XXVII. Cold Gas and the Colours and Ages of Early-Type Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

XXVII. Cold Gas and the Colours and Ages of Early-Type Galaxies MNRAS 444, 3408–3426 (2014) doi:10.1093/mnras/stt2474 The ATLAS3D project – XXVII. Cold gas and the colours and ages of early-type galaxies Lisa M. Young,1,2‹ Nicholas Scott,3 Paolo Serra,4,5 Katherine Alatalo,6 Estelle Bayet,7 Leo Blitz,8 Maxime Bois,9 Fred´ eric´ Bournaud,10 Martin Bureau,7 Alison F. Crocker,11 Michele Cappellari,7 Roger L. Davies,7 Timothy A. Davis,12 P. T. de Zeeuw,12,13 Pierre-Alain Duc,10 Eric Emsellem,12,14 Sadegh Khochfar,15 Davor Krajnovic,´ 16 Harald Kuntschner,12 Richard M. McDermid,17,18,19 4,20 21 4,20 22 Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi Downloaded from and Anne-Marie Weijmans23 Affiliations are listed at the end of the paper Accepted 2013 December 16. Received 2013 December 11; in original form 2013 November 5 http://mnras.oxfordjournals.org/ ABSTRACT 3D We present a study of the cold gas contents of the ATLAS early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes at European Southern Observatory on October 27, 2015 of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M, derived from dynamical models) are found to have H I masses up to M(H I)/M∗ ∼ 0.06 and H2 masses up to M(H2)/M∗ ∼ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M, where such signatures are found in ∼50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour–magnitude diagrams. Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: ISM – galaxies: structure – radio lines: galaxies. mid-IR polycyclic aromatic hydrocarbon (PAH) emission, optical 1 INTRODUCTION emission lines and cm-wave radio continuum emission (e.g. Sarzi While early-type (elliptical and lenticular) galaxies generally have et al. 2010; Shapiro et al. 2010). Surveys of UV and optical colours smaller relative amounts of star formation activity than spirals, they have suggested that this kind of low-level star formation activity are not all completely devoid of such activity. Modest rates of star is present in around a quarter of all nearby early-type galaxies formation in early-type galaxies can be traced with ultraviolet (UV) (Yi et al. 2005; Kaviraj et al. 2007; Suh et al. 2010). Recently colours, mid-infrared (IR) and far-IR (FIR) continuum emission, Smith et al. (2012) have emphasized that star formation can be found even in early-type galaxies which are on the red sequence, and Fumagalli et al. (2013) have measured star formation rates in E-mail: [email protected] optically quiescent galaxies out to redshifts of 1–2. C 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society Cold gas in early-type galaxies 3409 This evidence for star formation activity should be understood in type sample is actually drawn from a parent sample which has no the context of paradigms for the development of the red sequence. colour or morphological selection, and optical images of the entire Star formation requires cold gas, and the treatment of cold gas is parent sample have been inspected by eye for large-scale spiral a crucial element of galaxy evolution models. For example, one structure. The 260 galaxies lacking spiral structure form the basis 3D class of models assumes that the development of the red sequence of the ATLAS project; integral-field optical spectroscopy over a field is driven by active galactic nucleus (AGN) activity, as AGN-driven of at least 33 arcsec × 41 arcsec was obtained with the SAURON outflows remove the star-forming gas from blue gas-rich galaxies instrument (Bacon et al. 2001) on the William Herschel Telescope (e.g. Kaviraj et al. 2011). The outflow is assumed to remove the for these 260 galaxies. Paper I also tabulates their assumed distances gas more quickly than it could be consumed by star formation and foreground optical extinctions. 