View U.S. Patent No. 10124008 in PDF

Total Page:16

File Type:pdf, Size:1020Kb

View U.S. Patent No. 10124008 in PDF I1111111111111111 1111111111 111111111111111 IIIII 11111 111111111111111 IIII IIII USO 10124008B2 c12) United States Patent (IO) Patent No.: US 10,124,008 B2 Lakkaraju et al. (45) Date of Patent: Nov. 13, 2018 (54) USE OF INHIBITORS OF ACID (56) References Cited SPHINGOMYELINASE TO TREAT ACQUIRED AND INHERITED RETINAL FOREIGN PATENT DOCUMENTS DEGENERATIONS WO 9718815 A2 5/1997 (71) Applicant: Wisconsin Alumni Research WO 0007584 A2 2/2000 Foundation, Madison, WI (US) WO 2005097121 Al 10/2005 WO 2009023299 A2 2/2009 (72) Inventors: Aparna Lakkaraju, Madison, WI (US); Kimberly A. Toops, Sun Prairie, OTHER PUBLICATIONS WI (US); Li Xuan Tan, Madison, WI (US) Van Leeuwen et al. Ophthalmology, 2004, vol. 111, pp. 1169-1175.* Kolzer et al. FEBS Letters, 2004, Iss. 559, pp. 96-98.* (73) Assignee: Wisconsin Alumni Research Opreanu et al. Diabetes, 2011, vol. 60, pp. 2370-2378.* Foundation, Madison, WI (US) Ambati, et al., Mechanisms of age-related macular degeneration, Neuron, 2012, 75(1), 26-39. ( *) Notice: Subject to any disclaimer, the term ofthis Arroyo, A 76-Year-Old Man With Macular Degeneration, JAMA, patent is extended or adjusted under 35 2006, 295(20):2394-2406. Barmada, et al., Autophagy induction enhances TDP43 turnover and U.S.C. 154(b) by O days. survival in neuronal ALS models, Nature Chemical Biology, 2014, (21) Appl. No.: 14/746,221 10, 677-685. Bentley, et al., Tarnoxifen Retinopathy: A Rare But Serious Com­ (22) Filed: Jun. 22, 2015 plication, British Medical Journal, 1992, 304:495-496. Cunningham, et al., Clofazamine-Induced Generalized Retinal Degen­ (65) Prior Publication Data eration, Retina, 1990, 10:131-134. Doukas, et al., Topical administration of a multi-targeted kinase US 2015/0366876 Al Dec. 24, 2015 inhibitor supresses choroidal neovascularization and retinal edema, Journal of Cellular Physiology, 2008, 216(1), 29-37. Edward, et al., Amelioration of Light-Induced Retinal Degeneraiton Related U.S. Application Data by a Calcium Overload Blocker, Arch. Ophthalmol., 1991, 109:554- 562. (60) Provisional application No. 62/015,753, filed on Jun. Ewe, et al., Bilateral Maculopathy Associated with Sertraline, 23, 2014. Australasian Psychiatry, 2014, 22(6):573-575. Gannnons, Topical antiangiogenic SRPKl inhibitors reduce choroidal (51) Int. Cl. neovascularization in rodent models of exudative AMD, IOVS, A61K 31155 (2006.01) 2013, 54(9), 6052-6062. A61K 31/136 (2006.01) Grumati, et al., Autophagy is defective in collagen VI muscular A61K 9/00 (2006.01) dystrophies, and its reactivation rescues myofiber degeneration, A61K 311454 (2006.01) Nature Medicine, 2010, 16, 1313-1320. A61K 311445 (2006.01) Gulbins, et al., Acid sphingomyelinase-ceramide system mediates A61K 45106 (2006.01) effects of antidepressant drugs, Nature Medicine, 2013, 19, 934- A61K 31/135 (2006.01) 938. A61K 311137 (2006.01) Hardisty, et al., Citaloprarn-Associated Central Retinal Vein Occlu­ A61K 31/138 (2006.01) sion, Int. Ophthalmol., 2009, 29:303-304. Jimenez-Sanchez, The Hedgehog signaling pathway regulates A61K 31/343 (2006.01) autophagy, Nature Communications, 2012, 3(1200), 1-11. A61K 3114422 (2006.01) Kirkegaard, et al., Hsp70 stabilizes lysosomes and reverts Niemann­ A61K 311451 (2006.01) Pick disease-associated lysosomal pathology, Nature, 2010, 463(7280), A61K 3114525 (2006.01) 549-553. A61K 31146 (2006.01) Kolzer, et al., Interactions of acid sphingomyelinase and lipid A61K 3115415 (2006.01) bilayers in the presence of the tricyclic antidepressant desiprarnine, A61K 311675 (2006.01) FEBS Letters, 2004, 559, 96-98. (52) U.S. Cl. (Continued) CPC ............ A61K 31155 (2013.01); A61K 9/0048 (2013.01); A61K 31/135 (2013.01); A61K Primary Examiner - Samira J Jean-Louis 31/136 (2013.01); A61K 311137 (2013.01); (74) Attorney, Agent, or Firm -Quarles & Brady LLP A61K 31/138 (2013.01); A61K 31/343 (2013.01); A61K 311445 (2013.01); A61K (57) ABSTRACT 3114422 (2013.01); A61K 311451 (2013.01); A method of treating retinal diseases is disclosed that A61K 311454 (2013.01); A61K 3114525 includes the step of administering an effective amount of a (2013.01); A61K 31146 (2013.01); A61K composition including an ASMase inhibitor to a retinal 3115415 (2013.01); A61K 311675 (2013.01); disease patient, wherein at least one disease symptom is A61K 45106 (2013.01) either lessened or progression of the symptom is delayed. (58) Field of Classification Search CPC .............................. A61K 31/55; A61K 31/136 10 Claims, 13 Drawing Sheets See application file for complete search history. (13 of 13 Drawing Sheet(s) Filed in Color) US 10,124,008 B2 Page 2 (56) References Cited Dannhausen, K., M. Karlstetter, A. Caramoy, C. Volz, H. Jagle, G. Liebisch, 0. Utermohlen, and T. Langmann. 2015. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia OTHER PUBLICATIONS behavior and disturbed retinal function. Biochem Biophys Res Commun. 464:434-440. Kornhuber, et al., Functional inhibitors of acid sphingomyelinase Fan, J., B.X. Wu, and C.E. Crosson. 2016. Suppression of Acid (FIASMAs): A novel pharmacological group of drugs with broad Sphingomyelinase Protects the Retina from Ischemic Injury. Invest clinical applications, Cellular Physiology and Biochemistry, 2010, Ophthalmol Vis Sci. 57:4476-4484. 26, 9-20. Feskanich, D., E. Cho, D.A. Schaumberg, G.A. Colditz, and S.E. Lajunen, et al., Topical drug delivery to retinal pigment epithelium Hankinson. 2008. Menopausal and reproductive factors and risk of with microfluidizer produced small liposomes, European Journal of age-related macular degeneration. Arch Ophthalmol. 126:519-524. Pharmaceutical Sciences, 2014, 62, 23-32. Fox, T.E., X. Han, S. Kelly, A.H. Merrill, 2nd, R.E. Martin, R.E. Lakkaraju, et al., Low-density lipoprotein receptor-related protein Anderson, T.W. Gardner, and M. Kester. 2006. Diabetes alters mediates the endocytosis of anionic liposomes in neurons, Journal sphingolipid metabolism in the retina: a potential mechanism of cell of Biological Chemistry, 2002, 277(17), 15085-15092. death in diabetic retinopathy. Diabetes. 55:3573-3580. Lakkaraju, et al., The lipofuscin fluorophore A2E perturbs choles­ Fraser-Bell, S., J. Wu, R. Klein, S.P. Azen, and R. Varma. 2006. terol metabolism in retinal pigment epithelial cells, PNAS, 2007, Smoking, alcohol intake, estrogen use, and age-related macular 104(26), 11026-11031. degeneration in Latinos: the Los Angeles Latino Eye Study. Am J Le Guezennec, et al., Wipl-dependent regulation of autophagy, Ophthalmol. 141:79-87. obesity, and atherosclerosis, Cell Metabolism, 2012, 16(1), 68-80. Frouws, M.A., B.G. Sibinga Mulder, E. Bastiaannet, M.M. Zanders, Lee, et al., Acid sphingomyelinase modulates the autophagic pro­ M.P. van Herk-Sukel, E.M. de Leede, B.A. Bonsing, J.S. Mieog, cess by controlling lysosomal biogenesis in Alzheimer's disease, C.J. Van de Velde, and G.J. Liefers. 