Renormalization Group Approach to Dense Baryonic Matter

Total Page:16

File Type:pdf, Size:1020Kb

Renormalization Group Approach to Dense Baryonic Matter RENORMALIZATIONGROUPAPPROACH TODENSEBARYONICMATTER Matthias Drews October, 2014 Technische Universität München Physik Department Institut für Theoretische Physik T39 Univ.-Prof. Dr. Wolfram Weise RENORMALIZATIONGROUPAPPROACH TODENSEBARYONICMATTER Matthias Johannes Drews, M. Sc. Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Stephan Paul Prüfer der Dissertation: 1. Univ.-Prof. Dr. Wolfram Weise (em.) 2. Univ.-Prof. Dr. Nora Brambilla Die Dissertation wurde am 02.10.2014 bei der Technischen Universität München einge- reicht und durch die Fakultät für Physik am 11.11.2014 angenommen. This work has been supported by the BMBF, the Excellence cluster “Origin and Structure of the Universe”, the Fondazione Bruno Kessler, the TUM Graduate School, and the Wilhelm und Else Heraeus-Stiftung. ABSTRACT This work investigates a chiral nucleon-meson model, which is suited to analyze chiral sym- metry breaking and the thermodynamics of nuclear matter at the same time. We go beyond the mean-field approximation by including pionic fluctuations in a non-perturbative way with methods of the functional renormalization group. Within the model, we can exclude a chiral phase transition for temperatures below 100 MeV and densities below about twice the nuclear saturation density. Furthermore, we extend the model to asymmetric nuclear matter and therefore obtain a description for the interior of neutron stars. ZUSAMMENFASSUNG In dieser Arbeit untersuchen wir ein chirales Nukleon-Meson-Modell, welches sowohl chi- rale Symmetriebrechung als auch die Thermodynamik von Kernmaterie beschreiben kann. Wir gehen über die Mean-Field-Näherung hinaus und berücksichtigen Pionfluktuationen auf nichtperturbative Weise im Rahmen der funktionalen Renormierungsgruppe. Innerhalb des Modells kann für Temperaturen unterhalb von 100 MeV und Dichten unter etwa der zweifachen nuklearen Sättigungsdichte ein chiraler Phasenübergang ausgeschlossen werden. Darüber hinaus weiten wir das Modell auf asymmetrische Kernmaterie aus und erhalten damit eine Beschreibung für das Innere von Neutronensternen. vii PUBLICATIONS The text of this thesis contains material which has previously been published in the arti- cles listed below. M. Drews, T. Hell, B. Klein, and W. Weise, “Thermodynamic phases and mesonic fluctua- tions in a chiral nucleon-meson model”, Phys. Rev. D. 88 (2013) 096011, arXiv:1308.5596, M. Drews, T. Hell, B. Klein, and W. Weise, “Dense nucleonic matter and the renormal- ization group”, EPJ web conf. 66 (2014) 04008, arXiv:1307.6973, M. Drews, W. Weise, “Functional renormalization group approach to neutron matter”, Phys. Lett. B 738 (2014) 187–190, arXiv:1404.0882. ix ACKNOWLEDGMENTS In the first place, I would like to express my gratitude to Prof. Dr. Wolfram Weise for giving me the opportunity to write my thesis in his group. He was always open for inspiring discussions and for sharing his profound insights on nuclear physics with a former string theorist. I would further like to thank him for offering me the possibility to participate in numerous conferences all over the world and for initiating my six-months stay at the ECT* in beautiful Trento, Italy. I am thankful to Kenji Fukushima for inviting me to the Yukawa Institute in Kyoto for a very instructive three-weeks visit in 2011. I further thank Kouji Kashiwa for inviting me to a joyful visit at the Brookhaven National Laboratory on Long Island in 2012. I also wish to thank the members of the ECT* for their warm welcome during my stay in Trento. It is a pleasure to thank Prof. Dr. Norbert Kaiser for his helpful advice on all sorts of conceptional and practical issues during my research. I am very grateful to Thomas Hell for his support and his collaboration. Moreover, I am glad to thank my office mates, Robert Lang and Alexander Laschka, for the friendly atmosphere, which made me enjoy my stay at the TUM. I am very grateful to all my current and former colleagues at T39, in particular Michael Altenbuchinger, Nino Bratovic, Maximilian Duell, Salvatore Fior- illa, Lisheng Geng, Jeremy Holt, Bertram Klein, Stefan Petschauer, Paul Springer and Corbinian Wellenhofer for a nice and inspiring environment, many enlightening conversa- tions on physics and for shared hours outside the office. A very special place is reserved for my thanks to Kathrin Helmsauer for her love and support. Last, but not least, I am indebted to express my deepest gratitude to my family for their permanent support during all these years, which made this thesis possible. xi CONTENTS 1 introduction 1 2 from gauge theories to nuclear matter 3 2.1 Gravity . .3 2.2 Quantum Chromodynamics . .5 2.3 Asymptotic freedom and confinement . .6 2.4 Global symmetries . .8 2.5 QCD at finite temperature and density . 