Alpha-PHP (Α-Pyrrolidinohexanophenone) Or PV-7

Total Page:16

File Type:pdf, Size:1020Kb

Alpha-PHP (Α-Pyrrolidinohexanophenone) Or PV-7 Critical Review Report: alpha-PHP (α-Pyrrolidinohexanophenone) or PV-7 Expert Committee on Drug Dependence Forty-second Meeting Geneva, 21-25 October 2019 This report contains the views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization 42nd ECDD (2019): alpha-PHP © World Health Organization 2019 All rights reserved. This is an advance copy distributed to the participants of the 42nd Expert Committee on Drug Dependence, before it has been formally published by the World Health Organization. The document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means without the permission of the World Health Organization. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Page 2 of 21 42nd ECDD (2019): alpha-PHP Contents Acknowledgements ............................................................................................................................ 5 Summary ............................................................................................................................................ 5 1. Substance identification .................................................................................................................... 7 A. International Nonproprietary Name (INN) ....................................................................................... 7 B. Chemical Abstract Service (CAS) Registry Number ........................................................................... 7 C. Other Chemical Names .................................................................................................................... 7 D. Trade Names .................................................................................................................................... 7 E. Street Names .................................................................................................................................... 7 F. Physical Appearance ........................................................................................................................ 7 G. WHO Review History ........................................................................................................................ 8 2. Chemistry ......................................................................................................................................... 8 A. Chemical Name ................................................................................................................................ 8 B. Chemical Structure ........................................................................................................................... 8 C. Stereoisomers................................................................................................................................... 8 D. Methods and Ease of Illicit Manufacturing ...................................................................................... 9 E. Chemical Properties ......................................................................................................................... 9 F. Identification and Analysis ............................................................................................................... 9 3. Ease of Convertibility Into Controlled Substances .............................................................................. 9 4. General Pharmacology ..................................................................................................................... 9 A. Routes of administration and dosage ............................................................................................10 B. Pharmacokinetics ...........................................................................................................................11 C. Pharmacodynamics ........................................................................................................................12 5. Toxicology....................................................................................................................................... 13 6. Adverse Reactions in Humans ......................................................................................................... 13 7. Dependence Potential ..................................................................................................................... 15 A. Animal Studies ................................................................................................................................16 B. Human Studies ...............................................................................................................................16 8. Abuse Potential ............................................................................................................................... 17 A. Animal Studies ................................................................................................................................17 B. Human Studies ...............................................................................................................................17 9. Therapeutic Applications and Extent of Therapeutic Use and Epidemiology of Medical Use ............ 17 10. Listing on the WHO Model List of Essential Medicines .................................................................... 17 11. Marketing Authorizations (as a Medicinal Product) ........................................................................ 18 12. Industrial Use .................................................................................................................................. 18 13. Non-Medical Use, Abuse and Dependence ...................................................................................... 18 Page 3 of 21 42nd ECDD (2019): alpha-PHP 14. Nature and Magnitude of Public Health Problems Related to Misuse, Abuse and Dependence ....... 18 15. Licit Production, Consumption and International Trade .................................................................. 18 16. Illicit Manufacture and Traffic and Related Information.................................................................. 18 17. Current International Controls and Their Impact ............................................................................. 18 18. Current and Past National Controls ................................................................................................. 18 19. Other Medical and Scientific Matters Relevant for a Recommendation on the Scheduling of the Substance ....................................................................................................................................... 18 References ....................................................................................................................................... 19 Page 4 of 21 42nd ECDD (2019): alpha-PHP Acknowledgements This document was produced for the WHO Expert Committee on Drug Dependence (ECDD) under the overall direction of the WHO Secretariat led by Dr Gilles Forte (Division of Access to Medicines, Vaccines, and Pharmaceuticals). The document was written by Professor Rainer Spanagel under the technical direction of Dr Dilkushi Poovendran (Division of Access to Medicines, Vaccines, and Pharmaceuticals). The report was edited by Professor Kim Wolff. The member state questionnaire was produced under the technical direction of Ms Judith Sprunken (Division of Access to Medicines, Vaccines, and Pharmaceuticals). The WHO Secretariat would also like to thank the European Monitoring Centre for Drugs and Drug Addiction (EMCCDA), INCB, UNODC, and Member States for providing relevant information for the review of substances. Page 5 of 21 42nd ECDD (2019): alpha-PHP Executive Summary Alpha-PHP, (α-Pyrrolidinohexanophenone), or PV-7 is a compound of the substituted cathinone and substituted pyrrolidine chemical classes. Its structure is comprised of hexanal bound to a phenyl ring at the 1 position and the nitrogen of a pyrrolidine ring at the 2 position. Alpha-PHP is thus a synthetic stimulant drug of the cathinone class and was already developed and patented in the 1960s. It has no therapeutic or medical use. In different regions alpha-PHP is being used and abused as a novel designer drug. In the United States, alpha-PHP is a Schedule I Controlled Substance, in the UK a Class B scheduled substance and is also a controlled substance in Italy, Sweden and China. Pharmacokinetic analyses suggest a two-compartment model and a serum elimination
Recommended publications
  • Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materialsd
    Recommended methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits:UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2020 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/49/REV.1 Original language: English © United Nations, March 2020. All rights reserved, worldwide. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr.
