Bee and Near Bee Idenification for Journeyman
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fairy Fly Diversity (Hymenoptera, Chalcidoidea, Mymaridae) in Natural and Anthropized Ecosystems, from the Eastern Part of Romania
“Alexandru Ioan Cuza” University of Iaşi, Romania Faculty of Biology PRICOP I. Emilian FAIRY FLY DIVERSITY (HYMENOPTERA, CHALCIDOIDEA, MYMARIDAE) IN NATURAL AND ANTHROPIZED ECOSYSTEMS, FROM THE EASTERN PART OF ROMANIA SUMMARY OF PhD. THESIS SCIENTIFIC COORDINATOR: Prof. Dr. Ioan MOGLAN IAŞI, 2012 1 2 Keywords: Mymaridae, egg parasitoids, Romania, diversity, taxonomy, biology, biogeography, ecology. 3 CONTENTS INTRODUCTION 4 FIRST PART 7 1. Research history 7 1.1. Global Research history regarding Fam. Mymaridae 7 1.2. Research history regarding Fam. Mymaridae in Romania 21 2. The natural environment 27 2.1. The physico-geographical characterization of Moldova 27 2.2. The physico-geographical characterization of Dobrogea 31 2.3. The main types of ecosystems identified in the eastern part of Romania 35 3. Materials and methods used for fairy fly research 48 3.1. Fairy fly collecting 49 3.1.1. Collecting the material with the sweep net and an pooter/aspirator 49 3.1.2. Collecting the material with the yellow pan traps 51 3.1.3. Collecting the material with the Malaise trap 52 3.1.4. Rearing fairy fly from parasitised eggs 52 3.2. Preparing, preservation and storage 53 3.2.1. Mounting the fairy fly 55 3.2.2. Slide mounting 57 3.2.3. The synecological analysis 60 4. General morphology and taxonomy 64 4.1. Morphology of the head 65 4.2. Morphology of the mesosoma 84 4.3. Morphology of the metasoma 95 4.4. Morphology of the larvae 102 5. Aspects regarding fairy fly diversity 103 5.1. Aspects regarding fairy fly diversity in Palaearctica 103 5.2. -
Rainfall and Parasitic Wasp (Hymenoptera: Ichneumonoidea
Agricultural and Forest Entomology (2000) 2, 39±47 Rainfall and parasitic wasp (Hymenoptera: Ichneumonoidea) activity in successional forest stages at Barro Colorado Nature Monument, Panama, and La Selva Biological Station, Costa Rica B. A. Shapiro1 and J. Pickering Institute of Ecology, University of Georgia, Athens, GA 30602-2602, U.S.A. Abstract 1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old-growth and two 20-year-old stands) and four stands of moist forest in Panama (old-growth, 20, 40 and 120-year-old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old-growth trap was 1.89 times greater than the average catch per second-growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions. Keywords Barro Colorado Nature Monument, Ichneumonoidea, La Selva, parasitoids, precipitation, tropical moist forest, tropical wet forest. istics of each parasitoid species and abiotic factors. Seasonal Introduction patterns of insect activity are often correlated with temperature, One of the largest groups of parasitic Hymenoptera is the as processes such as development and diapause are often superfamily Ichneumonoidea, which consists of two families intimately associated with temperature change (Wolda, 1988). (the Ichneumonidae and the Braconidae), 64 subfamilies and an Fink & VoÈlkl (1995) gave several examples of small insects for estimated 100 000 species world-wide (Gauld & Bolton, 1988; which low humidity and high temperature have detrimental Wahl & Sharkey, 1993). -
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
Study of the Morphometric Diversity of the Population of Honeybees (Apis Mellifera) in the North-East Algeria Abstract
