Developing a C++ Interface for Netcdf-4

Total Page:16

File Type:pdf, Size:1020Kb

Developing a C++ Interface for Netcdf-4 Developing a C++ interface for netCDF-4 Shanna-Shaye Forbes Academic Affiliation, Fall 2006: Senior, The University of Texas at Austin SOARS® Summer 2006 Science Research Mentor: Russ Rew Writing and Communication Mentors: Catherine Shea ABSTRACT The network common data form (netCDF) was created by Unidata at the University Corporation for Atmospheric Research to simplify data access and sharing in the atmospheric science community. Even though the current full release of netCDF known as netCDF-3 has proven to be successful, increasing data complexity and user demands have necessitated a new release of netCDF with improved functionality and the ability to store user defined data types. With this in mind Unidata created netCDF-4 which features all the functionality of netCDF-3 as well as more flexible ways to add data and better support for custom data structures. This implementation adopts simplified aspects of another more complex data model know as HDF5. At present netCDF-4 interfaces exist for C, and Fortran, however none exists for C++. This project’s aim was to design and partially implement a C++ interface for netCDF-4. The netCDF-4 C++ interface was implemented as a thin layer on top of the netCDF-4 C interface; its design however allows all the functionality of a full C++ implementation of the interface. When fully implemented the netCDF-4 C++ interface will allow data providers and developers with a preference for C++ to take advantage of the new features netCDF-4 offers for creating portable, self-describing datasets. The Significant Opportunities in Atmospheric Research and Science (SOARS) Program is managed by the University Corporation for Atmospheric Research (UCAR) with support from participating universities. SOARS is funded by the National Science Foundation, the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office, the NOAA Oceans and Human Health Initiative, and the Cooperative Institute for Research in Environmental Sciences. SOARS also receives funding from the National Center for Atmospheric Research (NCAR) Biogeosciences Initiative and the NCAR Earth Observing Laboratory. SOARS is a partner project with Research Experience in Solid Earth Science for Student (RESESS). Section 1. INTRODUCTION For many years no standard data model or data format was available within the atmospheric science community. As a result, data users had to have knowledge of the many different formats used by data providers. In addition, users were also required to have knowledge of the format-specific data analysis or visualization tools for each format. These requirements placed an extra burden on data users and researchers and significantly hindered the dissemination of data within the earth science and atmospheric science community. To simplify the interchange problems caused by numerous formats, the Unidata Program Center at the University Corporation for Atmospheric Research produced the Network Common Data Form (netCDF) and the National Center for Supercomputing Applications at the University of Illinois - Urbana Champagne created the Hierarchical Data Format (HDF) in the late 1980s. Over the years both netCDF and HDF have evolved to fix bugs, to add new features, and to implement new aspects of their data models. The Network Common Data Form (netCDF) is both a data model and a data format. It is designed to be a machine-independent format for the storage of array based scientific data [1]. The Hierarchical Data Format (HDF) now in a release 5, referred to as HDF5, is a “general purpose library and file format for storing scientific data” [2]. Scientific data providers and developers of scientific data access tools have made use of these data models and formats in archives and tools to suit the needs of their users. In the article “Scientific Data Management in the Coming Decade,” Gray predicts that within “the next decade a common HDF-like format for all the sciences will emerge” [3]. Unidata’s latest release of netCDF will be netCDF-4. The netCDF-4 software is a merger of netCDF-3 and aspects of the HDF5 data models and data formats. For some users of netCDF-4, an object oriented C++ interface, is desirable because netCDF is used in C, C++, Fortran and various scripting languages. This project designs and begins implementation of the C++ interface for netCDF-4. In five sections this paper provides background information about netCDF and HDF, a discussion of the interface design, an overview of the interface’s implemented methods, a summary of the impacts of the newly created interface, and a discussion of possible future developments. Section 2. BACKGROUND This section discusses netCDF, HDF5, netCDF-4, and provides background information on interface design. 