13 2.5.1 Heavy-ion collisions . 13 2.5.2 Chiral restoration . 15 2.6 Nuclear matter . 20 3 concepts of the renormalization group 23 3.1 The effective action . 23 3.2 Finite temperature . 26 3.3 Exact renormalization group equations . 28 3.3.1 Wilson’s RG and Polchinski’s RG . 28 3.3.2 The functional RG . 30 3.4 Numerical evaluation . 34 4 functional renormalization group approach to a chiral nucleon-meson model 37 4.1 The chiral nucleon-meson model . 37 4.2 Mean-field approximation . 41 4.2.1 Vacuum constraints . 45 4.2.2 Constraints from the liquid-gas phase transition . 47 4.2.3 Constraints from pure neutron matter . 51 4.3 Wetterich’s flow equation . 54 4.3.1 Taylor-expansion method . 56 4.3.2 Flow equations for the vector fields . 58 4.3.3 Fluctuations around the liquid-gas transition . 61 4.3.4 Renormalization group equations in the mean-field approximation . 62 4.4 Symmetric nuclear matter . 65 4.4.1 Liquid-gas transition . 66 4.4.2 Chiral restoration . 70 4.4.3 Fluctuations . 74 4.5 Asymmetric nuclear matter . 76 4.5.1 Phase coexistence and equation of state . 76 4.5.2 In-medium pion mass . 78 4.5.3 Chiral restoration . 79 4.6 Neutron stars . 81 5 summary and outlook 87 a appendix 89 xiii 1 INTRODUCTION In January 1932, Lev Landau theorized [1] about the interior of heavy stars, a place characterized by “a violation of the law of energy”, where “the laws of ordinary quantum mechanics break down”, and “the density of matter becomes so great that atomic nuclei come in close contact, forming one gigantic nucleus”. Whereas the two former conclusions might sound a bit premature from today’s perspective, the “gigantic nucleus” is often understood as a first description of a neutron star. Remarkably, Landau’s paper was developed independently and even before1 the detection of the neutron by James Chadwick in February 1932 [3]. It took another two years until Walter Baade and Fritz Zwicky constructed the first models of neutron stars built out of actual neutrons, without altering quantum mechanics and the conservation of energy [4–7]. These days we are again in a situation where the smoke starts to clear. In the past, high-precision measurements of neutron-star masses were relatively sparse. Consequently, the interior of a neutron star was up for speculation, and a plethora of theories based on all kinds of exotic matter was on the market. But after the discovery of neutron stars as heavy as twice the mass of the sun [8,9], paired with an extreme accuracy, theoretical considerations are strongly constrained. It turns out that conventional models – working with nucleon and meson rather than quark degrees of freedom – are in agreement with all constraints. More exotic models are either ruled out or require a substantial amount of fine tuning. In the present thesis, we study a generalized linear sigma model of nucleons (protons and neutrons), interacting through exchange of pions and other boson fields. We include fluctuation effects in the framework of the functional renormalization group in a systematic non-perturbative way. The thermodynamic equation of state obtained in this model can be taken to describe the interior of neutron stars. This allows us to compare our results with state-of-the-art approaches such as chiral effective field theory, quantum Monte-Carlo calculations, or phenomenological models. One aspect of the strong force as described by Quantum Chromodynamics (QCD) is chiral symmetry. At small baryon chemical potential chiral symmetry is restored at high temperatures in a crossover and not in a true phase transition. In contrast, the situation at higher baryon chemical potentials remains unclear. Many models predict a first-order transition that ends in a second-order critical endpoint. A lot of theoretical and experi- mental effort is put into the determination of the critical endpoint, whose existence would be a landmark in the phase-diagram of QCD. However, it is far from certain whether such a critical point exists. While we certainly cannot definitely answer this question within our model, we can still exclude the appearance of a chiral first-order phase transition in a broad region. Another aspect of our approach concerns the question of chiral restoration in the context of neutron matter at low temperatures, which is also relevant for the description of neutron 1 See Ref. [2] for the historical backgrounds, in particular how the paper on neutron stars possibly saved Landau’s life. 1 2 introduction stars. The chiral condensate is an order parameter of chiral restoration. In chiral effective field theory it was observed that the chiral condensate in symmetric nuclear matter is stabilized at higher densities [10–13]. An important role is played by two-pion exchange processes and repulsive three-body forces, including the appearance of a virtual ∆-isobar and the action of the Pauli principle in the nucleon Fermi sea.
