Chrysotile Asbestos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
No. 26705 MULTILATERAL Convention (No. 162) Concerning
No. 26705 MULTILATERAL Convention (No. 162) concerning safety in the use of asbestos. Adopted by the General Conference of the International Labour Organisation at its seventy- second session, Geneva, 24 June 1986 Authentic texts: English and French. Registered by the International Labour Organisation on 27 June 1989. MULTILATERAL Convention (n° 162) concernant la sécurité dans l'utilisation de l'amiante. Adoptée par la Conférence générale de l'Organisation internationale du Travail à sa soixante- douzième session, Genève, 24 juin 1986 Textes authentiques : anglais et français. Enregistrée par l'Organisation internationale du Travail le 27 juin 1989. Vol. 1539, 1-26705 316______United Nations — Treaty Series • Nations Unies — Recueil des Traités 1989 CONVENTION1 CONCERNING SAFETY IN THE USE OF AS BESTOS The General Conference of the International Labour Organisation, Having been convened at Geneva by the Governing Body of the International Labour Office, and having met in its Seventy-second Session of 4 June 1986, and Noting the relevant international labour Conventions and Recommendations, and in particular the Occupational Cancer Convention and Recommendations, 1974,2 the Working Environment (Air Pollution, Noise and Vibration) Convention and Recommendation, 1977,3 the Occupational Safety and Health Convention and Recommendation, 1981,4 the Occupational Health Services Convention and Recommendation, 1985,3 the list of occupational diseases as revised in 1980 appended to the Employment Injury Benefits Convention, 1964,6 as well as the -
Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. -
NMAM 9000: Asbestos, Chrysotile By
ASBESTOS, CHRYSOTILE by XRD 9000 MW: ~283 CAS: 12001-29-5 RTECS: CI6478500 METHOD: 9000, Issue 3 EVALUATION: FULL Issue 1: 15 May 1989 Issue 3: 20 October 2015 EPA Standard (Bulk): 1% by weight PROPERTIES: Solid, fibrous mineral; conversion to forsterite at 580 °C; attacked by acids; loses water above 300 °C SYNONYMS: Chrysotile SAMPLING MEASUREMENT BULK TECHNIQUE: X-RAY POWDER DIFFRACTION SAMPLE: 1 g to 10 g ANALYTE: Chrysotile SHIPMENT: Seal securely to prevent escape of asbestos PREPARATION: Grind under liquid nitrogen; wet-sieve SAMPLE through 10 µm sieve STABILITY: Indefinitely DEPOSIT: 5 mg dust on 0.45 µm silver membrane BLANKS: None required filter ACCURACY XRD: Copper target X-ray tube; optimize for intensity; 1° slit; integrated intensity with RANGE STUDIED: 1% to 100% in talc [1] background subtraction BIAS: Negligible if standards and samples are CALIBRATION: Suspensions of asbestos in 2-propanol matched in particle size [1] RANGE: 1% to 100% asbestos OVERALL PRECISION ( ): Unknown; depends on matrix and ESTIMATED LOD: 0.2% asbestos in talc and calcite; 0.4% concentration asbestos in heavy X-ray absorbers such as ferric oxide ACCURACY: ±14% to ±25% PRECISION ( ): 0.07 (5% to 100% asbestos); 0.10 (@ 3% asbestos); 0.125 (@ 1% asbestos) APPLICABILITY: Analysis of percent chrysotile asbestos in bulk samples. INTERFERENCES: Antigorite (massive serpentine), chlorite, kaolinite, bementite, and brushite interfere. X-ray fluorescence and absorption is a problem with some elements; fluorescence can be circumvented with a diffracted beam monochromator, and absorption is corrected for in this method. OTHER METHODS: This is NIOSH method P&CAM 309 [2] applied to bulk samples only, since the sensitivity is not adequate for personal air samples. -
