FIELD EQUATIONS Kdward

Total Page:16

File Type:pdf, Size:1020Kb

FIELD EQUATIONS Kdward Raport nr 1275/PH ON TUK •RivLATION BLTVivEN CALI Iii AN, POINCARE AND EUCLIDliAI.' FIELD EQUATIONS Kdward KAl'USCIi: Institute of Nuclear Physics, Department of Thooroćieal Physics 152, 31-3^2 KraKów, Poland .Jsriuary 198 5 Abstracts A nev kind of relation between Galilean, Poinearc and Kuelidean field equations is demonstrated. 1. Introduction The aim of the present paper is to show that tliore exists a new kind of relation between the Galilean*and rolativistic field equations which is different from the relation discussed in Ref.£i], Tho material presented definitely contradicts the standard understanding of the non-relativistic physics as the limiting case of the relativistic one. In our procedure the Galilean covariant field equations are the primary objects and form an universal basis for all other field equations. In par¬ ticular, from the Galilean field equations wo obtain both the Poincare and Euclidean field equations and this is true not only for free fields but also for the coupled fields in the abelian gauge theory. Needless to say, tho considei'ed problem is very important for n deeper understanding of the meaning of the relativity principles in physics. After presenting the main results wo try to interpret them in a more general way usin{j the modern lan¬ guage of fibre bundles. In our formulation, various relativity principles are implemented by different maps from a universal bundle space to tho physical space-tines and these maps in turn are determined by particular choices of classes of solutions of tho Galilean field eqations. 2, The l:iolati-i'is t.ic" properties of the Galiler-n field equa tion In Hef . [3.1 we hnvo introduced the most fjenonU Galilean invariant field equation in the form vhere y. U . C/ aro the five coordinates of the Galilean space-time and oi } ft ^ V are arbitrary dimensional constants which should bo expressed in terms of primary param¬ eters of the particle described by the field 'VJ/ . In Ref. [2] we adnittcd only the rest energy Sc anc* the I'laiick constant ji as such primary constants and this led to the choice it turns out, however, that raore interesting- results nay be de rived if we include into the set of primary constants also the r.iciss rfl of the particle. Vith such set of primary constants instead of (2.2) we mrxy then make the choice fi'-O which improves the behaviouc X>£ (,2.0 with rospact to time inversion and also leads to the usual Schrodinger equation -when we pass from tho one-parameter exteusion of the Galilei group to the usual Galilei group. Indeed, taking in (2.1) wo get for tho wave function tp (*>£,) the SchrSdinger equa¬ tion with rest energy jc and mass m • The field equation (2.1) with the choice (2.3) besides tho solutions of the type (2,^0 possesses many other solutions. In particular, let us consider- the solutions of the type where U.(X,T) are twice differentiable functiona. Substituting (2.5) into (2,1) and taking the relativistic relation = me1 (2.6) vo got tho Klein-Gcrcion wave equation where O = Z*vŹ*-~k' (2.8) Sijnilarly, considering solutions of (2.1) of the type nd taking (2.6) we get the liuclidean field equation whore /^i. is the four-dimensional Laplace operator i We therefore see that equation (2.0 leads to all free field equations used in physics for scalar particles and we should somehow explain the physical weaning of this situation. Defore doing this let us show that the same situation is vnlid for other Galilean field equations. As the first example, lot us take the Dirac equation which in the extended Galilean space-time has the form (see Appendix) where Y V and \/c. are the; usual Dlrac matrices. Talcing in this equation 'W in the form (2.'0 we f;et the non-relativistic Dirac equation for the spinor which, however, is different from the non-relativistic Dirac equation derived in Ref,\3\• Ths reason for such a discrepancy is that in Ref. [3] only the singular case Si. - 0 j Yft ^ 0 i<af considered. Me shall not consider this singular case here because it has no reJ.a tivis tic counterpart. It is easily seen that taking in (.2.12) 'U/ in the form of (2.5) ve sot for the spinor txC*)^) the usual relativ¬ is tic Dirac equation where while taking \U in the form of (2,8) we &ct for the spi nor Z C*;^) the Euclidean lijrao equation This shows that the relativistic wave equations follow from the Galilean equations not only for the case of scalar fields but also for the case of spinor fields. It is the choice of tho solutions