Brain Circuitry Controlling Sleep and Wakefulness

Total Page:16

File Type:pdf, Size:1020Kb

Brain Circuitry Controlling Sleep and Wakefulness Review Article Address correspondence to Dr John H. Peever, Brain Circuitry Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Controlling Sleep and Toronto, ON M5S 3G5, Canada, [email protected]. Relationship Disclosure: Wakefulness Dr Horner has received personal compensation for serving as a consultant for Richard L. Horner, PhD; John H. Peever, PhD Dairy Farmers of Canada and Viord Inc and receives royalties from BookBaby for his book, The Universal ABSTRACT Pastime: Sleep and Rest Purpose of Review: This article outlines the fundamental brain mechanisms that Explained. Dr Horner has control sleep-wake patterns and reviews how pathologic changes in these control received grants from Canada Research Chair (950-229813), mechanisms contribute to common sleep disorders. the Canadian Institutes of Recent Findings: Discrete but interconnected clusters of cells located within the Health Research (MT-15563), brainstem and hypothalamus comprise the circuits that generate wakefulness, nonYrapid and the National Sanitarium Association Innovative eye movement (non-REM) sleep, and REM sleep. These clusters of cells use specific Research Program (00144051). neurotransmitters, or collections of neurotransmitters, to inhibitorexcitetheirrespective Dr Peever has received grant sleep- and wake-promoting target sites. These excitatory and inhibitory connections support from the Canadian Institutes of Health Research. modulate not only the presence of wakefulness or sleep, but also the levels of arousal Unlabeled Use of within those states, including the depth of sleep, degree of vigilance, and motor activity. Products/Investigational Dysfunction or degeneration of wake- and sleep-promoting circuits is associated with Use Disclosure: narcolepsy, REM sleep behavior disorder, and age-related sleep disturbances. Drs Horner and Peever report no disclosures. Summary: Research has made significant headway in identifying the brain circuits that * 2017 American Academy control wakefulness, non-REM, and REM sleep and has led to a deeper understanding of Neurology. of common sleep disorders and disturbances. Continuum (Minneap Minn) 2017;23(4):955–972. INTRODUCTION sleep, the other being sleep intensity. From birth until death, the human Sleep intensity, or depth, is commonly brain spends one or more periods of measured as the difficulty in waking each 24-hour day in wakefulness and someone up from sleep in response to the remaining hours in sleep. Differ- a given stimulus, such as an auditory ent people sleep different amounts tone. Such an index of sleep depth is (typically 7 to 9 hours per day) to correlated with the prominence of equip them with optimal alertness, high-voltage slow waves in the EEG. attention, performance, and executive Based on the distribution of sleep function. Figure 1-1 summarizes the stages throughout the night, normal recommendations for sleep time du- sleep is typically characterized by: rations across the life span based on (1) deep nonYrapid eye movement an extensive literature review by a (non-REM) sleep predominating at panel of scientists and clinicians.1 the beginning of the night, (2) lighter The physiologic and neurobiological non-REM sleep and increasing in- mechanisms that influence the timing trusions of wakefulness toward the of sleep onset and offset are intro- end of the night, and (3) increasing duced in this article. REM sleep amounts and intensity Sleep duration is one of the two throughout the night. The brain mech- major components underlying optimal anisms that generate these states of Continuum (Minneap Minn) 2017;23(4):955–972 ContinuumJournal.com 955 Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited. Sleep and Wakefulness FIGURE 1-1 Sleep amounts across the human life span. According to a report by the National Sleep Foundation, recommended amounts (hours) of sleep are shown for each age range and are arranged in the following categories: recommended, may be appropriate, and not recommended. Data from Hirshkowitz M, et al, Sleep Health.1 sleephealthjournal.org/article/S2352-7218%252815%252900015-7/fulltext. KEY POINTS wakefulness, non-REM, and REM sleep influence specific components of sleep h Different people sleep are the major focus of this article, behavior. Examples of such drugs and different amounts, but which serves as a key to understanding their mode of action on aspects of the normal healthy adults where the breakdown or pathophysio- sleep-wake circuitry will be discussed generally sleep between logic changes occur in the different in appropriate sections of this review. 