State County Historic Site Name As Reported Development Latitude
asbestos_sites.xls. Summary of information of reported natural occurrences of asbestos found in geologic references examined by the authors. Dataset is part of: Van Gosen, B.S., and Clinkenbeard, J.P., 2011, Reported historic asbestos mines, historic asbestos prospects, and other natural occurrences of asbestos in California: U.S. Geological Survey Open-File Report 2011-1188, available at http://pubs.usgs.gov/of/2011/1188/. Data fields: State, ―CA‖ indicates that the site occurs in California. County, Name of the county in which the site is located. Historic site name as reported, The name of the former asbestos mine, former asbestos prospect, or reported occurrence, matching the nomenclature used in the source literature. Development, This field indicates whether the asbestos site is a former asbestos mine, former prospect, or an occurrence. "Past producer" indicates that the deposit was mined and produced asbestos ore for commercial uses sometime in the past. "Past prospect" indicates that the asbestos deposit was once prospected (evaluated) for possible commercial use, typically by trenching and (or) drilling, but the deposit was not further developed. "Occurrence" indicates that asbestos was reported at this site. The occurrence category includes (1) sites where asbestos-bearing rock is described in a geologic map or report and (2) asbestos noted as an accessory mineral or vein deposit within another type of mineral deposit. Latitude, The latitude of the site's location in decimal degrees, measured using the North American Datum of -
Iron.Rich Amesite from the Lake Asbestos Mine. Black
Canodian Mineralogist Yol.22, pp. 43742 (1984) IRON.RICHAMESITE FROM THE LAKE ASBESTOS MINE. BLACKLAKE. OUEBEC MEHMET YEYZT TANER,* AND ROGER LAURENT DAporternentde Gdologie,Universitd Loval, Qudbec,Qudbec GIK 7P4 ABSTRACT o 90.02(1l)', P W.42(12)',1 89.96(8)'.A notreconnais- sance,c'est la premibrefois qu'on ddcritune am6site riche Iron-rich amesite is found in a metasomatically altered enfer. Elles'ct form€ependant l'altdration hydrothermale granite sheet20 to 40 cm thick emplacedin serpentinite of du granitedans la serpentinite,dans les m€mes conditions the Thetford Mi[es ophiolite complex at the Lake Asbestos debasses pression et temperaturequi ont prdsid6d la for- mine (z16o01'N,11"22' W) ntheQuebec Appalachians.The mation de la rodingite dansle granite et de I'amiante- amesiteis associatedsdth 4lodingife 6semblage(grossu- chrysotiledans la serpentinite. lar + calcite t diopside t clinozoisite) that has replaced the primary minerals of the granite. The Quebec amesite Mots-clds:am6site, rodingite, granite, complexeophio- occurs as subhedral grains 2@ to 6@ pm.in diameter that litique, Thetford Mines, Qu6bec. have a tabular habit. It is optically positive with a small 2V, a 1.612,1 1.630,(t -'o = 0.018).Its structuralfor- INTRoDUc"iloN mula, calculated from electron-microprobe data, is: (Mg1.1Fe6.eA1s.e)(Alo.esil.df Os(OH)r.2. X-ray powder- Amesite is a raxehydrated aluminosilicate of mag- diffraction yield data dvalues that are systematicallygreater nesium in which some ferrous iron usually is found than those of amesitefrom Chester, Massachusetts,prob- replacingmapesium. The extent of this replacement ably becauseof the partial replacement of Mg by Fe. -
Riebeckite Na2[(Fe2+,Mg)3Fe 2 ]Si8o22(OH)