of the basic Galilean field theory which determines the character of the wave equation t It is easy to see that the saftic is t>lso true for inter¬ acting fields, provided the particular choice of the solutions of the Galilean field equations does not introduce constraints for the fields. An example of the theory where such constraints arise is the Galilean gnuge field theory and we shall discuss this case in detail. The field equations for the Galilean £au#e theory arc of the form £2]: and where C is an arbitrary constant of the dimension of the squ¬ are of velocity. In the relativistic case we shall identify this constant vith the square of the velocity of light. For the solutions of the fielf equation (2.18) of the type (2.5) we have the identity a. (2.19) - C and in the order to preserve this identity also for tho co-variant derivatives we need tho following relation between the gauge fields Vith this relation the left-hand aide of (2.17b) vanishes, while the right-hand side in general does not. We must there¬ fore include the constraint relation (3.20) in the Lagxangian for the gauge fields by means of a Lagrange multiplier, '.;e shall do this by introducing into the total Lagrangian of the gauge theory a gauge fixing term of the form where X(y,^$) is a Galilean scalar auxiliary field and ( rt. n* no) is an arbitrary constant fivo-vector in the ex- tonded Galilean space-timo. The expression (2.2i) is then a Galilean scalar and tho theory with this term in the Lagran- gian remains to be Galilean covariant. Tho presence of (2,21) in the Lagrangian adds to the left-hand sides of (2.1?a), (2.17b) and (2.17c) the terms -} n. , } fl± and ^ n.© , re¬ spectively, and the variation with respect to /k gives the gauge fixing condition (2.22) Obviously, for the Galilean gauge theory we may always choose O,= KU= YIQ-0 . Now, choosing fl<* 0 j fi^-~C f HQ - d we get the constraint (2.20) and from (2.17b) wo get Substituting this into (2.17c) we get tho equation • D W - itf i.hich is tho con-ect relativistic wave equation for the field W^t). The remaining equations (2.17a) and (2.18) also automatically tijko the rolativistic form. X similar discussion can be made for the Euolidean type of solutions. Here the fields do not depend on "t and therefore we need in the gauge covariant derivative the relation V,Te shall take into account this relation by chosing in (2.22) (2.17b") •and(2.17c) we then get (2.26) and the Euclidean gauge theory is obtained. f 3. l"he interpretation of the results, We shall now interpret our results in the modern language of fibre bundles. As it is well-known [h] , in order to define a fibre bundle we must indicate three objoctsj the total space of the bundle P, the base space M and the projection fT ' T5-^ M » For our purpose we shall define the total space P as the five dimensional vector space R-. with coordinates rev us ( H4. ••» Hif') » P i° iy denoted by x( t and Q . We assume that each phyisical elementary event p is repre¬ sented by a point in P and the field phenomena are described by some fields \KV(HI ... L(<"^ which satisfy the equations of a given Galilean field theory. The space-time coordinates of 10 the event p are represented by a point in the four-dimensional i c A i 1 \ veotor space M with coordinates (X ,A , # ,X } which are linear combinations of the coordinates u« . The pro jeotion fT is implo- mented as the linear relation 1^^ --0,1,1,1). (3.0 Since the physical coordinates X^" depend on the chosen referen¬ ce system the projeotion TT and therefore the coefficients oC^ and ot' change with the reference system. Ve are therefore deal¬ ing not with a single fibre bundle ("P,1/^ M) but with a oolleo- tion of fibre bundles ("p 1t(o)}t^) with fixed total and base spaces and variable projections, and the notation lt{o)indicates the dependenoe of the projections on the observers or referenoe systems. If the observer 0' with coordinates x'^ is related to the observer 0 with the coordinates x^* by a given relati¬ vity principle desoribed by a symmetry group of the base space, we must have X'^rL^x'+a/', (3.2) where L v represent the homogenous part of the symmetry group and Q. desoribe the translations. Combining (3.1) with (3.2) we see that the coefficients oC ^ and oL *" of the projection Tł{o') ar® related to the coefficients oćr ^ and otr of the projection TT(O) by the foroulaet (3.3) * and these formulae show that in order to specify the pro joctj <-,: TrC^) it -'-^ sufficient to .specify Lho coefficient:; dL an<"' ol^ in ono arbitrarily eho'-cn I'ofnrorifc systom.