Recommended publications
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • Yang-Mills Theory, Lattice Gauge Theory and Simulations
    Yang-Mills theory, lattice gauge theory and simulations David M¨uller Institute of Analysis Johannes Kepler University Linz [email protected] May 22, 2019 1 Overview Introduction and physical context Classical Yang-Mills theory Lattice gauge theory Simulating the Glasma in 2+1D 2 Introduction and physical context 3 Yang-Mills theory I Formulated in 1954 by Chen Ning Yang and Robert Mills I A non-Abelian gauge theory with gauge group SU(Nc ) I A non-linear generalization of electromagnetism, which is a gauge theory based on U(1) I Gauge theories are a widely used concept in physics: the standard model of particle physics is based on a gauge theory with gauge group U(1) × SU(2) × SU(3) I All fundamental forces (electromagnetism, weak and strong nuclear force, even gravity) are/can be formulated as gauge theories 4 Classical Yang-Mills theory Classical Yang-Mills theory refers to the study of the classical equations of motion (Euler-Lagrange equations) obtained from the Yang-Mills action Main topic of this seminar: solving the classical equations of motion of Yang-Mills theory numerically Not topic of this seminar: quantum field theory, path integrals, lattice quantum chromodynamics (except certain methods), the Millenium problem related to Yang-Mills . 5 Classical Yang-Mills in the early universe 6 Classical Yang-Mills in the early universe Electroweak phase transition: the electro-weak force splits into the weak nuclear force and the electromagnetic force This phase transition can be studied using (extensions of) classical Yang-Mills theory Literature: I G. D.
    [Show full text]
  • Weyl Spinors and the Helicity Formalism
    Weyl spinors and the helicity formalism J. L. D´ıazCruz, Bryan Larios, Oscar Meza Aldama, Jonathan Reyes P´erez Facultad de Ciencias F´ısico-Matem´aticas, Benem´erita Universidad Aut´onomade Puebla, Av. San Claudio y 18 Sur, C. U. 72570 Puebla, M´exico Abstract. In this work we give a review of the original formulation of the relativistic wave equation for parti- cles with spin one-half. Traditionally (`ala Dirac), it's proposed that the \square root" of the Klein-Gordon (K-G) equation involves a 4 component (Dirac) spinor and in the non-relativistic limit it can be written as 2 equations for two 2 component spinors. On the other hand, there exists Weyl's formalism, in which one works from the beginning with 2 component Weyl spinors, which are the fundamental objects of the helicity formalism. In this work we rederive Weyl's equations directly, starting from K-G equation. We also obtain the electromagnetic interaction through minimal coupling and we get the interaction with the magnetic moment. As an example of the use of that formalism, we calculate Compton scattering using the helicity methods. Keywords: Weyl spinors, helicity formalism, Compton scattering. PACS: 03.65.Pm; 11.80.Cr 1 Introduction One of the cornerstones of contemporary physics is quantum mechanics, thanks to which great advances in the comprehension of nature at the atomic, and even subatomic level have been achieved. On the other hand, its applications have given place to a whole new technological revolution. Thus, the study of quantum physics is part of our scientific culture.