2+ 3+ Riebeckite Na2[(Fe ; Mg)3Fe2 ]Si8O22(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals, to 20 cm. Commonly ¯brous, asbestiform; earthy, massive. Twinning: Simple or multiple twinning 100 . k f g Physical Properties: Cleavage: Perfect on 110 , intersecting at 56 and 124 ; partings f g ± ± on 100 , 010 . Fracture: [Conchoidal to uneven.] Tenacity: Brittle. Hardness = 6 f g f g D(meas.) = 3.28{3.44 D(calc.) = 3.380 Optical Properties: Semitransparent. Color: Black, dark blue; dark blue to yellow-green in thin section. Luster: Vitreous to silky. Optical Class: Biaxial (+) or ({). Pleochroism: X = blue, indigo; Y = yellowish green, yellow- brown; Z = dark blue. Orientation: Y = b; X c = 8 to 7 ; Z c = 6 {7 . Dispersion: ^ ¡ ± ¡ ± ^ ± ± Strong. ® = 1.656{1.697 ¯ = 1.670{1.708 ° = 1.665{1.740 2V(meas.) = 50±{90±. Cell Data: Space Group: C2=m: a = 9.822 b = 18.07 c = 5.334 ¯ = 103:52± Z = 2 X-ray Powder Pattern: Doubrutscha [Dobrudja], Romania. (ICDD 19-1061). 8.40 (100), 3.12 (55), 2.726 (40), 2.801 (18), 4.51 (16), 2.176 (16), 3.27 (14) Chemistry: (1) (2) (1) (2) SiO2 52.90 50.45 CaO 0.12 0.08 TiO2 0.57 0.14 Li2O 0.54 Al2O3 0.12 1.96 Na2O 6.85 6.80 Fe2O3 17.20 17.52 K2O 0.03 1.48 Cr2O3 0.04 F 2.58 + FeO 17.95 17.90 H2O 0.87 MnO 0.00 1.40 O = F 1.09 ¡ 2 MgO 2.96 0.05 Total 98.74 100.68 (1) Dales Gorge Iron Formation, Western Australia; by electron microprobe, corresponds to 2+ 3+ (Na2:00Ca0:02K0:01)§=2:03(Fe2:26Mg0:66Ti0:06)§=2:98Fe1:95(Si7:98Al0:02)§=8:00O22(OH)2: (2) Pikes 2+ Peak area, Colorado, USA; corresponds to (Na2:02K0:29Ca0:01)§=2:32(Fe2:30Li0:33Mn0:18Al0:10 3+ Ti0:02Mg0:01)§=2:94Fe2:02(Si7:75Al0:25)§=8:00O22[F1:25(OH)0:89]§=2:14: Polymorphism & Series: Forms a series with magnesioriebeckite. -
C:\Documents and Settings\Alan Smithee\My Documents\MOTM
Rdosdladq1//6Lhmdq`knesgdLnmsg9@bshmnkhsd This month’s featured mineral has many interesting and unusual varieties: While our specimens have well-developed prismatic crystals, which is unusual for actinolite, a fibrous variety is a former ore of asbestos, and a microcrystalline variety is one of the two types of the gemstone jade. Read on! OGXRHB@K OQNODQSHDR 2+ Chemistry: GCa2(Mg,Fe )5Si8O22(OH)2 Basic Calcium Magnesium Iron Silicate (Calcium Magnesium Iron Silicate Hydroxide) Class: Silicates Subclass: Inosilicates (Double-Chain Silicates) Group: Tremolite (Amphibole Group) Crystal System: Monoclinic Crystal Habits: Usually long prismatic with diamond-shaped cross section; also bladed, columnar, acicular, divergent, fibrous (asbestiform), and radiating. A compact, microcrystalline form is known as nephrite jade. Color: Bright-to-dark green, grayish-green, and greenish-black. Luster: Vitreous; silky and pearly on cleavage surfaces. Transparency: Transparent to translucent Streak: Colorless to white Cleavage: Perfect in two directions lengthwise with intersecting cleavage planes. Fracture: Splintery, uneven; fibrous forms are flexible. Hardness: 5.0-6.0, nephrite variety is 6.5. Specific Gravity: 3.0-3.5 Luminescence: None Refractive Index: 1.63-1.66 Distinctive Features and Tests: Best field marks are the prismatic, often-radiating crystal habit and narrow cleavage-intersection angle. Can be confused with wollastonite, which is fluorescent; the tourmaline-group minerals, which lack cleavage; and epidote, which has a broader cleavage angle. Laboratory methods are necessary to differentiate actinolite from tremolite and ferro- actinolite, as explained in the box on Page 3. Dana Classification Number: 66.1.3a.2 M @L D The name “actinolite,” pronounced ack-TIH-no-lite, derives from the Greek aktino, meaning “ray,” a reference to the common radiate habit of its prismatic crystals. -
When Is Asbestos Dangerous?