3D activity.Coldgasmayalsoberemovedorconsumedbyavarietyof The ATLAS early-type galaxies clearly trace out the optical red other processes associated with bulge growth (Cheung et al. 2012). sequence, and they also include a smaller population of somewhat Another class of models points out that it may not be necessary to bluer galaxies (Paper I). Detailed study of the stellar kinematic maps remove the cold gas, but simply to sterilize it (Kawata, Cen & Ho is used to reveal internal substructures such as counter-rotating 2007; Martig et al. 2009, 2013). In order to test these paradigms stellar cores or kinematically decoupled stellar discs (Krajnovic´ for the development of the red sequence, and in particular to test et al. 2011, hereafter Paper II). The specific angular momenta of Downloaded from the relative importance of gas recycling, accretion and removal the galaxies are analysed in Emsellem et al. (2011, hereafter Paper as galaxies move to and from the red sequence, we explore the III) in the context of formation paradigms for slow and fast rotators relationships between the colours of early-type galaxies, their Hβ (Bois et al. 2011; Khochfar et al. 2011; Naab et al. 2014). Dynamical absorption line strengths and their cold gas content. masses are provided by Cappellari et al. (2013a, 2013b). Other work There have been several other surveys for molecular gas in var- on the sample probes environmental drivers of galaxy evolution ious samples of early-type galaxies (e.g. Welch, Sage & Young (Cappellari et al. 2011b; Cappellari 2013), hot gas (Sarzi et al. http://mnras.oxfordjournals.org/ 3D 2010), but the ATLAS project is the only one which also has the 2013), stellar populations and star formation histories (McDermid kinematic information that is necessary to interpret galaxies’ recent et al., in preparation), and bulge/disc decompositions (Krajnovic´ evolutionary histories. Stellar kinematics, shells and tidal features et al. 2013). give insight into the merger and assembly histories of the galax- ies, and ionized gas, H I, and molecular kinematics reveal signs of 3D gas accretion and/or gravitational disturbances. Thus, the ATLAS 3DATA project is the first opportunity to bring together the evidence from star formation activity (recorded in the colours and Hβ absorption of 3.1 Cold gas, line strengths and stellar population ages the stellar populations) and the recent interaction/accretion history 3D at European Southern Observatory on October 27, 2015 All of the ATLAS early-type galaxies except NGC 4486A were ob- recorded in the gas. In this paper we do not deal with measurements served with the institut de radioastronomie millimetrique (IRAM) of an instantaneous star formation rate or star formation efficien- 30 m telescope in the 12CO J = 1−0and2−1 lines (Young et al. cies derived therefrom (e.g. Martig et al. 2013). Instead, we focus 2011, hereafter Paper IV).1 The CO detection limits correspond to particularly on the connections between gas accretion and the star H masses of approximately 107 M for the nearest galaxies and formation history over the last few Gyr, as those are encoded in the 2 108 M for the more distant galaxies. To place this CO survey in stellar populations. 3D context it is crucial to note that the luminosity selection criterion for Section 2 of this paper describes the ATLAS sample of local the sample is based purely on the total K -band stellar luminosity, early-type galaxies. Section 3 gives explanatory information on S not the FIR flux or even the B luminosity (which have been used the provenance of the colour, stellar population and cold gas data. in the past, and which are strongly influenced by the presence of Section 4 shows the atomic and molecular gas contents of early- star formation). The CO detection rate is 22 ± 3 per cent; detected type galaxies, both on and off the red sequence. Depending on which 7.1 9.3 ± ± H2 masses range from 10 to 10 M and the molecular/stellar colours are used to define the red sequence, 10 2to34 6per −4 mass ratios M(H )/M∗ range from 3.4 × 10 to 0.076. In addition, cent of red sequence early-type galaxies have >107 M of cold 2 the CO detection rate and M(H )/M∗ distributions are broadly con- gas. A discussion of internal extinction is found in Section 5, which 2 sistent between Virgo Cluster and field galaxies, so that the cluster shows that although the H -rich galaxies are dusty, the dust usually 2 environment has not strongly affected the molecular gas content.