    [Show full text]
  • The Stimulants and Hallucinogens Under Consideration: a Brief Overview of Their Chemistry and Pharmacology
    Drug and Alcohol Dependence, 17 (1986) 107-118 107 Elsevier Scientific Publishers Ireland Ltd. THE STIMULANTS AND HALLUCINOGENS UNDER CONSIDERATION: A BRIEF OVERVIEW OF THEIR CHEMISTRY AND PHARMACOLOGY LOUIS S. HARRIS Dcparlmcnl of Pharmacology, Medical College of Virginia, Virginia Commonwealth Unwersity, Richmond, VA 23298 (U.S.A.) SUMMARY The substances under review are a heterogenous set of compounds from a pharmacological point of view, though many have a common phenylethyl- amine structure. Variations in structure lead to marked changes in potency and characteristic action. The introductory material presented here is meant to provide a set of chemical and pharmacological highlights of the 28 substances under con- sideration. The most commonly used names or INN names, Chemical Abstract (CA) names and numbers, and elemental formulae are provided in the accompanying figures. This provides both some basic information on the substances and a starting point for the more detailed information that follows in the individual papers by contributors to the symposium. Key words: Stimulants, their chemistry and pharmacology - Hallucinogens, their chemistry and pharmacology INTRODUCTION Cathine (Fig. 1) is one of the active principles of khat (Catha edulis). The structure has two asymmetric centers and exists as two geometric isomers, each of which has been resolved into its optical isomers. In the plant it exists as d-nor-pseudoephedrine. It is a typical sympathomimetic amine with a strong component of amphetamine-like activity. The racemic mixture is known generically in this country and others as phenylpropanolamine (dl- norephedrine). It is widely available as an over-the-counter (OTC) anti- appetite agent and nasal decongestant.
    [Show full text]
  • Identifying New/Emerging Psychoactive Substances at the Time of COVID-19; a Web-Based Approach
    ORIGINAL RESEARCH published: 09 February 2021 doi: 10.3389/fpsyt.2020.632405 Identifying New/Emerging Psychoactive Substances at the Time of COVID-19; A Web-Based Approach Valeria Catalani 1*, Davide Arillotta 1, John Martin Corkery 1, Amira Guirguis 1,2, Alessandro Vento 3,4,5 and Fabrizio Schifano 1 1 Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life & Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom, 2 Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea, United Kingdom, 3 Department of Mental Health, ASL Roma 2, Rome, Italy, 4 Addictions’ Observatory (ODDPSS), Rome, Italy, 5 Department of Psychology, Guglielmo Marconi University, Rome, Italy COVID-19-related disruptions of people and goods’ circulation can affect drug markets, especially for new psychoactive substances (NPSs). Drug shortages could cause a change in available NPS, with the introduction of new, unknown, substances. The aims of the current research were to use a web crawler, NPSfinder®, to identify and categorize emerging NPS discussed on a range of drug enthusiasts/psychonauts’ websites/fora at the time of the pandemic; social media for these identified NPS were screened as Edited by: well. The NPSfinder® was used here to automatically scan 24/7 a list of psychonaut Ornella Corazza, University of Hertfordshire, websites and NPS online resources. The NPSs identified in the time frame between United Kingdom January and August 2020 were searched in both the European Monitoring Center Reviewed by: for Drugs and Drug Addictions (EMCDDA)/United Nations Office on Drugs and Crime Simona Zaami, Sapienza University of Rome, Italy (UNODC) databases and on social media (Facebook, Twitter, Instagram, Pinterest, Laura Hondebrink, and YouTube) as well, with a content qualitative analysis having been carried out on University Medical Center reddit.com.