7 and 9 hours per day. However, daily sleep sleep disorders. Individuals experience what would times vary among be classified as normal sleep behavior BRAIN MECHANISMS OF people and across their when the activity of these cell clusters life spans. WAKEFULNESS AND SLEEP andcircuitschangeinanormally h Cell groups located Several discrete clusters of cells exist coordinated sequence in time and primarily in the in distinct regions of the brain that place within the brain. However, sleep 2,3 brainstem and together comprise the interconnected disorders are common and varied. hypothalamus function circuits generating the states we recog- Suboptimal timing or quality of sleep to drive the individual nize as wakefulness, non-REM sleep, can occur as a result of two major behavioral states of and REM sleep. These interconnecting factors that are not mutually exclusive: sleep and wakefulness. clusters of brain cells use individual (1) a primary sleep disorder (eg, insom- These cell groups are neurotransmitters, or collections of nia, narcolepsy, restless legs syndrome, mutually connected neurotransmitters, to inhibit or excite sleep-related breathing problems, and and use specific their target sites. These excitatory and circadian rhythm sleep-wake disor- neurotransmitters to inhibitory connections modulate not ders) or (2) lifestyle influences (eg, promote each brain only the presence of wakefulness or phase shifts due to occupational or state by either inhibiting or activating their sleep per se, but also the levels of recreational activities such as shift work, respective target sites. arousal within those states, including lack of exposure to direct sunlight, or the depth of sleep, degree of vigilance, extended nocturnal exposure to artifi- and motor activity. Some commonly cial light). used drugs modulate these excitatory Each of these sleep disorders is intro- and inhibitory connections and thus duced and explained in subsequent exert alerting or sedating properties or articles in this issue. However, two 956 ContinuumJournal.com August 2017 Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited. KEY POINTS important overarching principles are cordingly, this article first introduces h Sleep is optimized when outlined in this introductory discussion the brain mechanisms that generate the sleep period is on sleep neurobiology and physiology the states of wakefulness and sleep. The aligned with an that relate to sleep disorders: article then focuses on sleep disorders individual’s circadian 1. Sleep is best optimized when the (narcolepsy and RBD) to highlight how body clock. sleep period is appropriately current research findings are identifying h Diffuse circuits located aligned with an individual’s the pathophysiologic underpinnings of in the brainstem, circadian body clock (ie, when the mechanisms and management of hypothalamus, and the sleep type is aligned with such disorders. basal forebrain chronotype). Misalignment or contain glutamate, mismanagement of this optimal Wakefulness-Generating norepinephrine, relationship can result in Circuits histamine, serotonin, experiences of poor sleep quality, Several neuronal groups contribute to dopamine, and orexin, inappropriate sleepiness, and the brain activation of wakefulness, which serve to promote wakefulness. sleep initiation or maintenance which is characterized by low-voltage insomnia. Such misalignment and fast-wave EEG activity and rest- occurs in shift work sleep ing postural motor tone in the EMG. disorder, advanced or delayed Lesions or degeneration of the ascend- sleep-wake phase disorders, ing projections of the arousal circuits and irregular sleep-wake can produce excessive sleepiness and phase disorder.2 are thought to underlie the outbreak of 2. Sleep parasomnias are best encephalitis lethargica in the 1920s.7,8 explained by the basic premise Drug-induced modulation of these that sleep and wakefulness are circuits facilitates sedation and sleep. not mutually exclusive states and Of significance to the initial discus- can dissociate. Such dissociation sion of wakefulness-generating systems can result in components of are the neuronal groups containing behaviors that are normally norepinephrine, histamine, serotonin, associated with wakefulness and dopamine (Figure 1-2A). Because temporarily overlapping with of commonalities in the chemical sleep.4,5 Such overlap causes a structure of these neuromodulators, class of sleep disorders that are they are collectively grouped under classified as the parasomnias the term monoamines.Othercell and defined as behaviors or groups also contribute to the activated experiences intruding into brain state of wakefulness. Accordingly, sleep.2,6 This overlap of waking orexin (hypocretin), acetylcholine, and and sleep behaviors/experiences glutamate-containing cell groups are produces identifiable and