2017. No association between JEM, 2014, 211(8), 1551-1570. metformin use and survival in patients with pancreatic cancer: An Nixon, The role of autophagy in neurodegenerative disease, Nature observational cohort study. Medicine (Baltimore). 96:e6229. Medicine, 2013, 19, 983-997. Gandini, S., M. Puntoni, B.M. Heckman-Stoddard, B.K. Dunn, L. Pampliega, et al., Functional interaction between autophagy and Ford, A. DeCensi, and E. Szabo. 2014. Metformin and cancer risk ciliogenesis, Nature, 2013, 502, 194-200. and mortality: a systematic review and meta-analysis taking into Penfold, et al., Modulation of major histocompatibility complex account biases and confounders. Cancer Prev Res (Phila). 7:867- class II expression in retinas with age-related macular degeneration, 885. Invest Ophthalmol Vis Sci, 1997, 38(10), 2125-2133. Klein, R., B.E. Klein, S.C. Jensen, K.J. Cruickshanks, K.E. Lee, Petersen, et al., Transformation-associated changes in sphingolipid L.G. Danforth, and S.C. Tomany. 2001. Medication use and the metabolism sensitize cells to lysosomal cell death induced by 5-year incidence of early age-related maculopathy: the Beaver Dam inhibitors of acid sphingomyelinase, Cancer Cell, 2013, 24(3), Eye Study. Arch Ophthalmol. 119: 1354-1359. 379-393. Kornhuber, J., P. Tripal, M. Reichel, C. Muhle, C. Rhein, M. Radu, et al, Bisretinoid-mediated complement activation on retinal Muehlbacher, T.W. Groemer, and E. Gulbins. 2010. Functional pigment epithelial cells is dependent on complement factor H Inhibitors of Acid Sphingomyelinase (FIASMAs ): a novel pharma­ haplotype, Journal of Biological Chemistry, 2014, 289(13), 9113- cological group of drugs with broad clinical applications. Cellular 9120. physiology and biochemistry : international journal of experimental Roth, et al., Potent and selective inhibitors of acid sphingomyelinase cellular physiology, biochemistry, and pharmacology. 26:9-20. by bisphosphonates, Angewandte Chemie International Edition, Pikuleva, I.A., and C.A. Curcio. 2014. Cholesterol in the retina: The 2009, 48, 7560-7563. best is yet to come. Prog Retin Eye Res. Rotstein, et al., Regulating Survival and Development in the Retina: Suissa, S. 2012. Randomized Trials Built on Sand: Examples from Key Roles for Simple Sphingolipids, Journal of Lipid Research, COPD, Hormone Therapy, and Cancer. Rambam Maimonides Med 2010, 51:1247-1262. J. 3:e0014. Sander, 587: The Astemizole Retinopathy Trial: Effect of Astemizol Suissa, S., and L. Azoulay. 2012. Metformin and the risk of cancer: on Diabetic Macular, Investigative Ophthalmology & Visual Sci­ time-related biases in observational studies. Diabetes Care. 35 :2665- ence: Annual Meeting of the Association for Research in Vision and 2673. Ophthalmology, Association for Research in Vision and Ophthal­ Toops, K.A., L.X. Tan, Z. Jiang, R. Radu, and A. Lakkaraju. 2015. mology, 2000, 41(4):Sll4. Toops, et al., A detailed three-step protocol for live imaging of Cholesterol-mediated activation of acid sphingomyelinase disrupts intracellular traffic in polarized primary porcine RPE monolayers, autophagy in the retinal pigment epithelium. Mo! Biol Cell. 26: 1-14. Experimental Eye Research, 2014, 124, 74-85. Wu, B.X., J. Fan, N.P. Boyer, Rim. Jenkins, Y. Koutalos, Y.A. Toops, et al., Cholesterol-mediated activation of acid sphingomyelinase Hannun, and C.E.