    [Show full text]
  • Electroweak Symmetry Breaking (Historical Perspective)
    Electroweak Symmetry Breaking (Historical Perspective) 40th SLAC Summer Institute · 2012 History is not just a thing of the past! 2 Symmetry Indistinguishable before and after a transformation Unobservable quantity would vanish if symmetry held Disorder order = reduced symmetry 3 Symmetry Bilateral Translational, rotational, … Ornamental Crystals 4 Symmetry CsI Fullerene C60 ball and stick created from a PDB using Piotr Rotkiewicz's [http://www.pirx.com/iMol/ iMol]. {{gfdl}} Source: English Wikipedia, 5 Symmetry (continuous) 6 Symmetry matters. 7 8 Symmetries & conservation laws Spatial translation Momentum Time translation Energy Rotational invariance Angular momentum QM phase Charge 9 Symmetric laws need not imply symmetric outcomes. 10 symmetries of laws ⇏ symmetries of outcomes by Wilson Bentley, via NOAA Photo Library Photo via NOAA Wilson Bentley, by Studies among the Snow Crystals ... CrystalsStudies amongSnow the ... 11 Broken symmetry is interesting. 12 Two-dimensional Ising model of ferromagnet http://boudin.fnal.gov/applet/IsingPage.html 13 Continuum of degenerate vacua 14 Nambu–Goldstone bosons V Betsy Devine Yoichiro Nambu �� 2 Massless NG boson 1 Massive scalar boson NGBs as spin waves, phonons, pions, … Jeffrey Goldstone 15 Symmetries imply forces. I: scale symmetry to unify EM, gravity Hermann Weyl (1918, 1929) 16 NEW Complex phase in QM ORIGINAL Global: free particle Local: interactions 17 Maxwell’s equations; QED massless spin-1 photon coupled to conserved charge no impediment to electron mass (eL & eR have same charge) James Clerk Maxwell (1861/2) 18 19 QED Fermion masses allowed Gauge-boson masses forbidden Photon mass term 1 2 µ 2 mγ A Aµ violates gauge invariance: AµA (Aµ ∂µΛ) (A ∂ Λ) = AµA µ ⇥ − µ − µ ⇤ µ Massless photon predicted 22 observed: mγ 10− me 20 Symmetries imply forces.
    [Show full text]
  • Birds and Frogs Equation
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Quadratic Diophantine Multiscale Principles of Equations Finite Harmonic of the American Mathematical Society T. Andreescu, University of Texas at Element Analysis February 2009 Volume 56, Number 2 Dallas, Richardson, TX, USA; D. Andrica, Methods A. Deitmar, University Cluj-Napoca, Romania Theory and University of This text treats the classical theory of Applications Tübingen, quadratic diophantine equations and Germany; guides readers through the last two Y. Efendiev, Texas S. Echterhoff, decades of computational techniques A & M University, University of and progress in the area. The presenta- College Station, Texas, USA; T. Y. Hou, Münster, Germany California Institute of Technology, tion features two basic methods to This gently-paced book includes a full Pasadena, CA, USA investigate and motivate the study of proof of Pontryagin Duality and the quadratic diophantine equations: the This text on the main concepts and Plancherel Theorem. The authors theories of continued fractions and recent advances in multiscale finite emphasize Banach algebras as the quadratic fields. It also discusses Pell’s element methods is written for a broad cleanest way to get many fundamental Birds and Frogs equation. audience. Each chapter contains a results in harmonic analysis. simple introduction, a description of page 212 2009. Approx. 250 p. 20 illus. (Springer proposed methods, and numerical 2009. Approx. 345 p. (Universitext) Monographs in Mathematics) Softcover examples of those methods. Softcover ISBN 978-0-387-35156-8 ISBN 978-0-387-85468-7 $49.95 approx. $59.95 2009. X, 234 p. (Surveys and Tutorials in The Strong Free Will the Applied Mathematical Sciences) Solving Softcover Theorem Introduction to Siegel the Pell Modular Forms and ISBN: 978-0-387-09495-3 $44.95 Equation page 226 Dirichlet Series Intro- M.