2.1 The Network Common Data Form The Network Common Data Form (netCDF) began as an attempt to provide a machine independent interface between data providers and data users, and was first implemented at Unidata in 1988. Under collaborative efforts with Joe Fahle at SeaScape, Michael Gough of Apple, and Angel Li at the University of Miami, netCDF was developed and released. Later SOARS® 2006, Shanna-Shaye Forbes, 2 capabilities and modifications to netCDF included companion utilities ncdump and ncgen. In June 1993 netCDF's first C++ interface was released. Prior to this release netCDF featured Fortran and C interfaces [7]. The Network Common Data Form (netCDF) is “a data model for array-oriented scientific data access, and is a package of freely available software that implements the data model” [4]. It is “widely used in the atmospheric sciences,” and backward compatibility is critical to future modifications of netCDF. In addition to being “a platform-independent… representation for self-describing data,” netCDF also allows appending of data “without copying the data set or redefining its structure” [4]. The current full release of netCDF is netCDF-3. It includes a library written in ANSI C, and features that improved the Fortran interface [4]. Even though netCDF-3 encompassed many improvements over netCDF-2, the interface includes “a limited number of external numeric data types, and restrictions on data sharing” [4]. The netCDF data model shown below in Figure 1 is also limited because it “does not support nested data structures such as trees, nested arrays, or other recursive structures” [4]. A netCDF file generally consists of three kinds of objects: Attributes, Variables, and Dimensions. Attributes can either apply to a file or to a variable. File attributes contain information about all the data in a file, and variable attributes describe the contents of each variable. While variables store data, dimensions are used to describe the shape of variables. Variables with the same dimensions are interpreted as having values on the same grid. An example of a netCDF file's metadata generated with the netCDF utility ncdump is shown in Figure 2. In the netCDF-3 release, a netCDF file could contain any number of dimensions but only one unlimited dimension. Unlimited dimensions are used with model or observational data. For example, if data is being collected from various stations and there is uncertainty about the number of stations that will be in working order from one hour to the next, it is best to store the data using an unlimited dimension. This way all the data can be stored if 20 stations are functional or if 50 stations are functional. Unlimited dimensions generally represent a growing dimension. As another example, a three dimensional variable temperature could be created based on latitude, longitude, and time. While latitude and longitudes are normal dimensions, an unlimited dimension is desirable for the time dimension to allow temperature readings to append to data without the need to remove the current variable and replace it with a new variable containing all the updated data SOARS® 2006, Shanna-Shaye Forbes, 3 Figure 1. Graphical Representation of the netCDF-3 data model [10] Figure 2. Metadata for a netCDF file generated with ncdump SOARS® 2006, Shanna-Shaye Forbes, 4 2.2 Hierarchical Data Format In this section, we review the aspects of HDF5 relevant to the netCDF-4 release. HDF5 has been primarily funded by NASA and the Department of Energy (DoE). HDF5 is used more for high-performance computing than netCDF because it supports parallel I/O, and it has a richer and more complex data model than netCDF. HDF5 is not HDF4 with improvements. HDF5, a simplified version of whose data model is shown in Figure 3, is a complete rewrite of the HDF4 library. Instead of simply making modifications to what already existed, the HDF team started from scratch using all the lessons they learned from previous releases of HDF. “HDF5 files are organized in a hierarchical structure” [2] and support a tree structure collection of items similar to a UNIX style file directory system. HDF5 supports more than one unlimited dimension because it uses multidimensional tiling both for data access and compression, supports large files, parallel I/O and also allows arrays to consist of compound data structures, and user defined types [8]. Other features of the HDF5 data model will be discussed in the next section on netCDF-4 since some of netCDF-4’s features are merely simplifications of the HDF5 data model. Figure 3. Graphical Representation of the HDF5 data model [5] 2.3 The Network Common Data Form-4 (netCDF-4) NetCDF-4 features improvements on netCDF-3 as well as some basic aspects of the HDF5 data format such as groups, multiple unlimited dimensions, more primitive data types, four user defined data types (enum, opaque, compound, and variable length), and storage of several values of possibly different types in an array through the use of the compound data type. The C++ implementation uses strings instead of character arrays, along with other components of the Standard Template Library.