Recommended publications
  • Science Goals and Selection Criteria
    University of Groningen The ATLAS(3D) project Cappellari, Michele; Emsellem, Eric; Krajnovic, Davor; McDermid, Richard M.; Scott, Nicholas; Kleijn, G. A. Verdoes; Young, Lisa M.; Alatalo, Katherine; Bacon, R.; Blitz, Leo Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1111/j.1365-2966.2010.18174.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Cappellari, M., Emsellem, E., Krajnovic, D., McDermid, R. M., Scott, N., Kleijn, G. A. V., Young, L. M., Alatalo, K., Bacon, R., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P-A., Khochfar, S., Kuntschner, H., ... Weijmans, A-M. (2011). The ATLAS(3D) project: I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria. Monthly Notices of the Royal Astronomical Society, 413(2), 813-836. https://doi.org/10.1111/j.1365- 2966.2010.18174.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
    [Show full text]
  • Nicholas Stone Einstein Fellow, Columbia University MODEST-18 6/29/18
    Elevated Tidal Disruption Rates in Post-Starburst Galaxies Nicholas Stone Einstein Fellow, Columbia University MODEST-18 6/29/18 With: Aleksey Generozov, Eugene Vasiliev, Brian Metzger, Sjoert van Velzen A View to a Kill MBH=106M⦿, aBH=0.9, i=90˚ Face-On Edge-On Rt Rt PN-SPH (Hayasaki, NCS & Loeb 16) He IIλ4686 line is still evident as an excess above the model in the later epoch, however it has faded by a factor of ∼ 10 since the pre-preak spectrum, the same factor by which the ultraviolet continuum has faded during this time. Note that the absolute flux scaling in the later epoch is uncertain due to clouds on the date of the observation. Tidal Disruption Events • Empirically: ✦ Rare multiwavelength (radio -> hard X-ray) transients ✦ Dozens of strong candidate flares (most optical/X-ray) • Applications: Figure 2 ✦ Ultraviolet and optical light curve. The GALEX NUV and PS1 gP1-, rP1-, iP1-, and zP1- Tools to measure SMBH demographyband light curve of PS1-10jh (with the host galaxy flux removed) with 1σ error bars and in logarithmic days since the time of disruption determined from the best fit of the rP1-band (mass, maybe spin) light curve to the numerical model20 for the mass accretion rate of a tidally disrupted star with a polytropic exponent of 5/3 (shown with solid lines scaled to the flux in the GALEX and PS1 bands). The GALEX and PS1 photometry at t>240 rest-frame days since ✦ Super-Eddington accretion the peak is shown binned in time in order to increase the signal-to-noise.
    [Show full text]
  • XXXI. Nuclear Radio Emission in Nearby Early-Type Galaxies
    MNRAS 458, 2221–2268 (2016) doi:10.1093/mnras/stw391 Advance Access publication 2016 February 24 The ATLAS3D Project – XXXI. Nuclear radio emission in nearby early-type galaxies Kristina Nyland,1,2‹ Lisa M. Young,3 Joan M. Wrobel,4 Marc Sarzi,5 Raffaella Morganti,2,6 Katherine Alatalo,7,8† Leo Blitz,9 Fred´ eric´ Bournaud,10 Martin Bureau,11 Michele Cappellari,11 Alison F. Crocker,12 Roger L. Davies,11 Timothy A. Davis,13 P. T. de Zeeuw,14,15 Pierre-Alain Duc,10 Eric Emsellem,14,16 Sadegh Khochfar,17 Davor Krajnovic,´ 18 Harald Kuntschner,14 Richard M. McDermid,19,20 Thorsten Naab,21 Tom Oosterloo,2,6 22 23 24 Nicholas Scott, Paolo Serra and Anne-Marie Weijmans Downloaded from Affiliations are listed at the end of the paper Accepted 2016 February 17. Received 2016 February 15; in original form 2015 July 3 http://mnras.oxfordjournals.org/ ABSTRACT We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study 3D of the nuclear radio emission in a representative subset of the ATLAS survey of early-type galaxies (ETGs). We find that 51 ± 4 per cent of the ETGs in our sample contain nuclear radio emission with luminosities as low as 1018 WHz−1. Most of the nuclear radio sources have compact (25–110 pc) morphologies, although ∼10 per cent display multicomponent core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the at MPI Study of Societies on June 7, 2016 3D majority of the central 5 GHz sources detected in the ATLAS galaxies are associated with the presence of an active galactic nucleus (AGN).