When is Asbestos Dangerous? The most common way for asbestos fibers to enter the body is through breathing. In fact, asbestos containing material is not generally considered to be harmful unless it is releasing dust or fibers into the air where they can be inhaled or ingested. Many of the fibers will become trapped in the mucous membranes of the nose and throat where they can then be removed, but some may pass deep into the lungs, or, if swallowed, into the digestive tract. Once they are trapped in the body, the fibers can cause health problems. Asbestos is most hazardous when it is friable. The term "friable" means that the asbestos is easily crumbled by hand, releasing fibers into the air. Asbestos-containing ceiling tiles, floor tiles, undamaged laboratory cabinet tops, shingles, fire doors, siding shingles, etc. are not highly friable and will not typically release asbestos fibers unless they are disturbed or damaged in some way. Health Effects Since it is difficult to destroy asbestos fibers, the body cannot break them down or remove them once they are lodged in lung or body tissues. There are three primary diseases associated with asbestos exposure: Asbestosis Asbestosis is a serious, chronic, non-cancerous respiratory disease. Inhaled asbestos fibers aggravate lung tissues, which cause them to scar. The risk of asbestosis is minimal for those who do not work with asbestos; the disease is rarely caused by neighborhood or family exposure. Those who renovate or demolish buildings that contain asbestos may be at significant risk, depending on the nature of the exposure and precautions taken. -
Cation Sieve Properties of the Opei{ Zeolites Chabazite
THE AMERICAN MINERALOGIST, VOL. 46, SEPTEMBER-OCTOBER, 1961 CATION SIEVE PROPERTIES OF THE OPEI{ ZEOLITES CHABAZITE. MORDENITE, ERIONITE AND CLINOPTILOLITE L. L. Aues, ly., GeneralElectric Company, R'ichland, Washington. Ansrnecr The partial cation sieve properties of the "open" zeolites chabazite, mordenite, erionite and clinoptilolite were studied in an efiort to determine the mechanism responsible for the type and intensity of the observed cation replacement series. It was found that neither the hydration state of the cations before entering the zeolite structure nor relative loading rates had any significant efiect on the type or intensity of alkali metal or alkaline earth metal cation replacement series. Molten salt experiments with Csw-containing zeolites demonstrated that at higher temperatures the normal hydrated type replacement series could be reversed to a coulombic replacement series without destruction of the alumino- silicate framework. The above results were interpreted as being caused by the presence or absence of structural water. Additional stereochemical studies are necessarv to determine the details of the mechanism. INrnonucrroN There are at least three mechanisms responsible for the cation sieve properties exhibited by natural zeolites.One such mechanism is the posi- tive exclusion of certain cations due to the inability of these larger ca- tions to enter the zeolite Iattice in significant amounts. The sieve effect shown by analcite for Cs+ is an exampleof such an exclusionbased dn cation size (Barrer, 1950). A second mechanism for a cation sieve effect is the inability of the negative charge distribution on the zeolite structure to accommodate a given cation. An example of this mechanism is given in the difficulty of obtaining calcium or barium-rich analcites(Barrer, 1950)or sodium-rich heulandites(Mumpton, 1960) by cation exchange.Determination of a third mechanism constitutes the object of this paper. -
Exposure to Asbestos a Resource for Veterans, Service Members, and Their Families
War Related Illness and Injury Study Center WRIISC Office of Public Health Department of Veterans Affairs EXPOSURE TO ASBESTOS A RESOURCE FOR VETERANS, SERVICE MEMBERS, AND THEIR FAMILIES WHAT IS ASBESTOS? other areas below deck for fire safety widely used in ship building and Asbestos is a fibrous mineral that purposes. ACMs also were used in construction materials during that occurs naturally in the environment. navigation rooms, sleeping quarters, time frame. There are six different types and mess halls. • Navy personnel who worked of asbestos fibers, each with a below deck before the early 1990s HOW ARE SERVICE MEMBERS somewhat different size, width, since asbestos was often used EXPOSED TO ASBESTOS? length, and shape. Asbestos minerals below deck and