Recommended publications
  • A Pairwise Abstraction for Round-Based Protocols
    A Pairwise Abstraction for Round-Based Protocols Lonnie Princehouse Nate Foster Ken Birman Department of Computer Science, Cornell University f lonnie, jnfoster, ken [email protected] Distributed systems are hard to program, for a number of make predictable use of the network. As such, they are reasons. Some of these reasons are inherent. System state “good neighbors” in massive multi-tenant data centers, such is scattered across multiple nodes, and is not random ac- as those that drive Amazon’s EC2. Many cloud computing cess. Bandwidth is an ever-present concern. Fault tolerance services have relaxed consistency requirements in favor of is much more complicated in a partial-failure model. This availability, and this also plays to the strengths of round- presents both a challenge and an opportunity for the pro- based protocols. gramming languages community: What should languages Our goal with CPG is to design abstractions for describ- for distributed systems look like? What are the shortcom- ing these protocols that make it easy to develop richer proto- ings of conventional languages for describing systems that cols via composition and code re-use. The fundamental unit extend beyond a single machine? seen by programmers in CPG is a pair of nodes. A protocol Prior work in this area has produced diverse solutions. in CPG is defined using a select function, which identifies The DryadLINQ [7] language expresses distributed compu- pairs of nodes to communicate in each round, and an up- tations using SQL-like queries. BLOOM [1] also follows a date function, which takes the states of the selected nodes data-centric approach, but assumes an unordered program- as input and produces their updated states after communica- ming model by default.
    [Show full text]
  • In This Day of 3D Graphics, What Lets a Game Like ADOM Not Only Survive
    Ross Hensley STS 145 Case Study 3-18-02 Ancient Domains of Mystery and Rougelike Games The epic quest begins in the city of Terinyo. A Quake 3 deathmatch might begin with a player materializing in a complex, graphically intense 3D environment, grabbing a few powerups and weapons, and fragging another player with a shotgun. Instantly blown up by a rocket launcher, he quickly respawns. Elapsed time: 30 seconds. By contrast, a player’s first foray into the ASCII-illustrated world of Ancient Domains of Mystery (ADOM) would last a bit longer—but probably not by very much. After a complex process of character creation, the intrepid adventurer hesitantly ventures into a dark cave—only to walk into a fireball trap, killing her. But a perished ADOM character, represented by an “@” symbol, does not fare as well as one in Quake: Once killed, past saved games are erased. Instead, she joins what is no doubt a rapidly growing graveyard of failed characters. In a day when most games feature high-quality 3D graphics, intricate storylines, or both, how do games like ADOM not only survive but thrive, supporting a large and active community of fans? How can a game design seemingly premised on frustrating players through continual failure prove so successful—and so addictive? 2 The Development of the Roguelike Sub-Genre ADOM is a recent—and especially popular—example of a sub-genre of Role Playing Games (RPGs). Games of this sort are typically called “Roguelike,” after the founding game of the sub-genre, Rogue. Inspired by text adventure games like Adventure, two students at UC Santa Cruz, Michael Toy and Glenn Whichman, decided to create a graphical dungeon-delving adventure, using ASCII characters to illustrate the dungeon environments.