    [Show full text]
  • 3,4-Methylenedioxymethcathinone (Methylone) [“Bath Salt,” Bk-MDMA, MDMC, MDMCAT, “Explosion,” “Ease,” “Molly”] December 2019
    Drug Enforcement Administration Diversion Control Division Drug & Chemical Evaluation Section 3,4-Methylenedioxymethcathinone (Methylone) [“Bath salt,” bk-MDMA, MDMC, MDMCAT, “Explosion,” “Ease,” “Molly”] December 2019 Introduction: discriminate DOM from saline. 3,4-Methylenedioxymethcathinone (methylone) is a Because of the structural and pharmacological similarities designer drug of the phenethylamine class. Methylone is a between methylone and MDMA, the psychoactive effects, adverse synthetic cathinone with substantial chemical, structural, and health risks, and signs of intoxication resulting from methylone pharmacological similarities to 3,4-methylenedioxymeth- abuse are likely to be similar to those of MDMA. Several chat amphetamine (MDMA, ecstasy). Animal studies indicate that rooms discussed pleasant and positive effects of methylone when methylone has MDMA-like and (+)-amphetamine-like used for recreational purpose. behavioral effects. When combined with mephedrone, a controlled schedule I substance, the combination is called User Population: “bubbles.” Other names are given in the above title. Methylone, like other synthetic cathinones, is a recreational drug that emerged on the United States’ illicit drug market in 2009. It is perceived as being a ‘legal’ alternative to drugs of Licit Uses: Methylone is not approved for medical use in the United abuse like MDMA, methamphetamine, and cocaine. Evidence States. indicates that youths and young adults are the primary users of synthetic cathinone substances which include methylone. However, older adults also have been identified as users of these Chemistry: substances. O H O N CH3 Illicit Distribution: CH O 3 Law enforcement has encountered methylone in the United States as well as in several countries including the Netherlands, Methylone United Kingdom, Japan, and Sweden.
    [Show full text]
  • Synthetic Cathinones ("Bath Salts")
    Synthetic Cathinones ("Bath Salts") What are synthetic cathinones? Synthetic cathinones, more commonly known as "bath salts," are synthetic (human- made) drugs chemically related to cathinone, a stimulant found in the khat plant. Khat is a shrub grown in East Africa and southern Arabia, and people sometimes chew its leaves for their mild stimulant effects. Synthetic variants of cathinone can be much stronger than the natural product and, in some cases, very dangerous (Baumann, 2014). In Name Only Synthetic cathinone products Synthetic cathinones are marketed as cheap marketed as "bath salts" should substitutes for other stimulants such as not be confused with products methamphetamine and cocaine, and products such as Epsom salts that people sold as Molly (MDMA) often contain synthetic use during bathing. These cathinones instead (s ee "Synthetic Cathinones bathing products have no mind- and Molly" on page 3). altering ingredients. Synthetic cathinones usually take the form of a white or brown crystal-like powder and are sold in small plastic or foil packages labeled "not for human consumption." Also sometimes labeled as "plant food," "jewelry cleaner," or "phone screen cleaner," people can buy them online and in drug paraphernalia stores under a variety of brand names, which include: Flakka Bloom Cloud Nine Lunar Wave Vanilla Sky White Lightning Scarface Image courtesy of www.dea.gov/pr/multimedia- library/image-gallery/bath-salts/bath-salts04.jpg Synthetic Cathinones • January 2016 • Page 1 How do people use synthetic cathinones? People typically swallow, snort, smoke, or inject synthetic cathinones. How do synthetic cathinones affect the brain? Much is still unknown about how synthetic cathinones affect the human brain.