Recommended publications
  • Mrna Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases Upon Antidepressant Treatment
    International Journal of Molecular Sciences Article mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment Cosima Rhein 1,2,* , Iulia Zoicas 1 , Lena M. Marx 1, Stefanie Zeitler 1, Tobias Hepp 2,3, Claudia von Zimmermann 1, Christiane Mühle 1 , Tanja Richter-Schmidinger 1, Bernd Lenz 1,4 , Yesim Erim 2, Martin Reichel 1,† , Erich Gulbins 5 and Johannes Kornhuber 1 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; [email protected] (I.Z.); [email protected] (L.M.M.); [email protected] (S.Z.); [email protected] (C.v.Z.); [email protected] (C.M.); [email protected] (T.R.-S.); [email protected] (B.L.); [email protected] (M.R.); [email protected] (J.K.) 2 Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; [email protected] (T.H.); [email protected] (Y.E.) 3 Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany 4 Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, D-68159 Mannheim, Germany 5 Department of Molecular Biology, University Hospital, University of Duisburg-Essen, D-45147 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-44542 Citation: Rhein, C.; Zoicas, I.; Marx, † Current address: Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin L.M.; Zeitler, S.; Hepp, T.; von Berlin, Berlin, Germany.
    [Show full text]
  • Specifications of Approved Drug Compound Library
    Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format.
    [Show full text]
  • K+ Channel Modulators Product ID Product Name Description D3209 Diclofenac Sodium Salt NSAID; COX-1/2 Inhibitor, Potential K+ Channel Modulator
    K+ Channel Modulators Product ID Product Name Description D3209 Diclofenac Sodium Salt NSAID; COX-1/2 inhibitor, potential K+ channel modulator. G4597 18β-Glycyrrhetinic Acid Triterpene glycoside found in Glycyrrhiza; 15-HPGDH inhibitor, hERG and KCNA3/Kv1.3 K+ channel blocker. A4440 Allicin Organosulfur found in garlic, binds DNA; inwardly rectifying K+ channel activator, L-type Ca2+ channel blocker. P6852 Propafenone Hydrochloride β-adrenergic antagonist, Kv1.4 and K2P2 K+ channel blocker. P2817 Phentolamine Hydrochloride ATP-sensitive K+ channel activator, α-adrenergic antagonist. P2818 Phentolamine Methanesulfonate ATP-sensitive K+ channel activator, α-adrenergic antagonist. T7056 Troglitazone Thiazolidinedione; PPARγ agonist, ATP-sensitive K+ channel blocker. G3556 Ginsenoside Rg3 Triterpene saponin found in species of Panax; γ2 GABA-A agonist, Kv7.1 K+ channel activator, α10 nAChR antagonist. P6958 Protopanaxatriol Triterpene sapogenin found in species of Panax; GABA-A/C antagonist, slow-activating delayed rectifier K+ channel blocker. V3355 Vindoline Semi-synthetic vinca alkaloid found in Catharanthus; Kv2.1 K+ channel blocker and H+/K+ ATPase inhibitor. A5037 Amiodarone Hydrochloride Voltage-gated Na+, Ca2+, K+ channel blocker, α/β-adrenergic antagonist, FIASMA. B8262 Bupivacaine Hydrochloride Monohydrate Amino amide; voltage-gated Na+, BK/SK, Kv1, Kv3, TASK-2 K+ channel inhibitor. C0270 Carbamazepine GABA potentiator, voltage-gated Na+ and ATP-sensitive K+ channel blocker. C9711 Cyclovirobuxine D Found in Buxus; hERG K+ channel inhibitor. D5649 Domperidone D2/3 antagonist, hERG K+ channel blocker. G4535 Glimepiride Sulfonylurea; ATP-sensitive K+ channel blocker. G4634 Glipizide Sulfonylurea; ATP-sensitive K+ channel blocker. I5034 Imiquimod Imidazoquinoline nucleoside analog; TLR-7/8 agonist, KCNA1/Kv1.1 and KCNA2/Kv1.2 K+ channel partial agonist, TREK-1/ K2P2 and TRAAK/K2P4 K+ channel blocker.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Rediscovery of Fexinidazole