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • A High Spatial Resolution X-Ray and H Study of Hot Gas in the Halos of Star
    The Astrophysical Journal Supplement Series, 151:193–236, 2004 April # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A HIGH SPATIAL RESOLUTION X-RAY AND H STUDY OF HOT GAS IN THE HALOS OF STAR-FORMING DISK GALAXIES. I. SPATIAL AND SPECTRAL PROPERTIES OF THE DIFFUSE X-RAY EMISSION David K. Strickland,1,2,3 Timothy M. Heckman,3 Edward J. M. Colbert,3 Charles G. Hoopes,3 and Kimberly A. Weaver4 Received 2003 June 26; accepted 2003 December 22 ABSTRACT We present arcsecond resolution Chandra X-ray and ground-based optical H imaging of a sample of 10 edge-on star-forming disk galaxies (seven starburst and three ‘‘normal’’ spiral galaxies), a sample that covers the full range of star formation intensity found in disk galaxies. The X-ray observations make use of the unprec- edented spatial resolution of the Chandra X-ray observatory to more robustly than before remove X-ray emission from point sources and hence obtain the X-ray properties of the diffuse thermal emission alone. We have combined the X-ray observations with existing, comparable-resolution, ground-based H and R-band imaging and present a mini-atlas of images on a common spatial and surface brightness scale to aid cross- comparison. In general, the morphology of the extraplanar diffuse X-ray emission is very similar to the extraplanar H filaments and arcs, on both small and large scales (scales of tens of parsecs and kiloparsecs, respectively). The most spectacular cases of this are found in NGC 1482 (for which we provide the first published X-ray observation) and NGC 3079.
    [Show full text]
  • April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86.
    [Show full text]
  • Galactic Astronomy
    ASTR 505 Galactic Astronomy Course Notes HCG59. NASA/ESA HST Paul Hickson The University of British Columbia, Department of Physics and Astronomy January 2016 c Paul Hickson. Not to be copied, used, or revised without explicit written permission from the copyright owner. Galactic Astronomy 2016 1 Introduction Figure 1.1: NGC 3370, a spiral galaxy that resembles the Milky Way. NASA, Hubble Heritage Project. 1.1 Why study galaxies? Galaxies are the largest stellar systems in the Universe. They contain the vast majority of luminous matter. Galaxies are the primary sites of star formation activity and element production. They trace the large-scale structure of the Universe, and cosmic history over „ 13 Gyr. They are the site of a wide variety of interesting phenomena, including supernovae, gamma-ray bursts, supermassive black holes, and relativistic jets to name a few. There are many questions. Some of the biggest are: Why are there galaxies? Why do they have such varied structure? Why are there such large variations in mass and size? How do they form and evolve? What do they tell us about the Universe? At the same time one must ask the question, \What is a galaxy?" They come in such a wide range of shapes, sizes, masses and luminosities that one may wonder what distinguishes a galaxy from its satellites, or what distinguishes a galaxy from a star cluster? We shall approach this by examining the properties of these objects in some detail. Page 2 Galactic Astronomy 2016 1.2 A brief history Here we provide just a very brief summary.