    [Show full text]
  • Street Names: Khat, Qat, Kat, Chat, Miraa, Quaadka) September 2019
    Drug Enforcement Administration Diversion Control Division Drug & Chemical Evaluation Section KHAT (Street Names: Khat, Qat, Kat, Chat, Miraa, Quaadka) September 2019 Introduction: User Population: Khat, Catha edulis, is a flowering shrub native to East Abuse of khat in the United States is most prevalent among Africa and the Arabian-Peninsula. Khat often refers to the immigrants from Somalia, Ethiopia, and Yemen. Abuse of khat is leaves and young shoot of Catha edulis. It has been widely highest in cities with a substantial population of these immigrants. used since the thirteenth century as a recreational drug by the These cities include Boston (MA), Columbus (OH), Dallas (TX), indigenous people of East Africa, the Arabian Peninsula and Detroit (MI), Kansas City (MO), Los Angeles (CA), Minneapolis (MN), throughout the Middle East. Nashville (TN), New York (NY), and Washington D.C. Licit Uses: Illicit Distribution: There is no accepted medical use in treatment for khat in Individuals of Somali, Ethiopian, and Yemeni descent are the the United States. primary transporters and distributors of khat in the United States. The khat is transported from Somalia into the United States and distributed Chemistry and Pharmacology: in the Midwest, West and Southeast (Nashville, Tennessee) regions Khat contains two central nervous system (CNS) of the United States. According to the National Drug Intelligence stimulants, namely cathinone and cathine. Cathinone (alpha- Center, Somali and Yemen independent dealers are distributing khat aminopriopiophenone), which is considered to be the principal in Ann Arbor, Detroit, Lansing and Ypsilanti, Michigan; Columbus, active stimulant, is structurally similar to d-amphetamine and Ohio; Kansas City, Missouri; and Minneapolis/St.
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture Of
    40 INCB REPORT ON PRECURSORS 2019 • 2,5-Dimethoxybenzaldehyde, a precursor for 2,5-dimethoxyamphetamine (DMA), brolamfetamine IV. Article 13 of the (DOB) and the 2C-series of controlled psychotropic substances, as well as for new psychoactive substances, 1988 Convention as reported by the Netherlands (5 kg) and Belgium (1 kg). a complementary tool in addressing • 4-Methoxy-P-2-P, a precursor of para-methoxy- alpha-methylphenethylamine (PMA) and para- illicit drug methoxymethylamphetamine (PMMA), reported by Spain (52 kg). manufacture 226. Through PICS, incidents involving 2-bromo- 4’-chloropropiophenone, a precursor of various 4-chloro- 229. The clandestine manufacture of narcotic drugs and substituted cathinone derivatives, such as 4-CMC psychotropic substances, new psychoactive substances and (clephedrone), were communicated. Luxembourg seized precursors is not possible without the input of chemicals, 500 kg of the substance in August 2018. The consignment materials and equipment. While the control of chemicals was confiscated because both the supplier and the con- has long been a focus of the authorities worldwide, pursu- signee were already known in connection with shipments ant to the provisions in article 12 of the 1988 Convention, of other precursors of new psychoactive substances. It much less attention has been given to equipment and originated in India, transited Qatar, Luxembourg and materials and article 13 of that Convention, which pro- Germany and was destined for a consignee in Poland. A vides a basis for international action and cooperation in consignment of 300 kg of the substance was confiscated by such control efforts (see box 5). customs authorities in Germany in December 2018.