    New Drugs against Trypanosomatid Parasites: Rediscovery of Fexinidazole INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Marcel Kaiser aus Obermumpf, Aargau Basel, 2014 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licenses/by-nc-nd/3.0/ch/ eingesehen werden. 1 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag von Prof. Reto Brun, Prof. Simon Croft Basel, den 10. Dezember 2013 Prof. Dr. Jörg Schibler, Dekan 2 3 Table of Contents Acknowledgement .............................................................................................. 5 Summary ............................................................................................................ 6 Zusammenfassung .............................................................................................. 8 CHAPTER 1: General introduction ................................................................. 10 CHAPTER 2: Fexinidazole - A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness ........ 26 CHAPTER 3: Anti-trypanosomal activity of Fexinidazole – A New Oral Nitroimidazole Drug Candidate for the Treatment
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Effects of the Antitussive Drug Cloperastine on Ventricular Repolarization in Halothane-Anesthetized Guinea Pigs
    J Pharmacol Sci 120, 000 – 000 (2012) Journal of Pharmacological Sciences © The Japanese Pharmacological Society Full Paper Effects of the Antitussive Drug Cloperastine on Ventricular Repolarization in Halothane-Anesthetized Guinea Pigs Akira Takahara1,*, Kaori Fujiwara1, Atsushi Ohtsuki2, Takayuki Oka2, Iyuki Namekata2, and Hikaru Tanaka2 1Department of Pharmacology and Therapeutics, 2Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan Received May 13, 2012; Accepted August 29, 2012 Abstract. Cloperastine is an antitussive drug, which can be received as an over-the-counter cold medicine. The chemical structure of cloperastine is quite similar to that of the antihistamine drug diphenhydramine, which is reported to inhibit hERG K+ channels and clinically induce long QT syndrome after overdose. To analyze its proarrhythmic potential, we compared effects of cloperas- tine and diphenhydramine on the hERG K+ channels expressed in HEK293 cells. We further as- sessed their effects on the halothane-anesthetized guinea-pig heart under the monitoring of mono- phasic action potential (MAP) of the ventricle. Cloperastine inhibited the hERG K+ currents in a concentration-dependent manner with an IC50 value of 0.027 μM, whose potency was 100 times greater than that of diphenhydramine (IC50; 2.7 μM). In the anesthetized guinea pigs, cloperastine at a therapeutic dose of 1 mg/kg prolonged the QT intervalPROOF and MAP duration without affecting PR interval or QRS width. Diphenhydramine at a therapeutic dose of 10 mg/kg prolonged the QT interval and MAP duration together with increase in PR interval and QRS width. The present re- sults suggest that cloperastine may be categorized as a QT-prolonging drug that possibly induces arrhythmia at overdoses like diphenhydramine does.
    [Show full text]
  • Ceramide and Related Molecules in Viral Infections
    International Journal of Molecular Sciences Review Ceramide and Related Molecules in Viral Infections Nadine Beckmann * and Katrin Anne Becker Department of Molecular Biology, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-201-723-1981 Abstract: Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit. Keywords: ceramide; acid sphingomyelinase; sphingolipids; lipid-rafts; α-galactosylceramide; viral Citation: Beckmann, N.; Becker, K.A.