    [Show full text]
  • Towards Rogue-Soar: Amulet of Yendor Using Its Levitation Capabilities.” Combining Soar, Curses and Micropather
    Gameplay The purpose of Rogue is “to descend into the Dungeons of Doom, defeat monsters, find treasure, and return to the surface with the Towards Rogue-Soar: amulet of Yendor using its levitation capabilities.” Combining Soar, Curses and Micropather Johnicholas Hines Advisor: Clare Bates Congdon May 17, 2010 Figure: The player (‘@’) is fighting a bat (‘B’). History Novelty I In the late 1970s, Ken Arnold designed a library (later named Rogue does not seem like a novel environment for Soar. curses[1]) to put characters at specific locations, enabling a I Discrete-Space crude form of interactive graphics. I Discrete-Time / Synchronous I Using this library, Michael Toy and Glen Wichman designed I Two-Dimensional Rogue[4]. I Single-Agent I In 1983, Rogue became popular when it was included in BSD Unix 4.2. Why should you be interested? I In 1984, Michael L. Mauldin, Guy Jacobson, Andrew Appel, and Leonard Hamey published “Rog-o-matic: A belligerent expert system”[3]. I In 1987, John Laird, Paul Rosenbloom, and Allen Newell published “Soar: An Architecture for General Intelligence”[2]. Is writing an Rog-o-matic-competitive agent easy now? Why you should be interested Rogue-Soar I/O I Rogue is a real human activity; people played it. ˆio I Rogue has been previously studied. ˆinput-link ˆspot I Because Rogue was written decades ago, it is now fast. ˆrow <0..23> I The generic I/O link could be reused for other curses-based ˆcolumn <0..79> roguelikes (ADoM, Angband, Crawl, Moria, NetHack). ˆcontents <char> I The generic I/O link could be reused for other curses-based ˆoutput-link applications (vi, emacs, lynx, w3m).
    [Show full text]
  • Cisc 7124X [*709.2X]
    Brooklyn College Department of Computer & Information Sciences CISC 7124 [*709.2X] Object-Oriented Programming 37½ hours plus conference and independent work; 3 credits Object-oriented programming concepts and techniques: data abstraction and encapsulation, classes, inheritance, overloading, polymorphism, interfaces. Introduction to and use of one or more object-oriented languages such as C++ or Smalltalk. An introduction to object-oriented design. Syllabus Procedural programming in Java Introduction to object-oriented design and programming View classes as abstract data types o Int class o Rectangle class o Stack class o Queue class Object-oriented programming in Java (Classes, Methods, Messages, and Instances) o Built-in classes . Boolean, Character, Byte, Short, Integer, Long, Float, Double, String & StringBuffer, Vector, Hashtable Interfaces and Packages Collections Inheritance Midterm exam (BinaryTree.java | SumLines.java) I/O o Echo.java o CopyTextFile.java Graphics programming with AWT (Components & Graphic & Layout managers) o TestDrawString.java o TestImage.java Event handling o TestEvent.java o TestCardLayout.java o TestImageCards.java Applets Advanced topics o Network programming with sockets o Multithreaded programming and animation . DigitClock.java . Greeting1.java . AnimatedImage.java . PingPong.java . ProducerConsumer.java . Clocks.java o JDBC and MySql o Servlet programming Textbook : The Java Tutorial: A Short Course on the Basics, 4th Edition Bibliography: Big Java: Programming and Practice, by Cay S. Horstmann, Wiley, 2002. A Programmer's Guide to Java (tm) Certification -- Khalid Azim Mughal, Rolf Rasmussen, 2000. Core Java 2, Volume I -- Fundamentals, by Cay S. Horstmann and Gary Cornell, Prentice Hall, 1999. Introduction to Programming Using Java : An Object-Oriented Approach, by David M. Arnow, Gerald Weiss, Addison-Wesley, 1998.
