Two Flysch Belts Having Distinctly Different Provenance Suggest No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Or Early Callovian) Ammonites from Alaska and Montana
Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2. -
Subduction Polarity in Ancient Arcs: a Call to Integrate Geology And
COMMENT & REPLY Subduction Polarity in Ancient Arcs: A Call to Integrate Geology and Geophysics to Decipher the Mesozoic Tectonic History of the Northern Cordillera of North America: REPLY Terry L. Pavlis, Dept. of Geological Sciences, University of Texas, El Paso, Texas 79968, USA; Jeffrey M. Amato, Dept. of Geological Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA; Jeffrey M. Trop, Dept. of Geology and Environmental Geosciences, Bucknell University, Lewisburg, Pennsylvania 17837, USA; Kenneth D. Ridgway, Dept. of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA; Sarah M. Roeske, Earth and Planetary Sciences Dept., University of California, Davis, California 95616, USA; and George E. Gehrels, Dept. of Geosciences, University of Arizona, Tucson, Arizona, 85721, USA INTRODUCTION drafts of the paper. However, when we problem is not solved, which underscores We welcome the opportunity to discuss the realized that experts in this field were our conclusion that resolving ancient sub- views expressed by Sigloch and Mihalynuk in actively debating the topic, we reduced our duction polarity problems requires a con- their Comment (Sigloch and Mihalynuk, discussion to a short paragraph. In their certed collaborative effort between the geo- 2020; referred to here as SM) on Pavlis et al. Comment, SM reiterate parts of their model logic and geophysical communities. (2019) because it provides an opportunity to but emphasize a consensus in the geophysi- A foundation of Sigloch and Mihalynuk’s elaborate on the criteria for determining sub- cal community that deep mantle tomo- (2013, 2017) interpretations is that plate duction polarity, an important problem in the graphic anomalies are subduction zone rem- reconstructions restore North America to a North American Cordillera and for tectonic nants. -
Thermochronology of the Talkeetna Intraoceanic Arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf Dating
TECTONICS, VOL. 30, TC1011, doi:10.1029/2010TC002798, 2011 Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating B. R. Hacker,1 Peter B. Kelemen,2 Matthew Rioux,1,3 Michael O. McWilliams,4 Philip B. Gans,1 Peter W. Reiners,5 Paul W. Layer,6 Ulf Söderlund,7 and Jeffrey D. Vervoort8 Received 17 September 2010; revised 8 December 2010; accepted 27 December 2010; published 26 February 2011. [1] As one of two well‐exposed intraoceanic arcs, the of the Talkeetna arc was spatially variable. One‐ Talkeetna arc of Alaska affords an opportunity to under- dimensional finite difference thermal models show that stand processes deep within arcs. This study reports new this kind of spatial variability is inherent to intraoceanic Lu‐Hf and Sm‐Nd garnet ages, 40Ar/39Ar hornblende, arcs with simple construction histories. Citation: Hacker, mica and whole‐rock ages, and U‐Th/He zircon and B. R., P. B. Kelemen, M. Rioux, M. O. McWilliams, P. B. Gans, apatite ages from the Chugach Mountains, Talkeetna P. W. Reiners, P. W. Layer, U. Söderlund, and J. D. Vervoort Mountains, and Alaska Peninsula, which, in conjunc- (2011), Thermochronology of the Talkeetna intraoceanic arc of tion with existing geochronology, constrain the thermal Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating, Tectonics, history of the arc. Zircon U‐Pb ages establish the 30, TC1011, doi:10.1029/2010TC002798. main period of arc magmatism as 202–181 Ma in the Chugach Mountains and 183–153 Ma in the 1. -
New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island Area and Brooks Range, Alaska