    [Show full text]
  • Reflections on a Revolution John Iliopoulos, Reply by Sheldon Lee Glashow
    INFERENCE / Vol. 5, No. 3 Reflections on a Revolution John Iliopoulos, reply by Sheldon Lee Glashow In response to “The Yang–Mills Model” (Vol. 5, No. 2). Internal Symmetries As Glashow points out, particle physicists distinguish To the editors: between space-time and internal symmetry transforma- tions. The first change the point of space and time, leaving Gauge theories brought about a profound revolution in the the fundamental equations unchanged. The second do not way physicists think about the fundamental forces. It is this affect the space-time point but transform the dynamic vari- revolution that is the subject of Sheldon Glashow’s essay. ables among themselves. This fundamentally new concept Gauge theories, such as the Yang–Mills model, use two was introduced by Werner Heisenberg in 1932, the year mathematical concepts: group theory, which is the natural the neutron was discovered, but the real history is more language to describe the physical property of symmetry, complicated.3 Heisenberg’s 1932 papers are an incredible and differential geometry, which connects in a subtle way mixture of the old and the new. For many people at that symmetry and dynamics. time, the neutron was a new bound state of a proton and Although there exist several books, and many more an electron, like a small hydrogen atom. Heisenberg does articles, relating historical aspects of these theories,1 a not reject this idea. Although for his work he considers real history has not yet been written. It may be too early. the neutron as a spin one-half Dirac fermion, something When a future historian undertakes this task, Glashow’s incompatible with a proton–electron bound state, he notes precise, documented, and authoritative essay will prove that “under suitable circumstances [the neutron] can invaluable.
    [Show full text]
  • 03 Hooft FINAL.Indd
    NATURE|Vol 448|19 July 2007|doi:10.1038/nature06074 INSIGHT PERSPECTIVE The making of the standard model Gerard ’t Hooft A seemingly temporary solution to almost a century of questions has become one of physics’ greatest successes. The standard model of particle physics is more than a model. It is a abs = 1 K0 K+ s = 0 n p detailed theory that encompasses nearly all that is known about the subatomic particles and forces in a concise set of principles and equa- s = 0 π– π0 η π+ s = –1 Σ – Σ0 Λ Σ + tions. The extensive research that culminated in this model includes q = 1 q = 1 numerous small and large triumphs. Extremely delicate experiments, – as well as tedious theoretical calculations — demanding the utmost of s = –1 K– K0 s = –2 Ξ – Ξ 0 human ingenuity — have been essential to achieve this success. q = –1 q = 0 q = –1 q = 0 Prehistory Figure 1 | The eightfold way. Spin-zero mesons (a) and spin-half baryons (b) The beginning of the twentieth century was marked by the advent of can be grouped according to their electric charge, q, and strangeness, s, to 1 two new theories in physics . First, Albert Einstein had the remarkable form octets (which are now understood to represent the flavour symmetries insight that the laws of mechanics can be adjusted to reflect the princi- between the quark constituents of both mesons and baryons). ple of relativity of motion, despite the fact that light is transmitted at a finite speed. His theoretical construction was called the special theory momentum was bounded by the square of the mass measured in units of relativity, and for the first time, it was evident that purely theoretical, of ~1 gigaelectronvolt (Fig.