Recommended publications
  • Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders
    Article Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders Jean-Marc Lina 1,2,3, Emma Kate O’Callaghan 1,4 and Valérie Mongrain 1,4,* 1 Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd., Montreal, QC H4J 1C5, Canada 2 Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; [email protected] 3 École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada 4 Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-514-338-2222 (ext. 3323) Received: 14 August 2018; Accepted: 11 October 2018; Published: 20 October 2018 Abstract: Scale-free analysis of brain activity reveals a complexity of synchronous neuronal firing which is different from that assessed using classic rhythmic quantifications such as spectral analysis of the electroencephalogram (EEG). In humans, scale-free activity of the EEG depends on the behavioral state and reflects cognitive processes. We aimed to verify if fractal patterns of the mouse EEG also show variations with behavioral states and topography, and to identify molecular determinants of brain scale-free activity using the ‘multifractal formalism’ (Wavelet-Leaders). We found that scale-free activity was more anti-persistent (i.e., more different between time scales) during wakefulness, less anti-persistent (i.e., less different between time scales) during non-rapid eye movement sleep, and generally intermediate during rapid eye movement sleep.
    [Show full text]
  • An Electrophysiological Marker of Arousal Level in Humans
    RESEARCH ARTICLE An electrophysiological marker of arousal level in humans Janna D Lendner1,2*, Randolph F Helfrich3,4, Bryce A Mander5, Luis Romundstad6, Jack J Lin7, Matthew P Walker1,8, Pal G Larsson9, Robert T Knight1,8 1Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States; 2Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tuebingen, Tuebingen, Germany; 3Hertie-Institute for Clinical Brain Research, Tuebingen, Germany; 4Department of Neurology and Epileptology, University Medical Center Tuebingen, Tuebingen, Germany; 5Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, United States; 6Department of Anesthesiology, University of Oslo Medical Center, Oslo, Norway; 7Department of Neurology, University of California, Irvine, Irvine, United States; 8Department of Psychology, University of California, Berkeley, Berkeley, United States; 9Department of Neurosurgery, University of Oslo Medical Center, Oslo, Norway Abstract Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, ‘wake-like’ EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol *For correspondence: anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from [email protected] REM sleep solely based on the neurophysiological brain state.
    [Show full text]
  • Deconstructing Arousal Into Wakeful, Autonomic and Affective Varieties
    Neuroscience Letters xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Neuroscience Letters journal homepage: www.elsevier.com/locate/neulet Review article Deconstructing arousal into wakeful, autonomic and affective varieties ⁎ Ajay B. Satputea,b, , Philip A. Kragelc,d, Lisa Feldman Barrettb,e,f,g, Tor D. Wagerc,d, ⁎⁎ Marta Bianciardie,f, a Departments of Psychology and Neuroscience, Pomona College, Claremont, CA, USA b Department of Psychology, Northeastern University, Boston, MA, USA c Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, USA d The Institute of Cognitive Science, University of Colorado Boulder, Boulder, USA e Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA f Department of Radiology, Harvard Medical School, Boston, MA, USA g Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA ARTICLE INFO ABSTRACT Keywords: Arousal plays a central role in a wide variety of phenomena, including wakefulness, autonomic function, affect Brainstem and emotion. Despite its importance, it remains unclear as to how the neural mechanisms for arousal are or- Arousal ganized across them. In this article, we review neuroscience findings for three of the most common origins of Sleep arousal: wakeful arousal, autonomic arousal, and affective arousal. Our review makes two overarching points. Autonomic First, research conducted primarily in non-human animals underscores the importance of several subcortical Affect nuclei that contribute to various sources of arousal, motivating the need for an integrative framework. Thus, we Wakefulness outline an integrative neural reference space as a key first step in developing a more systematic understanding of central nervous system contributions to arousal.