Geologica Acta, Vol.12, Nº 1, March 2014, 29-52 DOI: 10.1344/105.000002074 New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island area and Brooks Range, Alaska J. FEDOROWSKI1 C.H. STEVENS2 E. KATVALA3 1Institute of Geology, Adam Mickiewicz University Makow Polnych 16, PL-61-606, Poznan, Poland. E-mail: [email protected] 2Department of Geology, San Jose Unversity San Jose, California 95192, USA. E-mail: [email protected] 3Department of Geology, University of Calgary Calgary, Canada. E-mail: [email protected] ABS TRACT Three new species of the genus Heritschioides, i.e., H. alaskensis sp. nov., H. kuiuensis sp. nov., and H. splendidus sp. nov., and Kekuphyllum sandoense gen. et sp. nov. from the northeastern Kuiu Island area and nearby islets, part of Alexander terrane in southeastern Alaska, and Heritschioides separatus sp. nov. from the Brooks Range, Alaska, are described and illustrated. The three new fasciculate colonial coral species from the Kuiu Island area, collected from the Moscovian Saginaw Bay Formation, are phylogenetically related to those of probable Bashkirian age in the Brooks Range in northern Alaska as shown by the presence of morphologically similar species of Heritschioides. These corals from both areas also are related to one species in the Quesnel terrane in western Canada. Kekuphyllum sandoense from the Saginaw Bay Formation of the Kuiu Island area is the only cerioid-aphroid species within the Subfamily Heritschioidinae described so far. The complete early ontogeny of a protocorallite is for the first time described here on a basis of H. kuiuensis sp. nov. and compared to the hystero-ontogeny in order to show similarities and differences in those processes. -
Wrangellia Flood Basalts in Alaska, Yukon, and British Columbia: Exploring the Growth and Magmatic History of a Late Triassic Oceanic Plateau
WRANGELLIA FLOOD BASALTS IN ALASKA, YUKON, AND BRITISH COLUMBIA: EXPLORING THE GROWTH AND MAGMATIC HISTORY OF A LATE TRIASSIC OCEANIC PLATEAU By ANDREW R. GREENE A THESIS SUBMITTED iN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Geological Sciences) UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 ©Andrew R. Greene, 2008 ABSTRACT The Wrangellia flood basalts are parts of an oceanic plateau that formed in the eastern Panthalassic Ocean (ca. 230-225 Ma). The volcanic stratigraphy presently extends >2300 km in British Columbia, Yukon, and Alaska. The field relationships, age, and geochemistry have been examined to provide constraints on the construction of oceanic plateaus, duration of volcanism, source of magmas, and the conditions of melting and magmatic evolution for the volcanic stratigraphy. Wrangellia basalts on Vancouver Island (Karmutsen Formation) form an emergent sequence consisting of basal sills, submarine flows (>3 km), pillow breccia and hyaloclastite (<1 1cm), and subaerial flows (>1.5 km). Karmutsen stratigraphy overlies Devonian to Permian volcanic arc (—‘380-355 Ma) and sedimentary sequences and is overlain by Late Triassic limestone. The Karmutsen basalts are predominantly homogeneous tholeiitic basalt (6-8 wt% MgO); however, the submarine part of the stratigraphy, on northern Vancouver Island, contains picritic pillow basalts (9-20 wt% MgO). Both lava groups have overlapping initial and ENd, indicating a common, ocean island basalt (OIB)-type Pacific mantle source similar to the source of basalts from the Ontong Java and Caribbean Plateaus. The major-element chemistry of picrites indicates extensive melting (23 -27%) of anomalously hot mantle (‘—1500°C), which is consistent with an origin from a mantle plume head. -
Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska
Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska U.S. Department of the Interior U.S. Geological Survey Open-File Report 2006-1124 Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska Amy E. Draut U.S. Geological Survey, Pacific Science Center, Santa Cruz, CA 95060 Peter D. Clift School of Geosciences, University of Aberdeen, AB24 3UE, U.K. Robert B. Blodgett U.S. Geological Survey–Contractor, Anchorage, AK 99508 U.S. GEOLOGICAL SURVEY Open-File Report 2006-1124 2006 U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2006 Revised and reprinted: 2006 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government To download a copy of this report from the World Wide Web: http://pubs.usgs.gov/of/2006/1124/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. LIST OF FIGURES FIGURE 1. Regional map of the field-trip area. FIGURE 2. Geologic cross section through Sheep Mountain. FIGURE 3. Stratigraphic sections on the south side of Sheep Mountain. -