    [Show full text]
  • The Jini/Sup TM/ Architecture: Dynamic Services in a Flexibie Network
    9.3 The JiniTMArchitecture: Dynamic Services in a Flexible Network Ken Arnold Sun Microsystems, Inc. 1 Network Drive Burlington, MA 01 804 +01-781-442-0720 [email protected] 1. ABSTRACT capable printer, the proxy object that implements the This paper gives an overview of the JiniTM Printer interface will convert the text to PostScript and architecture, which provides a federated infra- send it to the printer. A different printing service whose printer uses PCL as a printing language will have a a proxy structure for dynamic services in a network. object that converts the text to PCL commands. Services may be large or small. The universal platform provided by the virtual machine also 1.1 Keywords means that code can be downloaded to the client if necessary. Jini, Java, networks, distribution, distributed computing This means that the client can use services whose implementations were previously unknown. If a client using 2. INTRODUCTION the PostScript capable print service has never used it before, The JiniTM architecture provides an infrastructure for the conversion code can be automatically downloaded on defining, advertising, and finding services in a network. demand by the virtual machine. Clients can talk to services Services are defined by one or more JavaTM language that they have never seen before (and may never see again) interfaces or classes. These types define a contract with the without any human intervention, such as installing drivers on clients of the service. all the systems that will use a new printing service. For example, if a service supports a printer interface it A discovery protocol lets clients and services find available supports a Printer service.
    [Show full text]
  • The Javascript Programming Language
    The JavaScript Programming Language The JavaScript Programming Language - 95 pages - Jones & Bartlett Publishers, 2009 - 2009 - 1449662676, 9781449662677 - Ray Toal, John David Dionisio The JavaScript Programming Language provides a brief introduction to the JavaScript language that is now an important component of every programmers tool box. It offers an overview of JavaScript to students interested in pursuing advanced programming skills. Clear and Concise, The JavaScript Programming Language is an excellent primer to this popular dynamic language and is ideal for use on its own or when coupled with one of Jones and Bartlett's outstanding introductory computer science texts. DOWNLOAD PDF FILE http://resourceid.org/2gcPGlG.pdf Programming with JavaScript: Algorithms and Applications for Desktop and Mobile Browsers - John David Dionisio, Ray Toal - Computers - Designed specifically for the CS-1 Introductory Programming Course, "Programming with JavaScript: Algorithms and Applications for Desktop and Mobile Browsers" introduces - 694 pages - ISBN:9780763780609 - Dec 19, 2011 DOWNLOAD PDF FILE http://resourceid.org/2gcUGGJ.pdf Web Development with JavaScript and Ajax Illuminated - Oct 22, 2010 - ISBN:9781449613242 - Computers - 497 pages - Web Development with JavaScript and AJAX teaches your students the cutting-edge techniques for web development for Web 2.0 and 3.0. Ideal for the undergraduate student delving - Richard Allen, Kai Qian, Southern Polytechnic State University Kai Qian, Lixin Tao, Xiang Fu DOWNLOAD PDF FILE http://resourceid.org/2gcPFOx.pdf JavaScript Pocket Reference - Computers - ISBN:9781449335991 - David Flanagan - JavaScript is the ubiquitous programming language of the Web, and for more than 15 years, JavaScript: The Definitive Guide has been the bible of JavaScript programmers around - 280 pages - Apr 9, 2012 - Activate Your Web Pages DOWNLOAD PDF FILE http://resourceid.org/2gcPEdr.pdf It is usable as either a programming language (that is compiled to JavaScript) or as a JavaScript library, and is designed for both uses.