    [Show full text]
  • MWT Review Paper.Qxp 12/30/2004 8:46 AM Page 123
    MWT review paper.qxp 12/30/2004 8:46 AM Page 123 REVIEW PAPER The Clinical Use of the MSLT and MWT Donna Arand, Ph.D1, Michael Bonnet, Ph.D2, Thomas Hurwitz, M.D3, Merrill Mitler, Ph.D4, Roger Rosa, Ph.D5 and R. Bart Sangal, M.D6 1 Kettering Medical Center, Dayton, OH, 2Dayton Veteran’s Affairs Medical Center and Wright State University, Dayton, OH, 3Minneapolis Veteran’s Affairs Medical Center and University of Minnesota, Minneapolis, MN, 4National Institute of Neurological Disorders & Stroke Neuroscience Center, Bethesda, MD, 5National Institute for Occupational Safety and Health, Washington, DC, 6Sleep Disorders Institute, Troy, MI Citation: Review by the MSLT and MWT Task Force of the Standards of Practice Committee of the American Academy of Sleep Medicine. SLEEP 2005;28(1):123-144. 1.0 INTRODUCTION ness and to assess the database of evidence for the clinical use of the MSLT and MWT. EXCESSIVE SLEEPINESS IS DEFINED AS SLEEPINESS OCCURRING IN A SITUATION WHEN AN INDIVIDUAL 2.0 BACKGROUND WOULD BE EXPECTED TO BE AWAKE AND ALERT. It is a chronic problem for about 5% of the general population,1, 2 and it 2.1 History of the Development of MSLT and MWT is the most common complaint evaluated by sleep disorder cen- Initially, definitions involving sleep onset were based on ters.1, 3 The most common causes of sleepiness include partial sleep deprivation, fragmented sleep and medication effects. behavioral observations that often depended on features such as Sleepiness is also associated with sleep disorders such as sleep lack of movement, unresponsiveness, snoring, etc.
    [Show full text]
  • Pharmacological Management of Disrupted Sleep Due to Methamphetamine Use: a Literature Review
    Journal of Psychology and Clinical Psychiatry Literature Review Open Access Pharmacological management of disrupted sleep due to Methamphetamine use: a literature review Abstract Volume 11 Issue 5 - 2020 Objective: To review the literature on pharmacological management of disrupted sleeping Jagdeep Kaur,1 Kawish Garg2 patterns due to Methamphetamine use. 1Clinical Director of MAT Services, Keystone Behavioral Health Data sources: A PubMed search of human studies published in English through July 2020 Services, USA 2 was conducted using the broad search terms “Methamphetamine” and “Sleep”. Medical Director of Sleep Medicine, Geisinger Holy Spirit, USA Study selection: 105 articles were identified and reviewed; 2 studies met the inclusion Correspondence: Kawish Garg, Medical Director of Sleep criteria. Medicine, Geisinger Holy Spirit, 550 North 12th St Lemoyne, PA 17043, USA, Tel 717-975-8585, Email Data extraction: Study design, sample size, medications dose and duration, and sleep related outcomes were reviewed. Received: September 10, 2020 | Published: September 23, 2020 Data synthesis: This is some evidence for Modafinil and Mirtazapine for disrupted sleep due to Methamphetamine use, however it is limited by small sample size of the studies. Conclusion: Treatment of disrupted sleep due to Methamphetamine use, remains challenging. Modafinil and mirtazapine appear to show promise, but further research is warranted before making any evidence-based recommendations. Keywords: methamphetamine, sleep Abbreviations: NSDUH, national survey on
    [Show full text]
  • Potential Brain Neuronal Targets for Amphetamine-, Methylphenidate
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 14128–14133, November 1996 Neurobiology Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat (immediate-early geneyprotooncogeneyanterior hypothalamic nucleusystriatumydopaminergic system) JIANG-SHENG LIN*, YIPING HOU, AND MICHEL JOUVET De´partementde Me´decineExpe´rimentale, Institut National de la Sante´et de la Recherche Me´dicaleUnite´52, Centre National de la Recherche Scientifique ERS 5645, Faculte´deMe´decine, Universite´Claude Bernard, 8 avenue Rockefeller, 69373 Lyon, France Communicated by Jean-Pierre Changeux, Institut Pasteur, Paris, France, August 29, 1996 (received for review July 29, 1996) ABSTRACT Much experimental and clinical data suggest expression of IEGs occurs in the brain, c-fos is strongly expressed that the pharmacological profile of modafinil, a newly dis- in various specific cerebral areas following different stimuli, such covered waking substance, differs from those of amphetamine as electrical or pharmacological stimulation, stress, or sleep and