaweeds can avoid theback of thethroat from two speciesof fended brown zo- Spatial refuges. Caribbeanparrotfishes. The fusedteeth alga Stypopodium herbivoresby growing in habitats, in enablethe fishto bite into hardcalcified nale as in similar-sized areas away from et al. microhabitats,or at times of year in surfacesto extractalgal tissues. The pha- Stypopodium (Littler which herbivoresare not active. For ryngealmill functionslike a mortarand 1986). As a final example, brown example, on tropical coral reefs pestle,grinding the seaweedsalong with algae in the genus Desmarestia con- whereherbivores are abundant,many sedimentsand coralrock. Because these centrate sulfuric acid up to 18% of seaweeds that are physiologicallyca- fish have no cellulases,they use their plant dry mass (Andersonand Velim- pable of growing on topographically mouthpartsto physicallyrupture the algal irov 1982). In Chilean kelp beds complex reef slopes occur only where cells.Photo: S. M. Lewis. heavily grazed by sea urchins, the herbivoredensities are low-on topo- palatable kelp Macrocystis cannot graphically simple sand plains and successfullycolonize unless it invades reef flats (Hay 1981a, 1984b, 1985, spatial refuges for seaweeds. Reef an area encircled by Desmarestia Lewis 1986). Similarly, Caribbean damselfishare small, aggressiveher- plants, which appear to act as "acid patch reefs are often surroundedby bivoresthat establishgardens of pal- brooms"that sweep the substrateand halos of bare sand that are kept free atablealgae by removingunpalatable prohibit urchins from entering the of seagrassesby grazing fish and ur- species and by vigorously defending area (Dayton 1985). chins (Ogden et al. 1973, Randall their gardens against other herbi- Associational refuges can thus be 1965). Because many reef-associated vores. Though the damselfishfeed in effectivein a variety of marine habi- grazersare reluctantto venturemore the gardens, these plots experience tats and against different kinds of than approximately 10 m from the reduced herbivory relative to areas herbivores. Interestingly, although shelter of the reef, seagrassesthrive not defended by damselfish.A few the patternsand processesof associa- beyond this radius. seaweedsdepend on these herbivore- tional resistancein marineand terres- On a smaller spatial scale, sea- created refuges, and algal diversity trial systems are similar, the mecha- weeds may live in cracks and holes can be higherin damselfishterritories nisms producing them can be inaccessibleto herbivores. On inter- than in eithercaged or uncagedareas strikingly different. In the best- tidal rock surfaces along Pacific Pa- outside territories(Hixon and Brost- studied marine example (Pfisterand nama, where herbivoryis particularly off 1983). Hay 1988), the palatable seaweed intense, herbivore-resistant algal Gracilariawas grazed more by sea crusts dominate exposed surfaces, Associational refuges. Herbivore- urchinswhen it occurredas a mono- whereas less-resistantleafy algae oc- influenced communities are often culture than when it occurred in a cur primarilyor exclusively in holes dominated by unpalatableseaweeds polyculturewith the unpalatablealga or cracks(Menge et al. 1985). Spatial that may createrefuges for more pal- Sargassum. The greatest grazing in escapes have been discussedin detail atablespecies (Hay 1986, Littleret al. monoculturesoccurred because indi- by Lubchencoand Gaines (1981) and 1986, Pfister and Hay 1988). For
Recommended publications
  • Amphipods Are Not All Created Equal
    354 1 Lewis, S. M., and B. Kensley. 1982. Notes on the ecology Steinberg, P. D. 1986. Chemical defenses and the suscep­ and behaviour of Pseudoamphithoides incurvaria (Just) tibility of tropical marine brown algae to herbivores. Oeco­ (Crustacea, Amphipoda, Ampithoidae). Journal of Natural logia (Berlin) 69:628-630. History 16:267-274. Stoner, A. W. 1980. Perception and choice of substratum Martin, A. L. 1966. Feeding and digestion in two intertidal by epifaunal amphipods associated with seagrass. Marine gammarids: Marinogammarus obtusatus and M. pirloti. Ecology Progress Series 3: 105-111. Journal of Zoology 148:515-552. Virnstein, R. W., and M. C. Curran. 1986. Colonization of Nelson, W. G. 1979. An analysis of structural pattern in an artificial seagrass versus time and distance from source. eelgrass (Zostera marina L.) amphipod community. Jour­ Marine Ecology Progress Series 29:279-288. nal of Experimental Marine Biology and Ecology 39:231- Virnstein, R. W., and R. K. Howard. 1987. Motile epifauna 264. of marine macrophytes in the Indian River Lagoon, Fl. II. --. 1980. A comparative study of amphipods in sea­ Comparisons between drift algae and three species of sea­ grass from Florida to Nova Scotia. Bulletin of Marine Sci­ grasses. Bulletin of Marine Science 41: 13-26. ence 30:80-89. Zimmerman, R., R. Gibson, and J. Harrington. 1979. Her­ Nicotri, M. E. 1977. The impact of crustacean herbivores bivory and detritivory among gammaridean amphipods on cultured seaweed populations. Aquaculture 12: 127-136. from a Florida seagrass community. Marine Biology 54: Orth, R. J., and J. van Montfrans. 1984. Epiphyte-seagrass 41-47.