Upper-Crustal Cooling of the Wrangellia Composite Terrane in the Northern St. Elias Mountains, Western Canada
RESEARCH Upper-crustal cooling of the Wrangellia composite terrane in the northern St. Elias Mountains, western Canada Sarah Falkowski1 and Eva Enkelmann2 1UNIVERSITY OF TÜBINGEN, DEPARTMENT OF GEOSCIENCES, 72074 TÜBINGEN, GERMANY 2UNIVERSITY OF CINCINNATI, DEPARTMENT OF GEOLOGY, CINCINNATI, OHIO 45221-0037, USA ABSTRACT This study presents the long-term exhumation history of the Wrangellia composite terrane of the remote and ice-covered northern St. Elias Mountains in southwest Yukon, northwest British Columbia, and adjacent Alaska. Detrital zircon and apatite fission-track age distributions are presented from 21 glacial catchments. The detrital sampling approach allows for a large spatial coverage (~30,000 km2) and access to material eroded beneath the ice. An additional five bedrock samples were dated by zircon fission-track analysis for a comparison with detrital results. Our new thermochronology data record the Late Jurassic–mid-Cretaceous accretion of the Wrangellia composite terrane to the former North American margin and magmatism, which reset the older thermal record. The good preservation of the Jurassic–Cretaceous record suggests that Cenozoic erosion must have been limited overall. Nonetheless, Eocene spreading-ridge subduction and Oligocene–Neogene cooling in response to the ongoing Yakutat flat-slab subduction are evident in the study area despite its inboard position from the active plate boundary. The results further indicate an area of rapid exhumation at the northern end of the Fairweather fault ca. 10–5 Ma; this area is bounded by discrete, unmapped structures. The area of rapid exhumation shifted southwest toward the plate boundary and the center of the St. Elias syntaxis after 5 Ma. Integrating the new data with published detrital thermochronology from the southern St. -
Geology of the Prince William Sound and Kenai Peninsula Region, Alaska
Geology of the Prince William Sound and Kenai Peninsula Region, Alaska Including the Kenai, Seldovia, Seward, Blying Sound, Cordova, and Middleton Island 1:250,000-scale quadrangles By Frederic H. Wilson and Chad P. Hults Pamphlet to accompany Scientific Investigations Map 3110 View looking east down Harriman Fiord at Serpentine Glacier and Mount Gilbert. (photograph by M.L. Miller) 2012 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Geographic, Physiographic, and Geologic Framework ..........................................................................1 Description of Map Units .............................................................................................................................3 Unconsolidated deposits ....................................................................................................................3 Surficial deposits ........................................................................................................................3 Rock Units West of the Border Ranges Fault System ....................................................................5 Bedded rocks ...............................................................................................................................5 -
An Inventory of Belemnites Documented in Six Us National Parks in Alaska
Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian. -
Geological Characteristics in Cook Inlet Area, Alaska