methylphenidate, two classical psychostimulants. The deprivation (8–15). Thus, visualization of c-fos could serve as a brain targets on which modafinil acts to induce wakefulness, sensitive indicator of gene activation in individual target neurons however, remain unknown. A double-blind study using the activated following a given stimulus. protooncogene c-fos as experimental marker in the cat was, We have, therefore, developed Fos immunocytochemical pro- therefore, carried out to identify the potential target neurons cedures in both the rat and cat to visualize the potential targets of modafinil and compare them with those for amphetamine of modafinil and amphetamine in the central nervous system.
    [Show full text]
  • Suprachiasmatic Modulation of Noradrenaline Release in the Ventrolateral Preoptic Nucleus
    6412 • The Journal of Neuroscience, June 13, 2007 • 27(24):6412–6416 Brief Communications Suprachiasmatic Modulation of Noradrenaline Release in the Ventrolateral Preoptic Nucleus Benoıˆt Saint-Mleux,1 Laurence Bayer,1 Emmanuel Eggermann,1 Barbara E. Jones,2 Michel Mu¨hlethaler,1 and Mauro Serafin1 1De´partement de Neurosciences Fondamentales, Centre Me´dical Universitaire, 1211 Gene`ve 4, Switzerland, and 2Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4 As the major brain circadian pacemaker, the suprachiasmatic nucleus (SCN) is known to influence the timing of sleep and waking. We thus investigated here the effect of SCN stimulation on neurons of the ventrolateral preoptic nucleus (VLPO) thought to be involved in promoting sleep. Using an acute in vitro preparation of the rat anterior hypothalamus/preoptic area, we found that whereas single-pulse stimulations of the SCN evoked standard fast ionotropic IPSPs and EPSPs, train stimulations unexpectedly evoked a long-lasting inhi- bition (LLI). Such LLIs could also be evoked in VLPO neurons by pressure application of NMDA within the SCN, indicating the specific activation of SCN neurons. This LLI was shown to result from the presynaptic facilitation of noradrenaline release, because it was ␣ suppressed in presence of yohimbine, a selective antagonist of 2-adrenoreceptors. The LLI depended on the opening of a potassium conductance, because it was annulled at EK and could be reversed below EK. These results show that the SCN can provide an LLI of the sleep-promoting VLPO neurons that could play a role in the circadian organization of the sleep–waking cycle.
    [Show full text]
  • Reticular Formation and Sleep/Wakefulness
    Reticular Formation and Sleep/Wakefulness Maureen Riedl Department of Neuroscience University of Minnesota 1 Reticular Formation • The reticular formation is the oldest part of our nervous system phylogenetically. • It is present throughout the midbrain, pons and medulla. • Typically, the reticular formation is regions of the brainstem between clearly defined nuclei and tracts • It is groups of neurons embedded in a seeming disorganized mesh of axons and dendrites. 2 Reticular Formation • Although seemingly disorganized, over 100 groups of neurons related by function and connections have been identified in the reticular formation. 3 Reticular Formation Locus Coeruleus Cortex Spinal Cord Amygdala Superior Colliculus Reticular Formation Motor Nuclei Cerebellum Hippocampus Hypothalamus Periaqueductal Gray Thalamus 4 Reticular Formation • The reticular formation receives input from all parts of the nervous system… every sensory system, all parts of the motor system, thalamus, hypothalamus, cortex, etc. • The output of the reticular formation is as diverse as its input. • Many of the neurons in the reticular formation have large, highly branched dendrites that receive diverse information. 5 Reticular Formation • The reticular formation has a major role in regulation of: • Motor control • Sensory attention • Autonomic nervous system • Eye movements • Sleep and wakefulness 6 Reticulospinal & Reticulbulbar Projections • Reticular formation (RF) in the lower pons and medulla receives motor information from premotor cortex, motor cortex and cerebellum as well as proprioceptive and vestibular sensory information. • RF sends axons to cranial nerve motor nuclei and to ventral horn of the spinal cord via the reticulospinal tracts. 7 Reticulospinal & Reticulbulbar Projections • Reticular formation (RF) initiates ‘accompanying’ movements. • Accompanying movements are subconscious and are needed in support of a consciously initiated movement.
