Power Set of a Set and Relations

Total Page:16

File Type:pdf, Size:1020Kb

Power Set of a Set and Relations Power Set of a set and Relations 1 Power Set (1) • Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. • Examples – Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}} – Let A={{a,b},c}, P(A)={,{{a,b}},{c},{{a,b},c}} • Note: the empty set and the set itself are always elements of the power set. Power Set (2) • The power set is a fundamental combinatorial object useful when considering all possible combinations of elements of a set • Fact: Let S be a set such that |S|=n, then |P(S)| = 2n Proof of |P(A)|=2^|A| • Proof: ( By induction) – Base case holds: |A|=0, then A={} and P(A)={}. – Induction Hypothesis: Assume to be true for all sets of cardinality n-1, i.e. |A|=n-1 implies |P(A)|=2^{n-1}. – For |A|=n • Let A={a_1,a_2,…,a_n}. Any subset not containing a_n is a subset of B=A\{a_n}. How many subsets of A are there not containing a_n? This is nothing but the set of all subsets of B. The number is 2^{n-1} by induction hypothesis. 4 Proof of |P(A)|=2^|A| Contd… • How to get a subset of A containing a_n? – Take a subset S of B. – Let S’=S {a_n}. – Now S’ is a subset of A containing a_n. • Can any subset of A containing a_n be obtained in this way? – Answer is Yes!! – Let S’ be any subset of A containing a_n. Let S=S’\{a_n}. Now S is a subset of A not containing a_n. 5 Proof of |P(A)|=2^|A| Contd… • Let X_1 be the set of all subsets of A not containing a_n • Let X_2 be the set of all subsets of A containg a_n. • Now P(A)= X_1 X_2 and X_1 X_2 =. • Also S S’=S{a_n} is a bijection. – This implies |S|=|S’|=2^{n-1} by induction hypothesis • So |P(A))|= |S|+|S’|= 2^{n-1} +2^{n-1}=2^{n}. 6 How to generate all subsets of a Set of n elements? 7 Computer Representation of Sets (1) • There really aren’t ways to represent infinite sets by a computer since a computer has a finite amount of memory • If we assume that the universal set U is finite, then we can easily and effectively represent sets by bit vectors • Specifically, we force an ordering on the objects, say: U={a1, a2,…,an} • For a set AU, a bit vector can be defined as, for i=1,2,…,n – bi=0 if ai A – bi=1 if ai A Computer Representation of Sets (2) • Examples – Let U={0,1,2,3,4,5,6,7} and A={0,1,6,7} – The bit vector representing A is: 1100 0011 – How is the empty set represented? – How is U represented? • Set operations become trivial when sets are represented by bit vectors – Union is obtained by making the bit-wise OR – Intersection is obtained by making the bit-wise AND BITWISE OPERATOR (IN C) Operators Meaning of operators & Bitwise AND | Bitwise OR ^ Bitwise exclusive OR ~ Bitwise complement << Shift left >> Shift right Computer Representation of Sets (3) • Let U={0,1,2,3,4,5,6,7}, A={0,1,6,7}, B={0,4,5} • What is the bit-vector representation of B? • Compute, bit-wise, the bit-vector representation of AB • Compute, bit-wise, the bit-vector representation of AB • What sets do these bit vectors represent? Computer Representation of Sets … • Array representations: – U={1,2,….n} – S can be represented by an array A such that A[i]=1 if i S else A[i]=0. • Disjoint Set operations: – Union, j=Find(i) if I in S_j. 12 Programming Question • Using bit vector, we can represent sets of cardinality equal to the size of the vector • What if we want to represent an arbitrary sized set in a computer (i.e., that we do not know a priori the size of the set)? • What data structure could we use? • Tree representation of disjoint Set: To be discussed after Graphs are introduced. Relations 14 Relations and Their Properties – To represent relationships between elements of sets • Ordered pairs: binary relations • Definition 1: Let A and B be sets. A binary relation from A to B is a subset of AB. – a R b: (a,b)R • a is related to b by R – a R b: (a,b)R – Ex.1-3 • Functions as relations – Relations are generalization of functions FIGURE 1 (8.1) FIGURE 1 Displaying the Ordered Pairs in the Relation R from Example 3. Relations on a Set • Definition 2: a relation on the set A is a relation from A to A. – How many relations are there on a set with n elements? ( Such questions will be discussed in Counting and advanced counting) FIGURE 2 Displaying the Ordered Pairs in the Relation R from Example 4. Properties of Relations • Definition 3: A relation R on a set A is called reflexive if (a,a)R for every element aA. – a((a,a)R) • Definition 4: A relation R on a set A is called symmetric if (b,a)R whenever (a,b)R, for all a,bA. A relation R on a set A such that for all a,bA, if (a,b)R and (b,a)R, then a=b is called antisymmetric. – ab((a,b)R →(b,a)R) – ab(((a,b)R (b,a)R) →(a=b)) – Not opposites • Definition 5: A relation R on a set A is called transitive if whenever (a,b)R and (b,c)R, then (a,c)R, for all a,b,cA. – abc(((a,b)R (b,c)R) → (a,c)R) Combining Relations • Two relations can be combined in any way two sets can be combined • Definition 6: R: relation from A to B, S: relation from B to C. The composite of R and S is the relation consisting of ordered pairs (a,c), where aA, cC, and there exists an element bB such that (a,b)R and (b,c)S. (denoted by S○R) • Definition 7: Let R be a relation on the set A. The powers Rn, n=1,2,3,…, are defined recursively by R1=R, and Rn+1=Rn ○R. • Theorem 1: The relation R on a set A is transitive iff Rn R for n=1,2,3,… – Proof. Representing Relations • To represent binary relations – Ordered pairs – Tables – Zero-one matrices – Directed graphs Representing Relations Using Matrices • Suppose that R is a relation from A={a1,a2,…,am} to B={b1,b2,…,bn}. R can be represented by the matrix MR=[mij], where mij=1 if (ai,bj)R, or 0 if (ai,bj)R. FIGURE 1 The Zero-One Matrix for a Reflexive Relation. FIGURE 2 (8.3) FIGURE 2 The Zero-One Matrices for Symmetric and Antisymmetric Relations. Representing Relations Using Digraphs • Definition 1: A directed graph (digraph) consists of a set V of vertices (or nodes) and a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b), and the vertex b is called the terminal vertex of this edge. FIGURE 3 The Directed Graph. FIGURE 4 (8.3) FIGURE 4 The Directed Graph of the Relations R. FIGURE 5 (8.3) FIGURE 5 The Directed Graph of the Relations R. FIGURE 6 (8.3) FIGURE 6 The Directed Graph of the Relations R and S. Closures of Relations • Ex. Telephone line connections • Let R be a relation on a set A. R may or may not have some property P. If there is a relation S with property P containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P. – S: the smallest relation that contains R Closures • Reflexive closure – Ex: R={(1,1),(1,2),(2,1),(3,2)} on the set A={1,2,3} • The smallest relation contains R? – The reflexive closure of R=R∆, where ∆={(a,a)|aA} • Symmetric closure – The symmetric closure of R=RR-1, where R-1 ={(b,a)|(a,b)R} • Transitive closure Paths in Directed Graphs • Definition 1: A path from a to b in the directed graph G is a sequence of edges (x0,x1), (x1,x2), …,(xn-1,xn) in G, where n is a nonnegative integer, and x0=a and xn = b. – The path denoted by x0,x1,…,xn-1, xn has length n. – A path of length n >=1 that begins and ends at the same vertex is called a circuit or cycle. – There is a path from a to b in R if there is a sequence of elements a, x1, x2, …, xn-1, b with (a,x1)R, (x1,x2)R, …, and (xn-1,b)R. FIGURE 1 A Directed Graph. • Theorem 1: Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b iff (a,b)Rn. – Proof. (by mathematical induction) Transitive Closures • Definition 2: Let R be a relation on a set A. The connectivity relation R* consists of pairs (a,b) such that there is a path of length at least one from a to b in R. n – R*=n=1..R . • Theorem 2: The transitive closure of a relation R equals the connectivity relation R*.