    [Show full text]
  • Gauge Theory
    Preprint typeset in JHEP style - HYPER VERSION 2018 Gauge Theory David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html [email protected] Contents 0. Introduction 1 1. Topics in Electromagnetism 3 1.1 Magnetic Monopoles 3 1.1.1 Dirac Quantisation 4 1.1.2 A Patchwork of Gauge Fields 6 1.1.3 Monopoles and Angular Momentum 8 1.2 The Theta Term 10 1.2.1 The Topological Insulator 11 1.2.2 A Mirage Monopole 14 1.2.3 The Witten Effect 16 1.2.4 Why θ is Periodic 18 1.2.5 Parity, Time-Reversal and θ = π 21 1.3 Further Reading 22 2. Yang-Mills Theory 26 2.1 Introducing Yang-Mills 26 2.1.1 The Action 29 2.1.2 Gauge Symmetry 31 2.1.3 Wilson Lines and Wilson Loops 33 2.2 The Theta Term 38 2.2.1 Canonical Quantisation of Yang-Mills 40 2.2.2 The Wavefunction and the Chern-Simons Functional 42 2.2.3 Analogies From Quantum Mechanics 47 2.3 Instantons 51 2.3.1 The Self-Dual Yang-Mills Equations 52 2.3.2 Tunnelling: Another Quantum Mechanics Analogy 56 2.3.3 Instanton Contributions to the Path Integral 58 2.4 The Flow to Strong Coupling 61 2.4.1 Anti-Screening and Paramagnetism 65 2.4.2 Computing the Beta Function 67 2.5 Electric Probes 74 2.5.1 Coulomb vs Confining 74 2.5.2 An Analogy: Flux Lines in a Superconductor 78 { 1 { 2.5.3 Wilson Loops Revisited 85 2.6 Magnetic Probes 88 2.6.1 't Hooft Lines 89 2.6.2 SU(N) vs SU(N)=ZN 92 2.6.3 What is the Gauge Group of the Standard Model? 97 2.7 Dynamical Matter 99 2.7.1 The Beta Function Revisited 100 2.7.2 The Infra-Red Phases of QCD-like Theories 102 2.7.3 The Higgs vs Confining Phase 105 2.8 't Hooft-Polyakov Monopoles 109 2.8.1 Monopole Solutions 112 2.8.2 The Witten Effect Again 114 2.9 Further Reading 115 3.
    [Show full text]
  • 1 [Accepted for Publication in Studies in History and Philosophy of Modern Physics] the Construction of the Higgs Mechanism
    [Accepted for Publication in Studies in History and Philosophy of Modern Physics] The Construction of the Higgs Mechanism and the Emergence of the Electroweak Theory Interdisciplinary Centre for Science and Technology Studies (IZWT) University of Wuppertal Gaußstr. 20 42119 Wuppertal, Germany [email protected] Abstract I examine the construction process of the Higgs mechanism and its subsequent use by Steven Weinberg to formulate the electroweak theory in particle physics. I characterize the development of the Higgs mechanism to be a historical process that is guided through analogies drawn to the theories of solid-state physics and that is progressive through diverse contributions from a number of physicists working independently. I also offer a detailed comparative study that analyzes the similarities and differences in these contributions. 1. Introduction The concept of “spontaneous symmetry breaking” (SSB) as used in (relativistic) quantum field theory was inspired from the vacuum-structure of the Bardeen-Cooper-Schrieffer(BCS) theory of superconductivity in solid-state physics.1 As physicists Yoichiro Nambu2 and Giovanni Jona- Lasinio3 once remarked, the integration of SSB into the theoretical framework of quantum field theory illustrates a case of “cross-fertilization” between solid-state physics and particle physics through the sharing of a physical concept. The integration process of SSB has been discussed in 1 Barden et al. 1957; see also Bogoliubov 1958 for its re-formulation. 2 Nambu 2009. 3 Jona-Lasinio 2002. 1 a joint paper4 by Laurie Brown and Tian Yu Cao, which has also accounted for the emergence of SSB as a physical concept and its early use in solid-state physics.