Recommended publications
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Casimir Effect on the Lattice: U (1) Gauge Theory in Two Spatial Dimensions
    Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions M. N. Chernodub,1, 2, 3 V. A. Goy,4, 2 and A. V. Molochkov2 1Laboratoire de Math´ematiques et Physique Th´eoriqueUMR 7350, Universit´ede Tours, 37200 France 2Soft Matter Physics Laboratory, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia 3Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium 4School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia (Dated: September 8, 2016) We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result. I. INTRODUCTION lattice discretization) described by spatially-anisotropic and space-dependent static permittivities "(x) and per- meabilities µ(x) at zero and finite temperature in theories The influence of the physical objects on zero-point with various gauge groups. (vacuum) fluctuations is generally known as the Casimir The structure of the paper is as follows. In Sect. II effect [1{3]. The simplest example of the Casimir effect is we review the implementation of the Casimir boundary a modification of the vacuum energy of electromagnetic conditions for ideal conductors and propose its natural field by closely-spaced and perfectly-conducting parallel counterpart in the lattice gauge theory.
    [Show full text]
  • Lectures on Effective Field Theories
    Adam Falkowski Lectures on Effective Field Theories Version of September 21, 2020 Abstract Effective field theories (EFTs) are widely used in particle physics and well beyond. The basic idea is to approximate a physical system by integrating out the degrees of freedom that are not relevant in a given experimental setting. These are traded for a set of effective interactions between the remaining degrees of freedom. In these lectures I review the concept, techniques, and applications of the EFT framework. The 1st lecture gives an overview of the EFT landscape. I will review the philosophy, basic techniques, and applications of EFTs. A few prominent examples, such as the Fermi theory, the Euler-Heisenberg Lagrangian, and the SMEFT, are presented to illustrate some salient features of the EFT. In the 2nd lecture I discuss quantitatively the procedure of integrating out heavy particles in a quantum field theory. An explicit example of the tree- and one-loop level matching between an EFT and its UV completion will be discussed in all gory details. The 3rd lecture is devoted to path integral methods of calculating effective Lagrangians. Finally, in the 4th lecture I discuss the EFT approach to constraining new physics beyond the Standard Model (SM). To this end, the so- called SM EFT is introduced, where the SM Lagrangian is extended by a set of non- renormalizable interactions representing the effects of new heavy particles. 1 Contents 1 Illustrated philosophy of EFT3 1.1 Introduction..................................3 1.2 Scaling and power counting.........................6 1.3 Illustration #1: Fermi theory........................8 1.4 Illustration #2: Euler-Heisenberg Lagrangian..............
    [Show full text]
  • Gauge Theories in Particle Physics
    GRADUATE STUDENT SERIES IN PHYSICS Series Editor: Professor Douglas F Brewer, MA, DPhil Emeritus Professor of Experimental Physics, University of Sussex GAUGE THEORIES IN PARTICLE PHYSICS A PRACTICAL INTRODUCTION THIRD EDITION Volume 1 From Relativistic Quantum Mechanics to QED IAN J R AITCHISON Department of Physics University of Oxford ANTHONY J G HEY Department of Electronics and Computer Science University of Southampton CONTENTS Preface to the Third Edition xiii PART 1 INTRODUCTORY SURVEY, ELECTROMAGNETISM AS A GAUGE THEORY, AND RELATIVISTIC QUANTUM MECHANICS 1 Quarks and Leptons 3 1.1 The Standard Model 3 1.2 Levels of structure: from atoms to quarks 5 1.2.1 Atoms ---> nucleus 5 1.2.2 Nuclei -+ nucleons 8 1.2.3 . Nucleons ---> quarks 12 1.3 The generations and flavours of quarks and leptons 18 1.3.1 Lepton flavour 18 1.3.2 Quark flavour 21 2 Partiele Interactions in the Standard Model 28 2.1 Introduction 28 2.2 The Yukawa theory of force as virtual quantum exchange 30 2.3 The one-quantum exchange amplitude 34 2.4 Electromagnetic interactions 35 2.5 Weak interactions 37 2.6 Strong interactions 40 2.7 Gravitational interactions 44 2.8 Summary 48 Problems 49 3 Eleetrornagnetism as a Gauge Theory 53 3.1 Introduction 53 3.2 The Maxwell equations: current conservation 54 3.3 The Maxwell equations: Lorentz covariance and gauge invariance 56 3.4 Gauge invariance (and covariance) in quantum mechanics 60 3.5 The argument reversed: the gauge principle 63 3.6 Comments an the gauge principle in electromagnetism 67 Problems 73 viii CONTENTS 4
    [Show full text]
  • Lectures on N = 2 Gauge Theory
    Preprint typeset in JHEP style - HYPER VERSION Lectures on N = 2 gauge theory Davide Gaiotto Abstract: In a series of four lectures I will review classic results and recent developments in four dimensional N = 2 supersymmetric gauge theory. Lecture 1 and 2 review the standard lore: some basic definitions and the Seiberg-Witten description of the low energy dynamics of various gauge theories. In Lecture 3 we review the six-dimensional engineering approach, which allows one to define a very large class of N = 2 field theories and determine their low energy effective Lagrangian, their S-duality properties and much more. Lecture 4 will focus on properties of extended objects, such as line operators and surface operators. Contents I Lecture 1 1 1. Seiberg-Witten solution of pure SU(2) gauge theory 5 2. Solution of SU(N) gauge theory 7 II Lecture 2 8 3. Nf = 1 SU(2) 10 4. Solution of SU(N) gauge theory with fundamental flavors 11 4.1 Linear quivers of unitary gauge groups 12 Field theories with N = 2 supersymmetry in four dimensions are a beautiful theoretical playground: this amount of supersymmetry allows many exact computations, but does not fix the Lagrangian uniquely. Rather, one can write down a large variety of asymptotically free N = 2 supersymmetric Lagrangians. In this lectures we will not include a review of supersymmetric field theory. We will not give a systematic derivation of the Lagrangian for N = 2 field theories either. We will simply describe whatever facts we need to know at the beginning of each lecture.