Recommended publications
  • Calibrating Determinacy Strength in Levels of the Borel Hierarchy
    CALIBRATING DETERMINACY STRENGTH IN LEVELS OF THE BOREL HIERARCHY SHERWOOD J. HACHTMAN Abstract. We analyze the set-theoretic strength of determinacy for levels of the Borel 0 hierarchy of the form Σ1+α+3, for α < !1. Well-known results of H. Friedman and D.A. Martin have shown this determinacy to require α+1 iterations of the Power Set Axiom, but we ask what additional ambient set theory is strictly necessary. To this end, we isolate a family of Π1-reflection principles, Π1-RAPα, whose consistency strength corresponds 0 CK exactly to that of Σ1+α+3-Determinacy, for α < !1 . This yields a characterization of the levels of L by or at which winning strategies in these games must be constructed. When α = 0, we have the following concise result: the least θ so that all winning strategies 0 in Σ4 games belong to Lθ+1 is the least so that Lθ j= \P(!) exists + all wellfounded trees are ranked". x1. Introduction. Given a set A ⊆ !! of sequences of natural numbers, consider a game, G(A), where two players, I and II, take turns picking elements of a sequence hx0; x1; x2;::: i of naturals. Player I wins the game if the sequence obtained belongs to A; otherwise, II wins. For a collection Γ of subsets of !!, Γ determinacy, which we abbreviate Γ-DET, is the statement that for every A 2 Γ, one of the players has a winning strategy in G(A). It is a much-studied phenomenon that Γ -DET has mathematical strength: the bigger the pointclass Γ, the stronger the theory required to prove Γ -DET.
    [Show full text]
  • A Proof of Cantor's Theorem
    Cantor’s Theorem Joe Roussos 1 Preliminary ideas Two sets have the same number of elements (are equinumerous, or have the same cardinality) iff there is a bijection between the two sets. Mappings: A mapping, or function, is a rule that associates elements of one set with elements of another set. We write this f : X ! Y , f is called the function/mapping, the set X is called the domain, and Y is called the codomain. We specify what the rule is by writing f(x) = y or f : x 7! y. e.g. X = f1; 2; 3g;Y = f2; 4; 6g, the map f(x) = 2x associates each element x 2 X with the element in Y that is double it. A bijection is a mapping that is injective and surjective.1 • Injective (one-to-one): A function is injective if it takes each element of the do- main onto at most one element of the codomain. It never maps more than one element in the domain onto the same element in the codomain. Formally, if f is a function between set X and set Y , then f is injective iff 8a; b 2 X; f(a) = f(b) ! a = b • Surjective (onto): A function is surjective if it maps something onto every element of the codomain. It can map more than one thing onto the same element in the codomain, but it needs to hit everything in the codomain. Formally, if f is a function between set X and set Y , then f is surjective iff 8y 2 Y; 9x 2 X; f(x) = y Figure 1: Injective map.
    [Show full text]
  • 1 Elementary Set Theory
    1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection).
    [Show full text]
  • Math Preliminaries
    Preliminaries We establish here a few notational conventions used throughout the text. Arithmetic with ∞ We shall sometimes use the symbols “∞” and “−∞” in simple arithmetic expressions involving real numbers. The interpretation given to such ex- pressions is the usual, natural one; for example, for all real numbers x, we have −∞ < x < ∞, x + ∞ = ∞, x − ∞ = −∞, ∞ + ∞ = ∞, and (−∞) + (−∞) = −∞. Some such expressions have no sensible interpreta- tion (e.g., ∞ − ∞). Logarithms and exponentials We denote by log x the natural logarithm of x. The logarithm of x to the base b is denoted logb x. We denote by ex the usual exponential function, where e ≈ 2.71828 is the base of the natural logarithm. We may also write exp[x] instead of ex. Sets and relations We use the symbol ∅ to denote the empty set. For two sets A, B, we use the notation A ⊆ B to mean that A is a subset of B (with A possibly equal to B), and the notation A ( B to mean that A is a proper subset of B (i.e., A ⊆ B but A 6= B); further, A ∪ B denotes the union of A and B, A ∩ B the intersection of A and B, and A \ B the set of all elements of A that are not in B. For sets S1,...,Sn, we denote by S1 × · · · × Sn the Cartesian product xiv Preliminaries xv of S1,...,Sn, that is, the set of all n-tuples (a1, . , an), where ai ∈ Si for i = 1, . , n. We use the notation S×n to denote the Cartesian product of n copies of a set S, and for x ∈ S, we denote by x×n the element of S×n consisting of n copies of x.