    [Show full text]
  • The Principles of Gauging 2
    The Principles of Gauging∗ Holger Lyre†‡ Ruhr-University Bochum The aim of this paper is twofold: First, to present an examination of the principles underlying gauge field theories. I shall argue that there are two principles directly connected to the two well-known theorems of Emmy Noether concerning global and local symmetries of the free matter-field Lagrangian, in the following referred to as “conservation principle” and “gauge principle”. Since both these express nothing but certain symmetry features of the free field theory, they are not sufficient to derive a true interaction coupling to a new gauge field. For this purpose it is necessary to advocate a third, truly empirical principle which may be understood as a generalization of the equivalence principle. The second task of the paper is to deal with the ontological question concerning the reality status of gauge potentials in the light of the proposed logical structure of gauge theories. A nonlocal interpretation of topological effects in gauge theories and, thus, the non-reality of gauge potentials in accordance with the generalized equivalence principle will be favoured. 1. The Gauge Argument. Textbook presentations of the logical structure of gauge field theories usually emphasize the importance of the gauge principle (cf. Aitchison and Hey 1982, µ p. 176): Start with a certain free field theory—take Dirac’s theory LD = ¯(iγ @µ − m) for instance—and consider local gauge transformations (x) → 0(x)=eiqα(x) (x): (1) To satisfy the requirement of local gauge covariance of LD the usual derivative has to be replaced by a covariant derivative @µ → Dµ = @µ − iqAµ: (2) arXiv:quant-ph/0101047 11 Jan 2001 Thus, instead of a free field theory, we obtain—in a somewhat miraculous way—a theory with interaction L →L0 ¯ µ − ¯ µ − ¯ µ D D = (iγ Dµ m) = (iγ @µ m) + qψγ Aµ : (3) Besides this, in usual textbook presentations reference is also made to the importance of “Noether’s theorem”: The existence of a global (i.e.
    [Show full text]
  • Maxwell's Equations, Gauge Fields, and Yang-Mills Theory
    University of Mary Washington Eagle Scholar Student Research Submissions Spring 4-27-2017 Maxwell's Equations, Gauge Fields, and Yang-Mills Theory Nicholas Alexander Gabriel Follow this and additional works at: https://scholar.umw.edu/student_research Part of the Mathematics Commons Recommended Citation Gabriel, Nicholas Alexander, "Maxwell's Equations, Gauge Fields, and Yang-Mills Theory" (2017). Student Research Submissions. 157. https://scholar.umw.edu/student_research/157 This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please contact [email protected]. MAXWELL'S EQUATIONS, GAUGE FIELDS, AND YANG-MILLS THEORY An honors paper submitted to the Department of Mathematics of the University of Mary Washington in partial fulfillment of the requirements for Departmental Honors Nicholas Alexander Gabriel April 2017 By signing your name below, you affirm that this work is the complete and final version of your paper submitted in partial fulfillment of a degree from the University of Mary Washington. You affirm the University of Mary Washington honor pledge: "I hereby declare upon my word of honor that I have neither given nor received unauthorized help on this work." Nicholas A. Gabriel 04/27/17 (digital signature) Maxwell's Equations, Gauge Fields, and Yang-Mills Theory Nicholas A. Gabriel submitted in partial fulfillment of the requirements for Honors in Mathematics at the University of Mary Washington Fredericksburg, Virginia April 2017 This thesis by Nicholas A. Gabriel is accepted in its present form as satisfying the thesis re- quirement for Honors in Mathematics.
    [Show full text]
  • Potential Momentum, Gauge Theory, and Electromagnetism In
    Potential Momentum, Gauge Theory, and Electromagnetism in Introductory Physics David J. Raymond Physics Department New Mexico Tech Socorro, NM 87801 June 25, 2018 Abstract If potential energy is the timelike component of a four-vector, then there must be a corresponding spacelike part which would logically be called the potential momentum. The potential four-momentum consisting of the poten- tial momentum and the potential energy taken together, is just the gauge field of the associated force times the charge associated with that force. The canonical momentum is the sum of the ordinary and potential momenta. Refraction of matter waves by a discontinuity in a gauge field can be used to explore the effects of gauge fields at an elementary level. Using this tool it is possible to show how the Lorentz force law of electromagnetism follows from gauge theory. The resulting arguments are accessible to students at the level of the introductory calculus-based physics course and tie together classi- cal and quantum mechanics, relativity, gauge theory, and electromagnetism. The resulting economy of presentation makes it easier to include modern physics in the one year course normally available for teaching introductory physics. arXiv:physics/9803023v1 [physics.ed-ph] 17 Mar 1998 1 Introduction Many physicists believe that it is important to introduce more modern physics to stu- dents in the introductory college physics course. (See, for instance, the summary of the IUPP project by Coleman et al. [1].) Our experience indicates that retaining the conventional course structure and tacking modern physics on at the end almost guaran- tees failure in this endeavor, due to the time constraints of the typical one year course.
    [Show full text]