    [Show full text]
  • Effects of Algal Phenotype on Mesograzer Feeding
    Vol. 490: 69–78, 2013 MARINE ECOLOGY PROGRESS SERIES Published September 17 doi: 10.3354/meps10429 Mar Ecol Prog Ser Effects of algal phenotype on mesograzer feeding Edwin Cruz-Rivera1,3,*, Michael Friedlander2 1Department of Biology, The American University in Cairo, AUC Avenue, PO Box 74, New Cairo 11835, Egypt 2Israel Oceanographic and Limnological Research Institute, Haifa 31080, Israel 3Present address: Environmental Science Program, Asian University for Women, 20/A M. M. Ali Road, Chittagong, Bangladesh ABSTRACT: The consequences of intraspecific variation in prey traits for plant−herbivore interac- tions were tested by measuring the susceptibility of 3 phenotypes from the red alga Gracilaria cornea against herbivores from the coast of Israel. The 3 algal phenotypes (‘fine’, ‘green’, ‘wild’) differed in morphology, as well as nutritional value (organic content). When presented with the 3 G. cornea phenotypes simultaneously, the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus consumed significantly more of the finely branched phenotype (63 and 80% of total con- sumption, respectively) than of either the green or wild phenotypes. When confined with only 1 of the 3 algal phenotypes, feeding patterns of the crab changed little, consuming significantly more of the finely branched phenotype. In contrast, the amphipod responded by increasing consump- tion proportionally on the phenotypes with the lowest organic content. Regression analysis showed that A. ramondi exhibited compensatory feeding and consumed significantly more of the green phenotype than of either of the other 2 under no-choice conditions, with algal ash-free dry mass explaining approximately 83% of the variance in feeding for this mesograzer. Data suggest that feeding by crabs responded to algal morphology more, while amphipods cued on both struc- ture and nutrient content of the algal phenotypes.
    [Show full text]
  • Temporal Shifts in Top-Down Vs. Bottom-Up Control of Epiphytic Algae in a Seagrass Ecosystem
    W&M ScholarWorks VIMS Articles 2-2013 Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem MA Whalen Virginia Institute of Marine Science JE Duffy Virginia Institute of Marine Science JB Grace Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Whalen, MA; Duffy, JE; and Grace, JB, "Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem" (2013). VIMS Articles. 1732. https://scholarworks.wm.edu/vimsarticles/1732 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Ecology, 94(2), 2013, pp. 510–520 Ó 2013 by the Ecological Society of America Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem 1,3 1 2 MATTHEW A. WHALEN, J. EMMETT DUFFY, AND JAMES B. GRACE 1Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, Virginia 23062 USA 2U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Boulevard, Lafayette, Louisiana 70506 USA Abstract. In coastal marine food webs, small invertebrate herbivores (mesograzers) have long been hypothesized to occupy an important position facilitating dominance of habitat- forming macrophytes by grazing competitively superior epiphytic algae. Because of the difficulty of manipulating mesograzers in the field, however, their impacts on community organization have rarely been rigorously documented.