    [Show full text]
  • Representation Theory As Gauge Theory
    Representation theory Quantum Field Theory Gauge Theory Representation Theory as Gauge Theory David Ben-Zvi University of Texas at Austin Clay Research Conference Oxford, September 2016 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Outline Representation theory Quantum Field Theory Gauge Theory Representation theory Quantum Field Theory Gauge Theory Fourier Series G = U(1) acts on S1, hence on L2(S1): Fourier series 2 1 [M 2πinθ L (S ) ' Ce n2Z joint eigenspaces of rotation operators See last slide for all image credits Representation theory Quantum Field Theory Gauge Theory The dual Basic object in representation theory: describe the dual of a group G: Gb = f irreducible (unitary) representations of Gg e.g.
    [Show full text]
  • Symmetries in Quantum Field Theory and Quantum Gravity
    Symmetries in Quantum Field Theory and Quantum Gravity Daniel Harlowa and Hirosi Oogurib;c aCenter for Theoretical Physics Massachusetts Institute of Technology, Cambridge, MA 02139, USA bWalter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena, CA 91125, USA cKavli Institute for the Physics and Mathematics of the Universe (WPI) University of Tokyo, Kashiwa, 277-8583, Japan E-mail: [email protected], [email protected] Abstract: In this paper we use the AdS/CFT correspondence to refine and then es- tablish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any \long-range" bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irre- ducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the \convex hull condition" of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary.
    [Show full text]
  • Wave Equations Greiner Greiner Quantum Mechanics Mechanics I an Introduction 3Rd Edition (In Preparation)
    W Greiner RELATIVISTIC QUANTUM MECHANICS Wave Equations Greiner Greiner Quantum Mechanics Mechanics I An Introduction 3rd Edition (in preparation) Greiner Greiner Quantum Theory Mechanics II Special Chapters (in preparation) (in preparation) Greiner Greiner· Muller Electrodynamics Quantum Mechanics (in preparation) Symmetries 2nd Edition Greiner· Neise . StOcker Greiner Thermodynamics Relativistic Quantum Mechanics and Statistical Mechanics Wave Equations Greiner· Reinhardt Field Quantization (in preparation) Greiner . Reinhardt Quantum Electrodynamics 2nd Edition Greiner· Schafer Quantum Chromodynamics Greiner· Maruhn Nuclear Models (in preparation) Greiner· MUller Gauge Theory of Weak Interactions Walter Greiner RELATIVISTIC QUANTUM MECHANICS Wave Equations With a Foreword by D. A. Bromley With 62 Figures, and 89 Worked Examples and Exercises Springer Professor Dr. Walter Greiner Institut fiir Theoretische Physik der Johann Wolfgang Goethe-Universitat Frankfurt Postfach 111932 D-60054 Frankfurt am Main Germany Street address: Robert-Mayer-Strasse 8-\ 0 D-60325 Frankfurt am Main Germany ISBN 978-3-540-99535-7 ISBN 978-3-642-88082-7 (eBook) DOl 10.1007/978-3-642-88082-7 Title of the original German edition: Theoretische Physik, Band 6: Relativistische Quantenmechanik, 2., iiberarbeitete und erweiterte Auflage 1987 © Verlag Harri Deutsch, Thun 1981 1st Edition 1990 3rd printing 1995 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer­ Verlag.