    [Show full text]
  • Cathinone-Derived Psychostimulants Steven J
    Review Cite This: ACS Chem. Neurosci. XXXX, XXX, XXX−XXX pubs.acs.org/chemneuro DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants Steven J. Simmons,*,† Jonna M. Leyrer-Jackson,‡ Chicora F. Oliver,† Callum Hicks,† John W. Muschamp,† Scott M. Rawls,† and M. Foster Olive‡ † Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States ‡ Department of Psychology, Arizona State University, Tempe, Arizona 85281, United States ABSTRACT: Cathinone is a plant alkaloid found in khat leaves of perennial shrubs grown in East Africa. Similar to cocaine, cathinone elicits psychostimulant effects which are in part attributed to its amphetamine-like structure. Around 2010, home laboratories began altering the parent structure of cathinone to synthesize derivatives with mechanisms of action, potencies, and pharmacokinetics permitting high abuse potential and toxicity. These “synthetic cathinones” include 4-methylmethcathinone (mephedrone), 3,4-methylenedioxypyrovalerone (MDPV), and the empathogenic agent 3,4-methylenedioxymethcathinone (methylone) which collectively gained international popularity following aggressive online marketing as well as availability in various retail outlets. Case reports made clear the health risks associated with these agents and, in 2012, the Drug Enforcement Agency of the United States placed a series of synthetic cathinones on Schedule I under emergency order. Mechanistically, cathinone and synthetic derivatives work by augmenting monoamine transmission through release facilitation and/or presynaptic transport inhibition. Animal studies confirm the rewarding and reinforcing properties of synthetic cathinones by utilizing self-administration, place conditioning, and intracranial self-stimulation assays and additionally show persistent neuropathological features which demonstrate a clear need to better understand this class of drugs.
    [Show full text]
  • Synthesis and Spectroscopic Characterization of Emerging Synthetic Cannabinoids and Cathinones
    Linköping Studies in Science and Technology Thesis No. 1766 Synthesis and spectroscopic characterization of emerging synthetic cannabinoids and cathinones Andreas Carlsson Department of Physics, Chemistry and Biology Linköping University, Sweden Linköping 2016 © Copyright Andreas Carlsson 2016, unless otherwise noted Paper I © 2015 John Wiley & Sons Ltd, reprinted with permission. Pictures © NFC Photo Cover: Layout and illustrations made by Andreas Carlsson and Maria Åsén. Backside picture is taken by NFC Photo. Andreas Carlsson Synthesis and spectroscopic characterization of emerging synthetic cannabinoids and cathinones ISBN: 978-91-7685-625-3 ISSN: 0280-7971 Linköping Studies in Science and Technology, Thesis No. 1766 Printed in Sweden by LiU-Tryck, 2016 ”Ett problem är bara möjligheter i arbetskläder” - Mulle Meck I 4N6 II Abstract The application of different analytical techniques is fundamental in forensic drug analysis. In the wake of the occurrence of large numbers of new psychoactive substances possessing similar chemical structures as already known ones, focus has been placed on applied criteria for their univocal identification. These criteria vary, obviously, depending on the applied technique and analytical approach. However, when two or more substances are proven to have similar analytical properties, these criteria no longer apply, which imply that complementary techniques have to be used in their differentiation. This work describes the synthesis of some structural analogues to synthetic cannabinoids and cathinones based on the evolving patterns in the illicit drug market. Six synthetic cannabinoids and six synthetic cathinones were synthesized, that, at the time for this study, were not as yet found in drug seizures. Further, a selection of their spectroscopic data is compared to those of already existing analogues; mainly isomers and homologues.