    [Show full text]
  • Functional Role of an Epifaunal Grazer (Ampithoe Valida) in Eelgrass Communities: a Comparative Study Between Native and Invasive Ranges
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2014 Functional role of an epifaunal grazer (Ampithoe valida) in eelgrass communities: A comparative study between native and invasive ranges Kathrynlynn W. Jenkins College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Jenkins, Kathrynlynn W., "Functional role of an epifaunal grazer (Ampithoe valida) in eelgrass communities: A comparative study between native and invasive ranges" (2014). Undergraduate Honors Theses. Paper 38. https://scholarworks.wm.edu/honorstheses/38 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Table of Contents ABSTRACT.....................................................................................................................................1 INTRODUCTION........................................................................................................................... 2 MATERIALS AND METHODS.....................................................................................................7 Statistical analyses.............................................................................................................12 RESULTS.....................................................................................................................................
    [Show full text]
  • Grazing on the Epiphytic Community of Posidonia Oceanica (L.)Delile: an Assessment of Its Relevance As a Buffering Process of Eutrophication Effects
    Grazing on the epiphytic community of Posidonia oceanica (L.)Delile: An assessment of its relevance as a buffering process of eutrophication effects. PhD Thesis Inés Castejón Silvo Septiembre 2011 © Title page photo by Miquel Pontes 2 Grazing on the epiphytic community of Posidonia oceanica (L.) Delile: An assessment of its relevance as a buffering process of eutrophication effects. Tesis Doctoral Memoria presentada para optar al título de doctor por el Departamento de Biología. Universidad de las Islas Baleares, 2011 Autora: Inés Castejón Silvo Directores: Dr. Jorge Terrados Muñoz y Dra. Beatriz Morales-Nin Ponente: Dr. Rafael Bosch Zaragoza 3 4 Memoria presentada para optar al título de doctor por el Departamento de Biología. Universidad de las Islas Baleares. Palma, septiembre del 2011 Doctorando: Inés Castejón Silvo Director: Jorge Terrados Muñoz Directora: Beatriz Morales-Nin Ponente: Rafael Bosch Zaragoza 5 6 Autora de la memoria: Inés Castejón Silvo Contacto: 616559199, [email protected] Directores y contacto: Dr. Jorge Terrados Muñoz, [email protected] Dra. Beatriz Morales-Nin, [email protected] Ponente y contacto: Dr. Rafael Bosch Zaragoza, [email protected] Departamento de Biología de la Universidad de las Islas Baleares Área de conocimiento: ECOLOGÍA (Código UNESCO 220) Fecha de defensa: 10 de octubre 2011 Palabras clave: Posidonia oceanica, comunidad epifita, epiphyte commmunity, nutrientes, nutrients, top-down-control, bottom-up control, epifauna, grazer community. Resumen El incremento de disponibilidad de nutrientes produce cambios en la estructura y funcionamiento de los ecosistemas litorales. La eutrofización en los ecosistemas litorales mediterráneos favorece el predominio de algas epifitas de crecimiento rápido que compiten por la luz y los nutrientes con Posidonia oceanica.
    [Show full text]
  • Marine Chemical Ecology: What's Known and What's Next?
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY Journal of Exuerimental Marine Biologv and Ecologv.L_ AND ECOLOQY ELSEVIER 200 (1996) 103-134-d Marine chemical ecology: what’s known and what’s next? Mark E. Hay Universityqf North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell St., Morehead City NC 28557, USA Abstract In this review, I summarize recent developments in marine chemical ecology and suggest additional studies that should be especially productive. Direct tests in both the field and laboratory show that secondary metabohtes commonly function as defenses against consumers. However, some metabolites also diminish fouling, inhibit competitors or microbial pathogens, and serve as gamete attractants; these alternative functions are less thoroughly investigated. We know little about how consumers perceive secondary metabolites or how ecologically realistic doses of defensive metabolites affect consumer physiology or fitness, as opposed to feeding behavior. Secondary metabolites have direct consequences, but they do not act in isolation from other prey characteristics or from the physical and biological environment in which organisms interact with their natural enemies. This mandates that marine chemical ecology be better integrated into a broader and more complex framework that includes aspects of physiological, population, community, and even ecosystem ecology. Recent advances in this area involve assessing how chemically mediated interactions are affected by physical factors such as flow, desiccation, UV radiation, and nutrient availability, or by biological forces such as the palatability or defenses of neighbors, fouling organisms, or microbial symbionts. Chemical defenses can vary dramatically among geographic regions, habitats, individuals within a local habitat, and within different portions of the same individual.