    [Show full text]
  • The Matroid Theorem We First Review Our Definitions: a Subset System Is A
    CMPSCI611: The Matroid Theorem Lecture 5 We first review our definitions: A subset system is a set E together with a set of subsets of E, called I, such that I is closed under inclusion. This means that if X ⊆ Y and Y ∈ I, then X ∈ I. The optimization problem for a subset system (E, I) has as input a positive weight for each element of E. Its output is a set X ∈ I such that X has at least as much total weight as any other set in I. A subset system is a matroid if it satisfies the exchange property: If i and i0 are sets in I and i has fewer elements than i0, then there exists an element e ∈ i0 \ i such that i ∪ {e} ∈ I. 1 The Generic Greedy Algorithm Given any finite subset system (E, I), we find a set in I as follows: • Set X to ∅. • Sort the elements of E by weight, heaviest first. • For each element of E in this order, add it to X iff the result is in I. • Return X. Today we prove: Theorem: For any subset system (E, I), the greedy al- gorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid. 2 Theorem: For any subset system (E, I), the greedy al- gorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid. Proof: We will show first that if (E, I) is a matroid, then the greedy algorithm is correct. Assume that (E, I) satisfies the exchange property.
    [Show full text]
  • Sets, Functions
    Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: • real numbers, • complex numbers, C • integers, • All students in our class Defining Sets Sets can be defined directly: e.g. {1,2,4,8,16,32,…}, {CSC1130,CSC2110,…} Order, number of occurence are not important. e.g. {A,B,C} = {C,B,A} = {A,A,B,C,B} A set can be an element of another set. {1,{2},{3,{4}}} Defining Sets by Predicates The set of elements, x, in A such that P(x) is true. {}x APx| ( ) The set of prime numbers: Commonly Used Sets • N = {0, 1, 2, 3, …}, the set of natural numbers • Z = {…, -2, -1, 0, 1, 2, …}, the set of integers • Z+ = {1, 2, 3, …}, the set of positive integers • Q = {p/q | p Z, q Z, and q ≠ 0}, the set of rational numbers • R, the set of real numbers Special Sets • Empty Set (null set): a set that has no elements, denoted by ф or {}. • Example: The set of all positive integers that are greater than their squares is an empty set. • Singleton set: a set with one element • Compare: ф and {ф} – Ф: an empty set. Think of this as an empty folder – {ф}: a set with one element. The element is an empty set. Think of this as an folder with an empty folder in it. Venn Diagrams • Represent sets graphically • The universal set U, which contains all the objects under consideration, is represented by a rectangle.
    [Show full text]
  • Contractions of Polygons in Abstract Polytopes
    Contractions of Polygons in Abstract Polytopes by Ilya Scheidwasser B.S. in Computer Science, University of Massachusetts Amherst M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 31, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Acknowledgements First, I would like to thank my advisor, Professor Egon Schulte. From the first class I took with him in the first semester of my Masters program, Professor Schulte was an engaging, clear, and kind lecturer, deepening my appreciation for mathematics and always more than happy to provide feedback and answer extra questions about the material. Every class with him was a sincere pleasure, and his classes helped lead me to the study of abstract polytopes. As my advisor, Professor Schulte provided me with invaluable assistance in the creation of this thesis, as well as career advice. For all the time and effort Professor Schulte has put in to my endeavors, I am greatly appreciative. I would also like to thank my dissertation committee for taking time out of their sched- ules to provide me with feedback on this thesis. In addition, I would like to thank the various instructors I've had at Northeastern over the years for nurturing my knowledge of and interest in mathematics. I would like to thank my peers and classmates at Northeastern for their company and their assistance with my studies, and the math department's Teaching Committee for the privilege of lecturing classes these past several years.
    [Show full text]
  • On Finding Two Posets That Cover Given Linear Orders
    algorithms Article On Finding Two Posets that Cover Given Linear Orders Ivy Ordanel 1,*, Proceso Fernandez, Jr. 2 and Henry Adorna 1 1 Department of Computer Science, University of the Philippines Diliman, Quezon City 1101, Philippines; [email protected] 2 Department of Information Sytems and Computer Science, Ateneo De Manila University, Quezon City 1108, Philippines; [email protected] * Correspondence: [email protected] Received: 13 August 2019; Accepted: 17 October 2019; Published: 19 October 2019 Abstract: The Poset Cover Problem is an optimization problem where the goal is to determine a minimum set of posets that covers a given set of linear orders. This problem is relevant in the field of data mining, specifically in determining directed networks or models that explain the ordering of objects in a large sequential dataset. It is already known that the decision version of the problem is NP-Hard while its variation where the goal is to determine only a single poset that covers the input is in P. In this study, we investigate the variation, which we call the 2-Poset Cover Problem, where the goal is to determine two posets, if they exist, that cover the given linear orders. We derive properties on posets, which leads to an exact solution for the 2-Poset Cover Problem. Although the algorithm runs in exponential-time, it is still significantly faster than a brute-force solution. Moreover, we show that when the posets being considered are tree-posets, the running-time of the algorithm becomes polynomial, which proves that the more restricted variation, which we called the 2-Tree-Poset Cover Problem, is also in P.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • The Structure of the 3-Separations of 3-Connected Matroids