    [Show full text]
  • Recreational Drugs and Sleep an Overview
    Recreational Drugs and Sleep An overview Dr Claire Durant Imperial College London, UK Recreational Drugs • Not all are illegal; (eg caffeine and alcohol legal) • Chemical substances taken to improve life in some way • Used commonly to reduce stress/ promote wake • Used parties/night clubs to improve sociability, • ……and to increase (perceived) dancing ability • Can also used to self medicate • All affect the neurotransmitters involved in sleep and wake • Sleep can be affected differently depending on: • Dose and timing of administration • Occasional vs chronic use (dependence)- withdrawal of almost all leads to sleep disturbance1 • 2Commonly used drugs in Europe: • Cannabis, Cocaine, Ecstasy (MDMA), Opioids (Heroin) 1Angarita et al. Addict Sci Clin Pract. 2016 Apr 26;11(1):9. 2European Drug Report 2015: Trends and Developments. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), (http://www.emcdda.europa.eu) Neurotransmitters in sleep & wake Sleep and waking influenced by a wide range of neurotransmitters - drugs that affect these will potentially alter sleep. Increasing Increasing Examples of Examples of Endogenous function function drugs promoting drugs promoting transmitter maintains promotes wakefulness sleep wakefulness sleep GABA Benzodiazepines Most recreational (Alcohol) Z drugs (Alcohol) drugs have actions at multiple receptors. Melatonin Melatonin Adenosine Antagonist: Caffeine Street preparations/ those purchased on the Noradrenaline Amphetamines (Cocaine/MDMA) internet …might not be what Serotonin SSRIs Mirtazapine,
    [Show full text]
  • Optogenetic-Mediated Release of Histamine Reveals Distal and Autoregulatory Mechanisms for Controlling Arousal
    The Journal of Neuroscience, April 23, 2014 • 34(17):6023–6029 • 6023 Brief Communications Optogenetic-Mediated Release of Histamine Reveals Distal and Autoregulatory Mechanisms for Controlling Arousal Rhîannan H. Williams,1* Melissa J.S. Chee,2* Daniel Kroeger,1 Loris L. Ferrari,1 Eleftheria Maratos-Flier,2 Thomas E. Scammell,1 and Elda Arrigoni1 1Department of Neurology and 2Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 Histaminergic neurons in the tuberomammillary nucleus (TMN) are an important component of the ascending arousal system and may form part of a “flip–flop switch” hypothesized to regulate sleep and wakefulness. Anatomical studies have shown that the wake-active TMN and sleep-active ventrolateral preoptic nucleus (VLPO) are reciprocally connected, suggesting that each region can inhibit its counterpart when active. In this study, we determined how histamine affects the two branches of this circuit. We selectively expressed channelrhodopsin-2 (ChR2) in TMN neurons and used patch-clamp recordings in mouse brain slices to examine the effects of photo- evoked histamine release in the ventrolateral TMN and VLPO. Photostimulation decreased inhibitory GABAergic inputs to the ventro- lateral TMN neurons but produced a membrane hyperpolarization and increased inhibitory synaptic input to the VLPO neurons. We found that in VLPO the response to histamine was indirect, most likely via a GABAergic interneuron. Our experiments demonstrate that release of histamine from TMN neurons can disinhibit the TMN and suppresses the activity of sleep-active VLPO neurons to promote TMNneuronalfiring.Thisfurthersupportsthesleep–wake“flip–flopswitch”hypothesisandaroleforhistamineinstabilizingtheswitch to favor wake states. Key words: electrophysiology; histamine; mouse; optogenetics; TMN; VLPO Introduction TMN neurons project widely throughout the CNS, notably Histamine plays a critical role in arousal and in maintaining vig- innervating wake-promoting brain regions (Panula et al., 1989), ilance.