    [Show full text]
  • Specificity in Mesograzer-Induced Defences in Seagrasses
    RESEARCH ARTICLE Specificity in Mesograzer-Induced Defences in Seagrasses Begoña Martínez-Crego1*, Pedro Arteaga1, Alexandra Ueber2, Aschwin H. Engelen1, Rui Santos1, Markus Molis3 1 Centre of Marine Sciences (CCMAR), Faro, Portugal, 2 University of Rostock, Rostock, Germany, 3 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Section Functional Ecology, Bremerhaven, Germany * [email protected] a11111 Abstract Grazing-induced plant defences that reduce palatability to herbivores are widespread in ter- restrial plants and seaweeds, but they have not yet been reported in seagrasses. We inves- tigated the ability of two seagrass species to induce defences in response to direct grazing OPEN ACCESS by three associated mesograzers. Specifically, we conducted feeding-assayed induction experiments to examine how mesograzer-specific grazing impact affects seagrass induc- Citation: Martínez-Crego B, Arteaga P, Ueber A, Engelen AH, Santos R, Molis M (2015) Specificity in tion of defences within the context of the optimal defence theory. We found that the amphi- Mesograzer-Induced Defences in Seagrasses. PLoS pod Gammarus insensibilis and the isopod Idotea chelipes exerted a low-intensity grazing ONE 10(10): e0141219. doi:10.1371/journal. on older blades of the seagrass Cymodocea nodosa, which reflects a weak grazing impact pone.0141219 that may explain the lack of inducible defences. The isopod Synischia hectica exerted the Editor: Bayden D Russell, The University of Hong strongest grazing impact on C. nodosa via high-intensity feeding on young blades with a Kong, HONG KONG higher fitness value. This isopod grazing induced defences in C. nodosa as indicated by a Received: July 1, 2015 consistently lower consumption of blades previously grazed for 5, 12 and 16 days.
    [Show full text]
  • Ecklonia Radiata) by Seagrass- Associated Mesograzers in Temperate South-Western Australia
    Edith Cowan University Research Online Theses : Honours Theses 2007 The use of detached kelp (Ecklonia radiata) by seagrass- associated mesograzers in temperate South-Western Australia Christopher Doropoulos Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Marine Biology Commons Recommended Citation Doropoulos, C. (2007). The use of detached kelp (Ecklonia radiata) by seagrass-associated mesograzers in temperate South-Western Australia. https://ro.ecu.edu.au/theses_hons/1076 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/1076 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Indirect Effects of Freshwater Discharges on Seagrass Beds in Southwest Florida
    1 Indirect effects of freshwater discharges on seagrass beds in Southwest Florida: Mesograzers as mediators of epiphyte growth? A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment Of the Requirement for the Degree of Master of Science By Thomas J. Behlmer Jr. 2016 2 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Thomas J. Behlmer Jr. Approved: August 26, 2016 James Douglass, Ph. D. Committee Chair/ Advisor Edwin M. Everham III, Ph. D. Serge Thomas, Ph. D. The final copy of this thesis [dissertation] has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. 3 Acknowledgments I owe an immense amount of gratitude to my committee members Dr. James Douglass, Dr. Edwin Everham, and Dr. Serge Thomas for their help with this research over the past two years. I would especially like to thank my advisor Dr. James Douglass for his continual support and encouragement throughout this time, in addition to all of the time spent on our many discussions. I would also like to thank Dr. Edwin Everham and Dr. Serge Thomas for their guidance and vast knowledge of disturbance and aquatic ecology. Thank you to the Southern Association of Marine Laboratories, Florida Gulf Coast University Graduate Studies Program, Coastal Watershed Institute, South Florida Water Management District, and Sanibel-Captiva Conservation Foundation for their logistical and financial support towards this research.