Research iMedPub Journals European Journal of Experimental Biology 2016 http://www.imedpub.com/ Vol.6 No.6:6 ISSN 2248-9215 Study of the Morphometric Diversity of the Population of Honeybees (Apis Mellifera) In the North-East Algeria Bouzeraa H1, Achou M2, Sellami H1 and Slotani N1 1Laboratory of Applied Animal Biology, Faculty of Science, University Badji-Mokhtar, Annaba, Algeria 2Research Unit Toxicology-Environmental Microbiology and Health (UR11ES70), Faculty of Sciences of Sfax, University of Sfax, Tunisia Corresponding author: Bouzeraaa H, Laboratory of Applied Animal Biology, Faculty of Science, University Badji-Mokhtar, Annaba, Algeria, Tel: +234 8032886428; E-mail: [email protected] Received Date: November 24, 2016; Accepted Date: December 29, 2016; Published Date: December 31, 2016 Copyright: © 2016 Bouzeraaa H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Bouzeraa H, Achou M, Sellami H, et al. Study of the morphometric diversity of the population of honeybees (Apis mellifera) in the North- East Algeria. Eur Exp Biol. 2016, 6:6 In Algeria, 02 breeds have been identified: The first one, Apis mellifera intermissa (Tellian bee) described by Buttel-Reepen (in Abstract Ruttner), it is a breed of north Africa found in northern Algerian Sahara and Libya to Morocco [13-15]. The second breed, was A biometric study was conducted on domestic worker bees successively described by Baldensperger and also by Haccour coming from three 03 sites (Tahir, Al-Ancer and Ziama) of [16,17]. -
Nauka Przyroda Technologie
2016 Tom 10 auka rzyroda echnologie Zeszyt 1 N P T #3 ISSN 1897-7820 http://www.npt.up-poznan.net DOI: 10.17306/J.NPT.2016.1.3 Dział: Ogrodnictwo Copyright ©Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu MARTA RZAŃSKA1,2, HANNA PIEKARSKA-BONIECKA1 1Katedra Entomologii i Ochrony Środowiska Uniwersytet Przyrodniczy w Poznaniu 2Zakład Biologicznych Metod Instytut Ochrony Roślin – Państwowy Instytut Badawczy w Poznaniu OGRÓD BOTANICZNY UAM W POZNANIU JAKO ŚRODOWISKO WYSTĘPOWANIA PARAZYTOIDÓW Z PODRODZIN PIMPLINAE I POEMENIINAE (HYMENOPTERA, ICHNEUMONIDAE) ADAM MICKIEWICZ UNIVERSITY BOTANICAL GARDEN IN POZNAŃ AS THE ENVIRONMENT FOR PARASITOIDS OF THE PIMPLINAE AND POEMENIINAE SUBFAMILIES (HYMENOPTERA, ICHNEUMONIDAE) Streszczenie. Badania wykonano w latach 2012–2013 w Ogrodzie Botanicznym Uniwersytetu im. Adama Mickiewicza w Poznaniu. Ich celem było poznanie struktury jakościowej zgrupowań parazytoidów z podrodzin Pimplinae i Poemeniinae (Hymenoptera, Ichneumonidae) zasiedlają- cych rośliny na tym terenie. W badaniach wykorzystano 10 żółtych pułapek Moerickego, do których odławiano imagines Ichneumonidae. W latach 2012–2013 z terenu ogrodu pobrano 410 prób. Odłowiono 58 osobników należących do podrodziny Pimplinae, które oznaczono do 21 gatunków. Stanowiły one 15,9% fauny Polski oraz 28,2% gatunków wykazanych z Wielkopolski. Odłowiono także jeden gatunek Podoschistus scutellaris (Desv.), który należał do podrodziny Poemeniinae. W badanym środowisku stwierdzono dominację gatunku Pimpla contemplator (Muell.), który jest endoparazytoidem poczwarek Lepidoptera i Hymenoptera. Po raz pierwszy z Wielkopolski wykazano gatunek Piogaster albina Perkins. Słowa kluczowe: Ichneumonidae, ogród botaniczny, parazytoidy, Pimplinae, Poemeniinae Wstęp Na stan zdrowotny roślin rosnących w aglomeracjach wpływa wiele czynników. Do czynników biotycznych zalicza się organizmy szkodliwe, jak i pożyteczne, w tym owa- 2 Rzańska, M., Piekarska-Boniecka, H. (2016). -
Towards Simultaneous Analysis of Morphological and Molecular Data in Hymenoptera
Towards simultaneous analysis of morphological and molecular data in Hymenoptera JAMES M. CARPENTER &WARD C. WHEELER Accepted 5 January 1999 Carpenter, J. M. & W. C. Wheeler. (1999). Towards simultaneous analysis of molecular and morphological data in Hymenoptera. Ð Zoologica Scripta 28, 251±260. Principles and methods of simultaneous analysis in cladistics are reviewed, and the first, preliminary, analysis of combined molecular and morphological data on higher level relationships in Hymenoptera is presented to exemplify these principles. The morphological data from Ronquist et al. (in press) matrix, derived from the character diagnoses of the phylogenetic tree of Rasnitsyn (1988), are combined with new molecular data for representatives of 10 superfamilies of Hymenoptera by means of optimization alignment. The resulting cladogram supports Apocrita and Aculeata as groups, and the superfamly Chrysidoidea, but