    [Show full text]
  • Extreme Java G22.3033-007
    Extreme Java G22.3033-007 Session 8 - Sub-Topic 2 OMA Trading Services Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Trading Services for Distributed Enterprise Communications Dr. Jean-Claude Franchitti Page 1 Presentation Agenda • Enterprise Systems Technology Classifications • Naming, Directory, and Trading Services in a Nutshell • CORBA as a Trading Service • Microsoft Active Directory Services • Jini as a Trading Service – Jini Component Architecture – Jini Programming Model – Jini Infrastructure – Jini Class Architecture and Development Process – Jini Service Example – From the Logical Infrastructure to a Physical Solution – Physical Solution Implementation Steps • Conclusions 2 Enterprise Systems Technology Classifications Q User Interfacing Q AWT, Swing, JMF, JavaBeans Q Distributed Communications Enabling Q TCP/IP, HTTP, CORBA, RMI/IIOP, COM+ Q Services for Distributed Communications Q JNDI, CORBA Trading, JINI, Activation, JMS, JavaMail, JTA, JTS, etc. Q Systems Assurance Q Security, Reliability, Availability, Maintainability, Safety Q Data Enabling Q JDBC, RDBMs, ODBMSs Q Web Enabling Q HTML, XML, Applets, Servlets, JSPs Q Applications Enabling Q EJB, EAI 3 Page 2 Services for Distributed Communications Q Naming Q DNS, JNDI Q Directory Q NIS, NDS, LDAP, Microsoft Active Directory Q Trading Q CORBA Trading Service, JINI Q Activation Q CORBA LifeCycle Service, Java Activation Framework Q Messaging Q JMS, JavaMail, CORBA Event Service, CORBA Messaging Service,
    [Show full text]
  • Irrevocability in Games
    IRREVOCABILITY IN GAMES Interactive Qualifying Project Report completed in partial fulfillment of the Bachelor of Science degree at Worcester Polytechnic Institute, Worcester, MA Submitted to: Professor Brian Moriarty Daniel White Michael Grossfeld 1 Abstract This report examines the history and future application of irrevocability in video games. Decision making is an essential part of playing video games and irrevocability negates replayability by disallowing alternate decisions. We found that successful games with this theme exhibit irreversibility in both story and game mechanics. Future games looking to use irrevocability well must create an ownership that the player feels towards the experience by balancing these two mechanics. 2 Table of Contents IRREVOCABILITY IN GAMES .............................................................................................................. 1 Abstract .................................................................................................................................................... 2 Table of Contents ................................................................................................................................... 3 Part One: Concept of Irrevocability ................................................................................................ 4 Introduction .......................................................................................................................................................... 4 Part Two: Chronology of Irrevocability ........................................................................................
    [Show full text]
  • A Framework for Run-Time Correctness Assurance of Real- Time Systems
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science January 1998 MaC: A Framework for Run-Time Correctness Assurance of Real- Time Systems Moonjoo Kim University of Pennsylvania Mahesh Viswanathan University of Pennsylvania Hanene Ben-Abdallah University of Pennsylvania Sampath Kannan University of Pennsylvania, [email protected] Insup Lee University of Pennsylvania, [email protected] See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath Kannan, Insup Lee, and Oleg Sokolsky, "MaC: A Framework for Run-Time Correctness Assurance of Real-Time Systems", . January 1998. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-37. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/77 For more information, please contact [email protected]. MaC: A Framework for Run-Time Correctness Assurance of Real-Time Systems Abstract We describe the Monitoring and Checking (MaC) framework which provides assurance on the correctness of program execution at run-time. Our approach complements the two traditional approaches for ensuring that a system is correct, namely static analysis and testing. Unlike these approaches, which try to ensure that all possible executions of the system are correct, our approach concentrates on the correctness of the current execution of the system. The MaC architecture consists of three components: a filter, an event recognizer, and a run-time checker. The filter extracts low-level information, e.g,, values of program variables and function calls, from the system code, and sends it to the event recognizer.
    [Show full text]
  • Rogue-Like Warum Rogue-Like?