    THE STRUCTURE OF THE 3{SEPARATIONS OF 3{CONNECTED MATROIDS JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE Abstract. Tutte defined a k{separation of a matroid M to be a partition (A; B) of the ground set of M such that |A|; |B|≥k and r(A)+r(B) − r(M) <k. If, for all m<n, the matroid M has no m{separations, then M is n{connected. Earlier, Whitney showed that (A; B) is a 1{separation of M if and only if A is a union of 2{connected components of M.WhenM is 2{connected, Cunningham and Edmonds gave a tree decomposition of M that displays all of its 2{separations. When M is 3{connected, this paper describes a tree decomposition of M that displays, up to a certain natural equivalence, all non-trivial 3{ separations of M. 1. Introduction One of Tutte’s many important contributions to matroid theory was the introduction of the general theory of separations and connectivity [10] de- fined in the abstract. The structure of the 1–separations in a matroid is elementary. They induce a partition of the ground set which in turn induces a decomposition of the matroid into 2–connected components [11]. Cun- ningham and Edmonds [1] considered the structure of 2–separations in a matroid. They showed that a 2–connected matroid M can be decomposed into a set of 3–connected matroids with the property that M can be built from these 3–connected matroids via a canonical operation known as 2–sum. Moreover, there is a labelled tree that gives a precise description of the way that M is built from the 3–connected pieces.
    [Show full text]
  • Surviving Set Theory: a Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory
    Surviving Set Theory: A Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela N. Ripley, M.M. Graduate Program in Music The Ohio State University 2015 Dissertation Committee: David Clampitt, Advisor Anna Gawboy Johanna Devaney Copyright by Angela N. Ripley 2015 Abstract Undergraduate music students often experience a high learning curve when they first encounter pitch-class set theory, an analytical system very different from those they have studied previously. Students sometimes find the abstractions of integer notation and the mathematical orientation of set theory foreign or even frightening (Kleppinger 2010), and the dissonance of the atonal repertoire studied often engenders their resistance (Root 2010). Pedagogical games can help mitigate student resistance and trepidation. Table games like Bingo (Gillespie 2000) and Poker (Gingerich 1991) have been adapted to suit college-level classes in music theory. Familiar television shows provide another source of pedagogical games; for example, Berry (2008; 2015) adapts the show Survivor to frame a unit on theory fundamentals. However, none of these pedagogical games engage pitch- class set theory during a multi-week unit of study. In my dissertation, I adapt the show Survivor to frame a four-week unit on pitch- class set theory (introducing topics ranging from pitch-class sets to twelve-tone rows) during a sophomore-level theory course. As on the show, students of different achievement levels work together in small groups, or “tribes,” to complete worksheets called “challenges”; however, in an important modification to the structure of the show, no students are voted out of their tribes.
    [Show full text]
  • Power Sets Math 12, Veritas Prep
    Power Sets Math 12, Veritas Prep. The power set P (X) of a set X is the set of all subsets of X. Defined formally, P (X) = fK j K ⊆ Xg (i.e., the set of all K such that K is a subset of X). Let me give an example. Suppose it's Thursday night, and I want to go to a movie. And suppose that I know that each of the upper-campus Latin teachers|Sullivan, Joyner, and Pagani|are free that night. So I consider asking one of them if they want to join me. Conceivably, then: • I could go to the movie by myself (i.e., I could bring along none of the Latin faculty) • I could go to the movie with Sullivan • I could go to the movie with Joyner • I could go to the movie with Pagani • I could go to the movie with Sullivan and Joyner • I could go to the movie with Sullivan and Pagani • I could go to the movie with Pagani and Joyner • or I could go to the movie with all three of them Put differently, my choices for whom to go to the movie with make up the following set: fg; fSullivang; fJoynerg; fPaganig; fSullivan, Joynerg; fSullivan, Paganig; fPagani, Joynerg; fSullivan, Joyner, Paganig Or if I use my notation for the empty set: ;; fSullivang; fJoynerg; fPaganig; fSullivan, Joynerg; fSullivan, Paganig; fPagani, Joynerg; fSullivan, Joyner, Paganig This set|the set of whom I might bring to the movie|is the power set of the set of Latin faculty. It is the set of all the possible subsets of the set of Latin faculty.
    [Show full text]