    [Show full text]
  • Stimulant ADHD Medications: Methylphenidate and Amphetamines
    Stimulant ADHD Medications: Methylphenidate and Amphetamines Stimulant medications including How Are Prescription Stimulants amphetamines (e.g., Adderall) and Used? methylphenidate (e.g., Ritalin and Concerta) are often prescribed to treat Prescription stimulants have a calming children, adolescents, or adults diagnosed and “focusing” effect on individuals with attention-deficit hyperactivity with ADHD. They are prescribed to disorder (ADHD). patients for daily use, and come in the form of tablets or capsules of varying People with ADHD persistently have more dosages. Treatment of ADHD with difficulty paying attention or are more stimulants, often in conjunction with hyperactive or impulsive than other psychotherapy, helps to improve ADHD people the same age. This pattern of symptoms along with the patient’s self- behavior usually becomes evident when a esteem, thinking ability, and social and child is in preschool or the first grades of family interactions. elementary school; the average age of onset of ADHD symptoms is 7 years. Many people’s ADHD symptoms improve during Prescription stimulants are sometimes adolescence or as they grow older, but the abused however—that is, taken in disorder can persist into adulthood. higher quantities or in a different manner than prescribed, or taken by ADHD diagnoses are increasing. those without a prescription. Because According to the U.S. Centers for Disease they suppress appetite, increase Control and Prevention, as of 2011, 11 wakefulness, and increase focus and percent of people ages 4–17 have been attention, they are frequently abused diagnosed with ADHD. for purposes of weight loss or performance enhancement (e.g., to help study or boost grades in school; see box).
    [Show full text]
  • Neurobiology of Sleep (Review)
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 272, 2021 Neurobiology of sleep (Review) CRISTIAN FALUP‑PECURARIU1,2*, ȘTEFANIA DIACONU1,2*, DIANA ȚÎNȚ1,3 and OANA FALUP‑PECURARIU1 1 Department of Neurology, Faculty of Medicine, Transilvania University of Brașov, 500036 Brașov; 2Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov; 3Clinicco Hospital, 500059 Brașov, Romania Received October 12, 2020; Accepted November 10, 2020 DOI: 10.3892/etm.2021.9703 Abstract. Sleep is a physiological global state composed of 5. Circadian and homeostatic control of sleep two different phases: Non‑rapid eye movement (NREM) and 6. Conclusions rapid eye movement (REM) sleep. The control mechanisms of sleep manifest at the level of genetic, biological and cellular organization. Several brain areas, including the basal fore‑ 1. Introduction brain, thalamus, and hypothalamus, take part in regulating the activity of this status of life. The signals between different Sleep is a reversible physiological state which involves a brain regions and those from cortical areas to periphery specific pattern of cerebral electric activity. There are two are conducted through various neuromediators, which are main alternating phases that compose normal sleep: Non‑rapid known to either promote wakefulness or sleep. Among others, eye movement (NREM) sleep and rapid‑eye movement (REM) serotonin, norepinephrine, histamine, hypocretin (orexin), sleep. This article will review the main brain regions and acetylcholine, dopamine, glutamate, and gamma‑aminobutyric neuromediators taking part in the regulation of sleep. acid are known to orchestrate the intrinsic mechanisms of sleep neurobiology. Several models that explain the transition 2. Anatomical regions involved in controlling sleep‑wake and the continuity between wakefulness, NREM sleep and states REM sleep have been proposed.
    [Show full text]