    [Show full text]
  • Modularity and Vacua in N = 1* Supersymmetric Gauge Theory Antoine Bourget
    Modularity and vacua in N = 1* supersymmetric gauge theory Antoine Bourget To cite this version: Antoine Bourget. Modularity and vacua in N = 1* supersymmetric gauge theory. Physics [physics]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE011. tel-01427599 HAL Id: tel-01427599 https://tel.archives-ouvertes.fr/tel-01427599 Submitted on 5 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’ÉCOLE NORMALE SUPÉRIEURE Spécialité : Physique École doctorale : Physique en Île-de-France réalisée au Laboratoire de Physique Théorique de l’ENS présentée par Antoine BOURGET pour obtenir le grade de : DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE Sujet de la thèse : Vides et Modularité dans les théories de jauge supersymétriques = 1∗ N soutenue le 01/07/2016 devant le jury composé de : M. Ofer Aharony Rapporteur M. Costas Bachas Examinateur M. Amihay Hanany Rapporteur Mme Michela Petrini Examinateur M. Henning Samtleben Examinateur M. S. Prem Kumar Examinateur M. Jan Troost Directeur de thèse Résumé Nous explorons la structure des vides dans une déformation massive de la théorie de Yang-Mills maximalement supersymétrique en quatre dimensions. Sur un espace-temps topologiquement trivial, la théorie des orbites nilpotentes dans les algèbres de Lie rend possible le calcul exact de l’indice de Witten.
    [Show full text]
  • Introduction to Gauge Theories and the Standard Model*
    INTRODUCTION TO GAUGE THEORIES AND THE STANDARD MODEL* B. de Wit Institute for Theoretical Physics P.O.B. 80.006, 3508 TA Utrecht The Netherlands Contents The action Feynman rules Photons Annihilation of spinless particles by electromagnetic interaction Gauge theory of U(1) Current conservation Conserved charges Nonabelian gauge fields Gauge invariant Lagrangians for spin-0 and spin-g Helds 10. The gauge field Lagrangian 11. Spontaneously broken symmetry 12. The Brout—Englert-Higgs mechanism 13. Massive SU (2) gauge Helds 14. The prototype model for SU (2) ® U(1) electroweak interactions The purpose of these lectures is to give an introduction to gauge theories and the standard model. Much of this material has also been covered in previous Cem Academic Training courses. This time I intend to start from section 5 and develop the conceptual basis of gauge theories in order to enable the construction of generic models. Subsequently spontaneous symmetry breaking is discussed and its relevance is explained for the renormalizability of theories with massive vector fields. Then we discuss the derivation of the standard model and its most conspicuous features. When time permits we will address some of the more practical questions that arise in the evaluation of quantum corrections to particle scattering and decay reactions. That material is not covered by these notes. CERN Academic Training Programme — 23-27 October 1995 OCR Output 1. The action Field theories are usually defined in terms of a Lagrangian, or an action. The action, which has the dimension of Planck’s constant 7i, and the Lagrangian are well-known concepts in classical mechanics.
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • Gravity and Gauge Theory∗
    Gravity and Gauge Theory∗ Steven Weinstein Department of Philosophy, Northwestern University Abstract Gauge theories are theories that are invariant under a characteristic group of “gauge” trans- formations. General relativity is invariant under transformations of the diffeomorphism group. This has prompted many philosophers and physicists to treat general relativity as a gauge theory, and diffeomorphisms as gauge transformations. I argue that this approach is misguided. The theories of three of the four fundamental interactions of nature are “gauge” theories. A central feature of such theories is their invariance under a group of local transformations, i.e., transformations which may vary from spacetime point to spacetime point. The characteristic group of these “gauge” transformations is called the “gauge group.” The theory of the fourth interaction, gravity, is general relativity. General relativity has its own invariance group, the diffeomorphism group. Insofar as one understands “gauge theory” to mean a theory in which “the physics” (more on the ambiguity of this term later) is invariant under a certain group of transformations, one might be tempted to construe general relativity as a gauge theory.1 Just such a construal Þgures in recent work of Belot (1996) and Belot & Earman (1999a,b), who follow many (but not all) physicists in treating the diffeomorphism group as a gauge group, and who draw implications for the “hole argument.”2 In this paper, I show that general relativity is not a gauge theory at all, in the speciÞc sense that “gauge theory” has in elementary particle physics. This issue is of crucial importance to attempts to quantize general relativity, because in quantum theory, the generators of gauge transformations are emphatically not treated as observables, while the generators of spatiotemporal (e.g., Lorentz) transformations are in fact the canonical observables.
    [Show full text]