not Chalcidoidea, Evanioidea, Vespoidea and Apoidea. James M. Carpenter, Department of Entomology, and Ward C. Wheeler, Department of Invertebrates, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, U SA. E-mail: [email protected] Introduction of consensus techniques to the results of independent Investigation of the higher-level phylogeny of Hymenoptera analysis of multiple data sets, as for example in so-called is at a very early stage. Although cladistic analysis was ®rst `phylogenetic supertrees' (Sanderson et al. 1998), does not applied more than 30 years ago, in an investigation of the measure the strength of evidence supporting results from ovipositor by Oeser (1961), a comprehensive analysis of all the different data sources Ð in addition to other draw- the major lineages remains to be done. -
Hymenoptera (Stinging Wasps)
Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens. -
Scottish Bees
Scottish Bees Introduction to bees Bees are fascinating insects that can be found in a broad range of habitats from urban gardens to grasslands and wetlands. There are over 270 species of bee in the UK in 6 families - 115 of these have been recorded in Scotland, with 4 species now thought to be extinct and insufficient data available for another 2 species. Bees are very diverse, varying in size, tongue-length and flower preference. In the UK we have 1 species of honey bee, 24 species of bumblebee and the rest are solitary bees. They fulfil an essential ecological and environmental role as one of the most significant groups of pollinating insects, all of which we depend upon for the pollination of 80% of our wild and cultivated plants. Some flowers are in fact designed specifically for bee pollination, to the exclusion of generalist pollinators. Bees and their relatives Bees are classified in the complex insect order Hymenoptera (meaning membrane-winged), which also includes many kinds of parasitic wasps, gall wasps, hunting wasps, ants and sawflies. There are about 150,000 species of Hymenoptera known worldwide separated into two sub-orders. The first is the most primitive sub-order Symphyta which includes the sawflies and their relatives, lacking a wasp-waist and generally with free-living caterpillar-like larvae. The second is the sub-order Apocrita, which includes the ants, bees and wasps which are ’wasp-waisted’ and have grub-like larvae that develop within hosts, galls or nests. The sub-order Apocrita is in turn divided into two sections, the Parasitica and Aculeata. -
Effects of Time, Temperature, and Honey on Nosema Apis (Microsporidia: Nosematidae), a Parasite of the Honeybee, Apis Mellifera (Hymenoptera: Apidae)
Journal of Invertebrate Pathology 77, 258–268 (2001) doi:10.1006/jipa.2001.5028, available online at http://www.idealibrary.com on Effects of Time, Temperature, and Honey on Nosema apis (Microsporidia: Nosematidae), a Parasite of the Honeybee, Apis mellifera (Hymenoptera: Apidae) Louise A. Malone,*,1 Heather S. Gatehouse,† and Emma L. Tregidga* *Horticulture and Food Research Institute of New Zealand Limited, Mt. Albert Research Centre, Private Bag 92169, Auckland, New Zealand; and †Horticulture and Food Research Institute of New Zealand Limited, Palmerston North Research Centre, Private Bag 11030, Palmerston North, New Zealand Received November 22, 2000, accepted April 20, 2001 ingestion of contaminated comb (Bailey, 1981) and wa- Newly emerged adult bees were fed with Nosema ter sources (L’Arrivee, 1965), trophallaxis (Webster, apis spores subjected to various treatments, and their 1993), and perhaps also honey stores and crushed in- longevity, proportions of bees infected, and spores per fected bees (Fries, 1993). Consequently the two “reser- bee recorded. Spores lost viability after 1, 3, or 6 voirs” of N. apis inoculum within a bee colony are live months in active manuka or multifloral honey, after 3 infected bees and deposits of viable spores on or in wax, days in multifloral honey, and after 21 days in water or honey, and the interior surfaces of the hive. The rela- sugar syrup at 33°C. Air-dried spores lost viability af- tive importance of each reservoir is unknown. How- ter 3 or 5 days at 40°, 45°, or 49°C. Increasing numbers ever, the results of a study using fumagillin feeding, of bees became infected with increasing doses of spores, regardless of their subsequent food (active which acts on the pathogen in live bees, combined with manuka honey, thyme honey, or sugar syrup). -
Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016). -
Nosema Disease in the Honey Bee (Apis Mellifera L) Infested with Varroa Mites in Southern Spain
Original article Nosema disease in the honey bee (Apis mellifera L) infested with varroa mites in southern Spain FJ Orantes Bermejo P García Fernández Dpto Producción Animal, Centro de Investigación y Formación Agraria (CIFA), Camino de Purchil s/n, 18004 Granada, Spain (Received 8 November 1996; accepted 7 May 1997) Summary — Twenty-nine hives infested by Varroa jacobsoni were sampled over a 2-year period in order to find out their degree of infection by Nosema apis. The hives were situated in ten apiaries dis- tributed throughout southern Spain. N apis has been found in 90% of the apiaries sampled and in 55.17% of the hives studied, but only 5.1% of the bees were infected. We have found a low corre- lation between the average number of spores per infected bee in the positive samples and the percentage of infected bees (r2 = 0.2438; P < 0.001; n = 33), and between the average number spores in the composite samples of 60 bees and the percentage of infected bees (r2 = 0.4557; P < 0.001, n = 33). Our results show that N apis and V jacobsoni could develop independently and that those samples which manifested a low, medium and high infestation by V jacobsoni had percentage infections with N apis of 22.6% ± 3.6% vs 47.5% ± 16.2% vs 16.7% ± 10.4% respectively, without significant dif- ferences (F = 0.2817; P = 0.7567). A progressive increase in the number of spores per individual was detected with increasing levels of V jacobsoni infestation: 5.9 x 106 vs 9.1 ×6 10 vs 13.8 x 106 spores/bees, but no significant differences exist between them (F = 0.6053; P = 0.5531). -
The Insect Orders IV: Hymenoptera
Introduction to Applied Entomology, University of Illinois The Insect Orders IV: Hymenoptera Spalangia nigroaenea, a parasite in the family Pteromalidae, depositing an egg into a house fly puparium. Photo by David Voegtlin. Hymenoptera: Including the sawflies, parasitic wasps, ants, wasps, and bees 2 versions of the derivation of the name Hymenoptera: Hymen = membrane; ptera = wings; membranous wings Hymeno = god of marriage -- union of front and hind wings by hamuli Web sites to check: Hymenoptera at BugGuide Hymenoptera on the NCSU General Entomology page Description and identification: Adult: Mouthparts: chewing or chewing/lapping Size: Minute to large Wings: 4 or none, front wing larger than hind wing, front and hind wings are coupled by hamuli to function as one. Antennae: Long and filiform (hairlike) in Symphyta; many forms in Apocrita Other characteristics: Abdomen is broadly joined to the thorax in Symphyta; constricted to form a "waist"-like propodeum in Apocrita. Immatures: In Symphyta, eruciform (caterpillar-like), but with 6 or more pairs of prolegs that lack crochets; 2 large stemmata; all are plant-feeders In Apocrita, larvae have true head capsules, but no legs; some feed on other arthropods Metamorphosis: Complete Habitat: On vegetation, as parasites of other insects, in social colonies Pest or Beneficial Status: A few plant pests (sawflies); many are beneficial as parasites of other insects and as pollinators. Honey bees are important pollinators and produce honey. Stinging species can injure humans and domestic animals. Introduction to Applied Entomology, University of Illinois Suborder Symphyta (one of two suborders): The sawflies and horntails. The name sawfly is derived from the saw-like nature of the ovipositor.