    [Show full text]
  • No Involvement of Acid Sphingomyelinase in the Secretion of IL-6 From
    1 No Involvement of Acid Sphingomyelinase in the Secretion of IL-6 from Alveolar Macrophages in Rat Tomoo Ito, Chikako Oyama, Hirokazu Arai, Tsutomu Takahashi Department of Pediatrics, Akita University Graduate School of Medicine, Akita-shi, Akita, 010-8543, Japan Correspondence: Tsutomu Takahashi, M.D. Department of Pediatrics, Akita University Graduate School of Medicine, 1-1-1 hondo, Akita 010-8543, Japan Tel: 018-884-6159 FAX: 018-836-2620 E-mail: [email protected] 1 2 Key words: chronic lung disease of the newborn, alveolar macrophage, acid sphingomyelinase, Running title: Acid Sphingomyelinase in CLD of the Newborn 2 3 Abstract Chronic lung disease (CLD) of the newborn is a major problem in neonatology. Activation of alveolar macrophages has been implicated in the pathogenesis of CLD. Acid sphingomyelinase (ASM) responds to diverse cellular stressors, including lipopolysaccharide (LPS) stimulation. Recently, functional inhibitors of acid sphingomyelinase (FIASMAs) have been described as a large group of compounds that inhibit ASM. Here, we used maternal intra-peritoneal LPS injection to model CLD in the infant rat lung. Using this model, we studied ASM activity in the infant rat lung and the effects of FIASMAs on release of interleukin-6 (IL-6) from LPS-stimulated alveolar macrophages. Maternal exposure to LPS non-significantly increased ASM activities in the infant rat lung. FIASMAs significantly decreased ASM activity of LPS-stimulated alveolar macrophages. In addition, some FIASMAs suppressed the release of IL-6 from LPS-stimulated alveolar macrophages during the early response phase. However, FIASMAs did not suppress the release of IL-6 from LPS-stimulated alveolar macrophages.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Konzentrationsabhängige Funktionelle Hemmung Der Sauren Sphingomyelinase Durch Antidepressiva
    Friedrich-Alexander-Universität Erlangen-Nürnberg Universitätsklinikum Erlangen Psychiatrische und Psychotherapeutische Klinik Direktor: Prof. Dr. Johannes Kornhuber Konzentrationsabhängige funktionelle Hemmung der sauren Sphingomyelinase durch Antidepressiva Inaugural-Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg vorgelegt von Sven Städtler aus Kulmbach Gedruckt mit Erlaubnis der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen Nürnberg Dekan: Prof. Dr. med. Dr. h.c. Jürgen Schüttler Referent: Prof. Dr. med. Johannes Kornhuber Korreferent: PD Dr. med. Juan Manuel Maler Tag der Mündlichen Prüfung: 30. März 2011 Meinen Eltern gewidmet Inhaltsverzeichnis 1 Zusammenfassung ..................................................................................................... 7 1.1 Hintergrund und Ziele ........................................................................................ 7 1.2 Material und Methode ........................................................................................ 7 1.3 Ergebnisse .......................................................................................................... 8 1.4 Schlussfolgerungen ............................................................................................ 8 2 Abstract ..................................................................................................................... 9 2.1 Background and Aims .......................................................................................
    [Show full text]
  • Japanese Pharmacopoeial Forum
    Japanese Pharmacopoeial Forum Vol. 27 No. 1 March 2018 Contents Revision Drafts Tipepidine Hibenzate Tablets ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 178 Drafts for JP 18 Ursodeoxycholic Acid ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 179 1. General Notices ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 138 4. Official Monographs-Crude Drugs ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 179 Revision Drafts for Second Supplement to JP 17 (1) Addition ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 179 1. General Rules for Preparations Goshuyuto Extract ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 179 [3] Monographs for Preparations ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 138 (2) Revision ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 181 2. General Tests, Processes and Apparatus Bitter Tincture ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 181 (1) Addition Bofutsushosan Extract ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 182 2.66 Elemental Impurities-Procedures ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 139 Calumba ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 182 (2) Revision Powdered Calumba ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 182 9.41 Reagents, Test Solutions ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 142 Hochuekkito Extract ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 182 3. Official Monographs Japanese Angelica Rootꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 183 (1) Addition Powdered Japanese Angelica Root ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 183 Bromfenac Sodium Hydrate ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 143 Juzentaihoto Extract ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 183 Bromfenac Sodium Ophthalmic Solution Kakkontokasenkyushin'i Extract ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 184 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 144 Kamikihito
    [Show full text]