the ventilation have good heat resistant properties. Because asbestos has been so widely was often poor. used in our society, most people Given these characteristics, asbestos • Navy Seamen who were have been exposed to some asbestos has been used for a wide range of frequently tasked with removing at some point in time. Asbestos is manufactured goods, including damaged asbestos lagging in most hazardous when it is friable. building materials (roofing shingles, engine rooms and then using This means that the asbestos material ceiling and floor tiles, paper products, asbestos paste to re-wrap the is easily crumbled by hand, thus and asbestos cement products), pipes, often with no respiratory releasing fibers into the air. People friction products (automobile clutch, protection and no other personal are exposed to asbestos when ACMs brake, and transmission parts), heat- protective equipment especially are disturbed or damaged, and resistant fabrics, packaging, gaskets, if wet technique was not used in small asbestos fibers are dispersed and coatings. -
Case Report Erionite-Associated Malignant Pleural Mesothelioma in Mexico
Int J Clin Exp Pathol 2016;9(5):5722-5732 www.ijcep.com /ISSN:1936-2625/IJCEP0027993 Case Report Erionite-associated malignant pleural mesothelioma in Mexico Elizabeth A Oczypok1, Matthew S Sanchez2, Drew R Van Orden2, Gerald J Berry3, Kristina Pourtabib4, Mickey E Gunter4, Victor L Roggli5, Alyssa M Kraynie5, Tim D Oury1 1Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213; 2RJ Lee Group, Inc., Monroeville, PA, 15146; 3Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305; 4Department of Geological Sciences, University of Idaho, Moscow, ID, 83844; 5Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 Received March 11, 2016; Accepted March 28, 2016; Epub May 1, 2016; Published May 15, 2016 Abstract: Malignant mesothelioma is a highly fatal cancer of the visceral and parietal pleura most often caused by asbestos exposure. However, studies over the past thirty-five to forty years have shown that a fibrous zeolite mineral found in the soil, erionite, is a strong causative agent of malignant mesothelioma as well. Cases of erionite- associated pleural mesothelioma have been widely reported in Turkey, but only one case has been documented in North America. Here we report a new North American case of epithelial malignant pleural mesothelioma in a vehicle repairman who was raised on a farm in the Mexican Volcanic Belt region. The complexities of the case highlight the importance of objective lung digestion studies to uncover the causative agents of mesotheliomas. It also highlights a need for increased environmental precautions and medical vigilance for mesotheliomas in erionite-rich regions of the United States and Mexico. -
National Programmes for Elimination of Asbestos-Related Diseases
Outline for the Development of National Programmes for Elimination of Asbestos-Related Diseases Contacts for further information on development of national programmes for elimination of asbestos-related diseases: Programme for Safety and Health at Work and the Environment Department of Public Health, Environmental and (SAFEWORK) Social Determinants of Health (PHE) International Labour Organization (ILO) World Health Organization (WHO) 4, route des Morillons, CH-1211 Geneva 22, Switzerland 20, avenue Appia, CH1211, Geneva 22, E-mail: [email protected] Switzerland E-mail: [email protected] Copyright © International Labour Organization and World Health Organization 2007 The designations employed in ILO and WHO publications, which are in conformity with United Nations practice, and the presentation of material therein do not imply the expression of any opinion whatsoever on the part of the International Labour Office and the World Health Organization concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its frontiers. Reference to names of firms and commercial products and processes does not imply their endorsement by the International Labour Office or the World Health Organization, and any failure to mention a particular firm, commercial product or process is not a sign of disapproval. All reasonable precautions have been taken by the International Labour Office and the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpre- tation and use of the material lies with the reader. In no event shall the International Labour Office and the World Health Organization be liable for damages arising from its use.