    [Show full text]
  • Richness of Primary Producers and Consumer Abundance Mediate Epiphyte Loads in a Tropical Seagrass System
    diversity Article Richness of Primary Producers and Consumer Abundance Mediate Epiphyte Loads in a Tropical Seagrass System Luke Hoffmann 1,2,* , Will Edwards 2, Paul H. York 1 and Michael A. Rasheed 1,2 1 Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4870, Australia; [email protected] (P.H.Y.); [email protected] (M.A.R.) 2 College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia; [email protected] * Correspondence: luke.hoff[email protected] Received: 27 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Consumer communities play an important role in maintaining ecosystem structure and function. In seagrass systems, algal regulation by mesograzers provides a critical maintenance function which promotes seagrass productivity. Consumer communities also represent a key link in trophic energy transfer and buffer negative effects to seagrasses associated with eutrophication. Such interactions are well documented in the literature regarding temperate systems, however, it is not clear if the same relationships exist in tropical systems. This study aimed to identify if the invertebrate communities within a tropical, multispecies seagrass meadow moderated epiphyte abundance under natural conditions by comparing algal abundance across two sites at Green Island, Australia. At each site, paired plots were established where invertebrate assemblages were perturbed via insecticide manipulation and compared to unmanipulated plots. An 89% increase in epiphyte abundance was seen after six weeks of experimental invertebrate reductions within the system. Using generalised linear mixed-effect models and path analysis, we found that the abundance of invertebrates was negatively correlated with epiphyte load on seagrass leaves.
    [Show full text]
  • Feeding by Coral Reef Mesograzers: Algae Or Cyanobacteria?
    Coral Reefs (2006) 25: 617-627 DOI 10.1007/s00338-006-0134-5 REPORT Edwin Cruz-Rivera • Valerie J. Paul Feeding by coral reef mesograzers: algae or cyanobacteria? Received: 3 March 2006/ Accepted: 3 June 2006 / Published online: 14 July 2006 © Springer-Verlag 2006 Abstract Marine studies on herbivory have addressed the Introduction role of algae as food and shelter for small consumers, but the potential of benthic cyanobacteria to play similar Benthic marine herbivores encounter a diversity of roles is largely unknown. Here, feeding preferences were potential foods that vary in nutritional quality, struc- measured for eight invertebrate consumers from Guam, ture, and chemical composition over spatial and tem- offered four common macroalgae and two cyanobacte- poral scales (Neighbors and Horn 1991; John et al. 1992; ria. The survivorship of another consumer raised on Paul 1992; Kaehler and Kennish 1996; Cruz-Rivera and either macroalgae or cyanobacteria was also assessed. Hay 2001, 2003; McClintock and Baker 2001). In some From the choices offered, the sacoglossans Elysia coral reefs, both eukaryotic macroalgae and large fila- rufescens and E. ornata consumed the green macroalga mentous benthic cyanobacteria are important compo- Bryopsis pennata. The crab Menaethius monoceros pre- nents of the benthos (Thacker et al. 2001; Thacker and ferred the red alga Acanthophora spicifera. The amphi- Paul 2001). These benthic cyanobacteria form large mats pods Parhyale hawaiensis and Cymadusa imbroglio that can occupy a significant portion of the available consumed macroalgae and cyanobacteria in equivalent amounts, with C. imbroglio showing less selectivity substrate and, thus, constitute an available resource for marine consumers.
    [Show full text]
  • Strong Impacts of Grazing Amphipods on the Organization of a Benthic Community
    W&M ScholarWorks VIMS Articles 5-2000 Strong impacts of grazing amphipods on the organization of a benthic community JE Duffy Virginia Institute of Marine Science ME Hay Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Environmental Sciences Commons Recommended Citation Duffy, JE and Hay, ME, "Strong impacts of grazing amphipods on the organization of a benthic community" (2000). VIMS Articles. 1710. https://scholarworks.wm.edu/vimsarticles/1710 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Ecological Monographs, 70(2), 2000, pp. 237±263 q 2000 by the Ecological Society of America STRONG IMPACTS OF GRAZING AMPHIPODS ON THE ORGANIZATION OF A BENTHIC COMMUNITY J. EMMETT DUFFY1,3 AND MARK E. HAY2 1School of Marine Science and Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia 23062-1346 USA 2School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230 USA Abstract. Large brown seaweeds dominate coastal hard substrata throughout many of the world's oceans. In coastal North Carolina, USA, this dominance by brown seaweeds is facilitated by omnivorous ®shes, which feed both on red and green algae and on herbivorous amphipods that graze brown algae. When ®sh are removed in the ®eld, brown seaweeds are replaced by red seaweeds, and herbivorous amphipods are more abundant. Using an array of large (;4000 L) outdoor mesocosms, we tested three mechanistic hypotheses for this pattern: ®sh feeding facilitates brown algal dominance (1) by removing red and green algal competitors, (2) by removing amphipods and reducing their feeding on brown sea- weeds, or (3) through an interaction of these mechanisms.
    [Show full text]