SOCIE?I’YOF PETROLEUMENGINEERSOF AIME 6200 North CentralExpressway *R SPE 1588 Dallas,Texas 752C6 THIS IS A PREPRINT--- SUBJECTTO CORRECTION Geological Characteristics in Cook Inlet Area, Alaska Downloaded from http://onepetro.org/SPEATCE/proceedings-pdf/66FM/All-66FM/SPE-1588-MS/2087697/spe-1588-ms.pdf by guest on 25 September 2021 By ThomasE. Kelly,Jr. MemberAIYE, Mickl T. Halbouty,Houston,Tex. @ Copyright 19G6 Americsn Institute of Mining, Metallurgical and Petroleum Engineers, Inc. This paper was preparedfor the 41st AnnualFall Meetingof the Societyof PetroleumEngineers of AIME, to be held in Dallas,l?ex.,Oct. 2-5, 1966. permissionto copy is restrictedto an abstract of not more than 300 words. Illustrationsmay not be copied. The abstractshouldcontainconspicu- ous acknowledgmentof whereand by whom the paper is presented. Publicationelsewhereafter publica- tion in the JOURNALOF l?i’TROI.WJMTECHNOLOGYor the SOCIETYOF PETROLEUMENGINEERSJOURNALis usually grantedupon requestto the Editorof the appropriatejournalprovideciagreementto give propercredit is made. Discussionof this paper is invited. Three copiesof any discussionshouldbe sent to the Societyof PetroleumEngineersoffice. Such discussionmay be presentedat the abovemeetingand, with the paper,may be consideredfor publicationin one of the two WE magazines. v, The Cook Inlet basin is a narrow, Although the general characteristics elongate trough of Mesozoic and Ter- of the basin are fairly well known, tiary sediments located north of new information, as it is made avail- latitude 59° in south-central Alaska able will cause many revisions of the (Fig. 1). The basin covers approxi- stratigraphic and structural fabric mately 11,000 square miles of th~ before a complete geological picture northerripart of the Matanuska geo- is possible. -
Bul1969b Plate2.Pdf
U.S. Department of the Interior Bulletin 1969–B U.S. Geological Survey Plate 2 of 2 STRATIGRAPHIC CORRELATION CHART OF THE TERRANES OF THE ALASKA PENINSULA AND NEARBY TERRANES AND STRATIGRAPHIC UNITS OF SOUTHERN ALASKA [Wavy lines indicate areas of unconformity or disconformity. Shaded gray areas indicate missing section or nondepostion] GEOLOGIC UNITS OF THE ALASKA PENINSULA TERRANE GEOLOGIC UNITS OF THE GEOLOGIC UNITS OF THE "HIDDEN" GEOLOGIC UNITS OF THE GEOLOGIC UNITS OF THE WRANGELLIA TERRANE GEOLOGIC UNITS OF THE SOUTHERN KAHILTNA TERRANE KAHILTNA ASSEMBLAGE CHUGACH TERRANE BLOCK (KNIK RIVER TERRANE) CHIGNIK SUBTERRANE ILLIAMNA SUBTERRANE Plafker and others (1977); Connelly Pavlis (1983,1986); Roeske and other (1989); Detterman and others (1996); Detterman and Hartsock (1966); Detterman Detterman and others (1996); Detterman and Hartsock (1966); Detterman Jones and others (1977); Jones and MacKevett (1969); Plafker and others (1989); (1978); Moore (1974b) Burns (1985); Connelly and Moore (1978) and Reed (1980); this paper and Reed (1980); this paper MacKevett (1969; 1978) Wallace and others (1977) Jones and others (1977) Hoodoo and Kaguyak Formations (Late Cretaceous, Maestrichtian and Campanian)—Siltstone, shale (Hoodoo >600 meters; Kaguyak >1,200 meters) Sedimentary rocks (Late Cretaceous and late Early Cretaceous; Maestrichtian Chignik Formation (Late Cretaceous; Maestrichtian and Campanian)— to late Albian)—Correlative with Matanuska Formation and consists of four Sandstone, siltstone, conglomerate, coal (~600 meters) formations -
Geologic Map of Alaska
Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey Front cover. Color shaded relief map of Alaska and surroundings. Sources: 100-meter-resolution natural image of Alaska, http://nationalmap.gov/small_scale/mld/nate100.html; rivers and lakes dataset, http://www.asgdc.state.ak.us/; bathymetry and topography of Russia and Canada, https://www.ngdc.noaa.gov/mgg/global/global.html. Back cover. Previous geologic maps of Alaska: 1906—Brooks, A.H., Abbe, Cleveland, Jr., and Goode, R.U., 1906, The geography and geology of Alaska; a summary of existing knowledge, with a section on climate, and a topographic map and description thereof: U.S. Geological Survey Professional Paper 45, 327 p., 1 sheet. 1939—Smith, P.S., 1939, Areal geology of Alaska: U.S. Geological Survey Professional Paper 192, 100 p., 18 plates. 1957—Dutro, J.T., Jr., and Payne, T.G., 1957, Geologic map of Alaska: U.S. Geological Survey, scale 1:2,500,000. 1980—Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets. Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S.