    Rogue-like Warum Rogue-like? Michael Toy, Ken Arnold and Glenn Wichman at U.C. Santa Cruz Ascii Grafik • http://www.lcurtisboyle.com/nitros9/rogue-80.gif D&D Regeln • Basiert meist auf Dungeons and Dragons • Es wird aber sehr viel experimentiert Prozeduraler Levelaufbau Perma Death Turnbased Dungeon Crawler Sehr hoher Schwierigkeitsgrad Unintuitive Steuerung • Viele Profi-Funktionen • Oft kann man Scripte schreiben, um vieles zu automatisieren Voraussetzungen Adventure 1975 • Fantasy Setting • in einem Höhlensystem • rein textbasiert Steuerung • HJKLY(Z)UBN VI Tasten Curses Library • Entwickelt von Ken Arnold • Bibliothek zum Positionieren des Cursors und setzen von Ascii-Zeichen beliebig auf dem Bildschirm • aus Curses wurde PDCurses • und daraus NCurses (n steht für New) • Software ist zwischen allen Versionen leicht portierbar BSD Unix • Santa Cruz, California, Michael Toy & Glenn Wichman • Michael reist nach U.C. Berkeley • Entwickelt dort mit Ken Arnold das Spiel weiter • Dort wurde auch BSD Unix entwickelt, die Grundlage für Mac OS X • Das Spiel wurde Teil von BSD • Damit wurde es auf allen Unirechnern der ganzen Welt verbreitet Unterscheidung von Rogue-likes • *band • Hack-likes *band • Set Your Own Pace: There isn't a hunger clock forcing you forward (or there is a shop to restock at). • No Level Memory: Levels are not preserved when you go up and down, so you can keep getting new monsters at any given difficulty level. • Lots of Items: There are a lot of items, ranging from broken sticks to super amazing swords. Equipment upgrade paths are long, rather than being very short. • Steep Power Curve: The PC is god-like powerful by the end of the game.
    [Show full text]
  • COOTS ‘99) Sponsored by the USENIX Association Conference Web Site
    Call for Papers 5th Conference on Object-Oriented Technologies and Systems (COOTS ‘99) Sponsored by The USENIX Association Conference Web site:http://www.usenix.org/events/coots99 May 3-7, 1999 San Diego, California, USA Important Due Dates In addition to experience-centered papers, COOTS '99 Paper submissions: Nov. 6, 1998 accepts papers on a wide range of topics, including but Tutorial submissions: Nov. 6, 1998 not limited to: Notification to authors: Dec. 16, 1998 Distributed Objects Camera-ready papers: March 23, 1999 Object-oriented systems performance Security for Distributed Objects Conference Organizers Object services Program Chair Mobile objects Murthy Devarakonda, IBM T.J. Watson Research Center Object-oriented design technigues Program Committee Component based operating systems Ken Arnold, Sun Microsystems, Inc. Standard Template Library Rachid Guerraoui, Swiss Federal Institute of Technology Advanced C++ topics/examples Jennifer Hamilton, Microsoft Corporation Java and Web programming languages Doug Lea, SUNY Oswego Container technologies (e.g. Java Beans) Gary Leavens, Iowa State University Design patterns Scott Meyers, Software Development Consultant Visual J++ and other development tools Ira Pohl, UC Santa Cruz Fault tolerance Rajendra Raj, Morgan Stanley & Company New OO programming languages Doug Schmidt, Washington University Object-Oriented database systems Joe Sventek, Hewlett-Packard Labs Building distributed applications Steve Vinoski, IONA Technologies, Inc. Persistent Object Issues Werner Vogels, Cornell University
    [Show full text]
  • A Guide to the Mazes of Menace: Guidebook for Nethack
    A Guide to the Mazes of Menace: Guidebook for NetHack Eric S. Raymond (Extensively edited and expanded for 3.4) February 12, 2003 1 Introduction Recently, you have begun to find yourself unfulfilled and distant in your daily occupation. Strange dreams of prospecting, stealing, crusading, and combat have haunted you in your sleep for many months, but you aren’t sure of the reason. You wonder whether you have in fact been having those dreams all your life, and somehow managed to forget about them until now. Some nights you awaken suddenly and cry out, terrified at the vivid recollection of the strange and powerful creatures that seem to be lurking behind every corner of the dungeon in your dream. Could these details haunting your dreams be real? As each night passes, you feel the desire to enter the mysterious caverns near the ruins grow stronger. Each morning, however, you quickly put the idea out of your head as you recall the tales of those who entered the caverns before you and did not return. Eventually you can resist the yearning to seek out the fantastic place in your dreams no longer. After all, when other adventurers came back this way after spending time in the caverns, they usually seemed better off than when they passed through the first time. And who was to say that all of those who did not return had not just kept going? Asking around, you hear about a bauble, called the Amulet of Yendor by some, which, if you can find it, will bring you great wealth.
    [Show full text]