    [Show full text]
  • New Psychoactive Substance Use in Hungary
    New psychoactive substance use in Hungary Gergely Horváth Hungarian National Focal Point DRD Annual Expert Meeting 2012 Lisbon, 12-13 November 2012 First glance From 2009 on – decrease in heroin availability, seizures, mortality figures Qualitative data showed appearance of new substances Forensic data sources showed appearance of new substances From 2010 a ‘boom’ in new substances, mostly two types: synthetic cathinones, (other stimulants) synthetic cannabinoids Note: Forensic analyses of substances seized were the first to detect these substances in a reliable way. In 2012 we still have scarce epidemiological data. No. of reported death cases 2004-2011 sort of stable until 2010 opiate + other drugs (alcohol, benzodiazepindes) few „methadone only” cases 90-95% males, mean age around 34 years in 2008: 1.2% of estimated POUs in 2009: 0.3 /100.000 inhabitant, around; 1/100.000 in BP 40 35 34 30 28 27 31 25 25 25 20 17 15 14 10 5 0 2004 2005 2006 2007 2008 2009 2010 2011 number of seizures quantity seized Type of drug 2010 2011 2010 2011 Herbal cannabis (kg) 2,220 2,073 528.1 208.7 Cannabis plant (plant) 213 192 14,824 14,121 Cannabis resin (kg) 44 63 8.5 18.2 Heroin (kg) 73 22 97.8 3.2 Cocaine (kg) 132 108 14.4 12.6 Amphetamine (kg) 484 483 71.2 24.1 Herbal substances with 51 465 14.8 10.2 synthetic cannabinoids (kg) Synthetic cannabinoids in 5 51 0.01 13.2 powder form (kg) Cathinone derivatives in 353 595 9.08 75.8 powder form (kg) Cathinone derivatives in 60 144 3,990 7,951 tablet form (pc) Source: Hungarian Institute for
    [Show full text]
  • Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com
    Hallucinogens And Dissociative Drug Use And Addiction Introduction Hallucinogens are a diverse group of drugs that cause alterations in perception, thought, or mood. This heterogeneous group has compounds with different chemical structures, different mechanisms of action, and different adverse effects. Despite their description, most hallucinogens do not consistently cause hallucinations. The drugs are more likely to cause changes in mood or in thought than actual hallucinations. Hallucinogenic substances that form naturally have been used worldwide for millennia to induce altered states for religious or spiritual purposes. While these practices still exist, the more common use of hallucinogens today involves the recreational use of synthetic hallucinogens. Hallucinogen And Dissociative Drug Toxicity Hallucinogens comprise a collection of compounds that are used to induce hallucinations or alterations of consciousness. Hallucinogens are drugs that cause alteration of visual, auditory, or tactile perceptions; they are also referred to as a class of drugs that cause alteration of thought and emotion. Hallucinogens disrupt a person’s ability to think and communicate effectively. Hallucinations are defined as false sensations that have no basis in reality: The sensory experience is not actually there. The term “hallucinogen” is slightly misleading because hallucinogens do not consistently cause hallucinations. 1 ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com How hallucinogens cause alterations in a person’s sensory experience is not entirely understood. Hallucinogens work, at least in part, by disrupting communication between neurotransmitter systems throughout the body including those that regulate sleep, hunger, sexual behavior and muscle control. Patients under the influence of hallucinogens may show a wide range of unusual and often sudden, volatile behaviors with the potential to rapidly fluctuate from a relaxed, euphoric state to one of extreme agitation and aggression.
    [Show full text]
  • 4Th Quarter 2020 DEA
    QUARTERLY REPORT 4th Quarter – 2020 U.S. Department of Justice Drug Enforcement Administration Diversion Control Division Drug and Chemical Evaluation Section Drug Enforcement Administration – Toxicology Testing Program Contents Introduction ............................................................ 3 Summary ................................................................. 4 NPS Discovered via DEA TOX ................................. 5 New Psychoactive Substances ............................... 6 Traditional Illicit Drugs ........................................... 8 Prescription and Over the Counter Drugs ............. 9 Contact Information ............................................. 10 2 | Page 4th Quarter Report – 2020 Drug Enforcement Administration – Toxicology Testing Program Introduction The Drug Enforcement Administration’s Toxicology Testing Program (DEA TOX) began in May 2019 as a surveillance program aimed at detecting new psychoactive substances within the United States. In response to the ongoing synthetic drug epidemic, the Drug Enforcement Administration (DEA) awarded a contract with the University of California at San Francisco (UCSF) to analyze biological samples generated from overdose victims of synthetic drugs. In many cases, it can be difficult to ascertain the specific substance responsible for the overdose. The goal of DEA TOX is to connect symptom causation to the abuse of newly emerging synthetic drugs (e.g. synthetic cannabinoids, synthetic cathinones, fentanyl-related substances, other hallucinogens, etc.).
    [Show full text]