    [Show full text]
  • Arxiv:2105.08061V1 [Astro-Ph.GA] 17 May 2021
    Draft version May 19, 2021 Typeset using LATEX twocolumn style in AASTeX63 A recently quenched isolated dwarf galaxy outside of the Local Group environment Ava Polzin,1 Pieter van Dokkum,1 Shany Danieli,1, 2, 3, 4, ∗ Johnny P. Greco,5, y and Aaron J. Romanowsky6, 7 1Department of Astronomy, Yale University, New Haven, CT 06511, USA 2Department of Physics, Yale University, New Haven, CT 06520, USA 3Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511, USA 4Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA 5Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210, USA 6Department of Physics & Astronomy, One Washington Square, San Jos´eState University, San Jose, CA 95192, USA 7University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA (Received March 22, 2021; Revised May 14, 2021; Accepted May 17, 2021) Submitted to ApJL ABSTRACT 6 We report the serendipitous identification of a low mass (M∗ ∼ 2×10 M ), isolated, likely quenched dwarf galaxy in the \foreground" of the COSMOS-CANDELS field. From deep Hubble Space Telescope (HST) imaging we infer a surface brightness fluctuation distance for COSMOS-dw1 of DSBF = 22 ± 3 Mpc, which is consistent with its radial velocity of cz = 1222 ± 64 km s−1 via Keck/LRIS. At this distance, the galaxy is 1.4 Mpc in projection from its nearest massive neighbor. We do not detect significant Hα emission (EW(Hα)= −0:4 ± 0:5 A),˚ suggesting that COSMOS-dw1 is likely quenched. Very little is currently known about isolated quenched galaxies in this mass regime.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • 1985Apjs ... 59 ...IW the Astrophysical Journal Supplement Series, 59:1-21,1985 September © 1985. the American Astronomical S
    IW The Astrophysical Journal Supplement Series, 59:1-21,1985 September .... © 1985. The American Astronomical Society. All rights reserved. Printed in U.S.A. 59 ... A CATALOG OF STELLAR VELOCITY DISPERSIONS. I. 1985ApJS COMPILATION AND STANDARD GALAXIES Bradley C. Whitmore Space Telescope Science Institute Douglas B. McElroy Computer Sciences Corporation1 AND John L. Tonry California Institute of Technology Received 1984 October 23; accepted 1985 February 19 ABSTRACT A catalog of central stellar velocity dispersion measurements is presented, current through 1984 June. The catalog includes 1096 measurements of 725 galaxies. A set of 51 standard galaxies is defined which consists of galaxies with at least three reliable, concordant measurements. We suggest that future studies observe some of these standard galaxies in the course of their observations so that different studies can be normalized to the same system. We compare previous studies with the derived standards to determine relative accuracies and to compute scale factors where necessary. Subject headings: galaxies: internal motions I. INTRODUCTION be flattened by rotation. Results from Whitmore, Rubin, and The ability to make accurate measurements of stellar veloc- Ford (1984) conflict with the Kormendy and Illingworth con- ity dispersions has provided a major catalyst for the study of clusion. galactic structure and dynamics. Several important discoveries While most dispersion profiles are either flat or falling, have resulted from the use of this new tool. For example, a studies of cD galaxies at the center of rich clusters of galaxies correlation between the luminosity of an elliptical galaxy and have shown rising dispersion profiles (Dressier 1979; Carter the central stellar velocity dispersion was discovered by Faber et al 1981).
    [Show full text]
  • Arxiv:Astro-Ph/0504435V3 19 Jul 2005
    Galactic Winds 1 Galactic Winds Sylvain Veilleux Department of Astronomy, University of Maryland, College Park, MD 20742; E-mail: [email protected] Gerald Cecil Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255; E-mail: [email protected] Joss Bland-Hawthorn Anglo-Australian Observatory, Epping, NSW, Australia; E-mail: [email protected] Key Words galaxies: evolution — galaxies: halos — galaxies: intergalactic medium — galaxies: kinematics and dynamics — galaxies: nuclei Abstract Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and are deposited into the intergalactic medium. New observations are revealing the ubiquity of this process, particularly at high redshift. We describe the physics behind these winds, discuss the observational evidence for them in nearby star-forming and active galaxies and in the high-redshift universe, and consider the implications of energetic winds for the formation and evolution of galaxies and the intergalactic medium. To inspire future research, we conclude with a set of observational and theoretical challenges. arXiv:astro-ph/0504435v3 19 Jul 2005 CONTENTS INTRODUCTION .................................... 2 Fundamental role ....................................... 2 Early History ......................................... 3 Review structure ....................................... 4 BASIC PHYSICS .................................... 4 Sources of Energy ....................................... 4 Wind-blown bubbles
    [Show full text]