Open Rotor Engines

Total Page:16

File Type:pdf, Size:1020Kb

Open Rotor Engines ATTT Open Rotor Engines — Still an As the Open Question? Turbine The open rotor aircraft engine, with its eye-catching two rows of contra- rotating scimitar-like propeller blades, has been under intermittent study and development since the 1980s. Holding the promise of the speed and performance Downloaded from http://asmedigitalcollection.asme.org/memagazineselect/article-pdf/140/12/S46/6352674/me-2018-dec9.pdf by guest on 24 September 2021 Turns... of a turbofan, it is designed to provide the fuel economy of a turboprop engine. The open rotor is essentially a turbojet engine that drives twin exterior nacelle mounted propeller/fans at the rear of the engine. Since its conception in the #36 DECEMBER 2018 1970s at United Technologies Hamilton Standard Division (in conjunction with NASA), it has had a miscellany of names: Propfan, unducted fan (UDF), advanced turboprop and more recently, contra-rotating open rotor (CROR), or open rotor for short. (Some use counter in place of contra, while in propeller terminology the latter refers to same axis rotation only, and the former denotes different rotational axes.) PROPULSION EFFICIENCY To better understand open rotor engines, we need to look at the propulsion efficiency of jet engines in general. The first commercial jetliners were powered by turbojets - jet engines in which all thrust was provided by gases that went Lee S. Langston through the engine from inlet to exhaust nozzle, exiting in a single high velocity jet. The resulting momentum increase provides the thrust force necessary for Professor Emeritus flight, but kinetic energy is “wasted” in the exiting jet. University of Connecticut Mechanical Engineering A more efficient design is the turbofan jet engine, so-named for a ducted fan Department mounted in the front. Air drawn into the fan is divided, with some flowing out of the fan into the jet engine itself and the remainder bypassing the engine. The lower velocity bypassed air and the higher velocity engine air combine downstream to produce thrust with a larger mass flow at an average velocity lower than the high velocity jet flow. With a large frontal area, the commercial aircraft turbofan is designed to produce peak thrust at takeoff, with most of thrust produced by air drawn in by the fan and bypassing the jet engine core itself. Bypass ratios - the mass of fan air for every unit mass of air through the engine - currently can be as high as 9:1, as in General Electric’s 100,000 pound thrust GE90 engine that is used on Boeing 777s, and 12:1 in Pratt & Whitney’s PW1400G 30,000 pounds thrust geared fan engine for the Airbus 320. For subsonic flight, the propulsive efficiency,η p, of a turbofan is higher than that of a turbojet. This efficiency is defined as the useful propulsive power (the product of thrust and flight velocity, Vo) divided by jet power (rate of change of the kinetic energy of gases through the engine). This simplifies to [1], 2 η p = (1) Ve/Vo + 1 where Ve is a suitable average of the lower velocity bypass air and the higher velocity jet exhaust. In a straight forward and elegant way, Equ. (1) shows that to maximize propulsion efficiency, an engine must produce thrust by moving air through it with as little a change in velocity as possible. Thus, a turbojet engine with a higher value of Ve/Vo , has a lower propulsion efficiency, than a same-thrust 46 turbofan engine with its lower velocity ratio. Also, for turbofans we see from Equ. (1), that the higher the bypass ratio, the greater is The propeller/fan blades are rotated by the turbine of the propulsion efficiency. turbojet, by either direct drive or by a gearbox. Direct drive is gotten from contra-rotating, statorless turbine stages, WHY AN OPEN ROTOR? which means both rows contra-rotate at the same speed. A gearbox adds weight, but allows for the flexibility of As we have seen, a major factor in the continued control of different speeds for each row. domination of turbofan engines for economic airlines propulsion is the ability to increase bypass ratios (see A comparison of turbofan and open rotor (propfan) engines Equ. (1)). Currently, these are as high as 12:1 in the Pratt & has been given by Hendricks and Tong [3]. The comparison Downloaded from http://asmedigitalcollection.asme.org/memagazineselect/article-pdf/140/12/S46/6352674/me-2018-dec9.pdf by guest on 24 September 2021 Whitney geared fan engines with Rolls-Royce planning a to similar thrust sized engines is summarized in Table 1, new geared fan engine at 15:1. taken from [3]. However, increasing fan diameters to go even higher in One can note in the table, the predicted reduced fuel bypass ratios increases nacelle weight, aerodynamic drag consumption of the 13.8 foot diameter propeller/fan open and duct losses, countering the efficiency gains predicted rotor engine, compared to the much smaller diameter by Equ. (1). turbofans. Also, the open rotor weight is highest but an aircraft so powered, will require less fuel to complete its Open rotor engines can significantly increase effective mission. This leads the authors [3] to deduce that overall bypass ratios to more than 30:1, to yield high values of aircraft takeoff gross weight would be similar between propulsion efficiency (Equ. (1)). By eliminating the need for turbofan and open rotor powered aircraft. (However, it a fan duct, studies show that open rotor engines can have a should be noted, aircraft weight might be added if fuselage 25-35% fuel consumption saving, compared to most current hardening is required for safe open rotor operation.) turbofan engines in service, and a 10-20% saving for the newer turbofans, recently introduced into the market. Geared Direct Drive Open Cruise Mach numbers, M, of airliners range from 0.7 to 0.9. Engine Parameter Turbofan Turbofan Rotor For the higher end of this range, propeller losses increase markedly (shocks forming in tip regions) so open rotor OPR 42 42 42 Top of Climb Thrust (lbf) 5000 5000 4960 engines are typically being designed to run at a maximum (M0.80;35000ft) of about M=0.78, taking full advantage of swept scimitar TSFC (lbm/hr/lbf) 0.502 0.525 0.441 shaped blades to mitigate compressibility effects [2]. OPR 32.7 33.8 29.4 Sea Level Static Thrust (lbf) 23400 22700 27300 (M0.0; 0ft; ISA+27°F) OPEN ROTOR FEATURES TSFC (lbm/hr/lbf) 0.257 0.290 0.158 Gas turbine aerodynamicists strive to have engine gas path Fan/Propeller Diameter (ft) 6.2 5.5 13.8 flows move axially wherever possible, to minimize losses Nacelle Maximum Diameter (ft) 7.6 6.7 5.6 and maximize axial momentum changes. Thus, open rotor engines have two rows of pitch controlled, contra-rotating Total Engine Pod Weight (lbm) 6630 6100 9220 propeller/fan blades, with the second row taking out the swirl from first, so that its exit flow is in a near axial Table 1. Comparison of an open rotor engine with direction. (This two row configuration also means that turbofans (Hendricks and Tong [3]). the aft row chops through blade wakes from the first row, which can generate siren-like noise.) OPEN ROTOR PROGRESS With its Hamilton Standard inception and the Arab oil embargo induced fuel price hikes of the 1970s, open rotor projects commenced in earnest in the 1980s. A Pratt & Whitney/Allison 578-DX open rotor engine was flight tested on a McDonnell Douglas MD-80 passenger aircraft in 1989. It had propeller/fan blades of diameter 11.6 ft., driven by a 13:1 gearbox. With falling fuel prices, the program ended, with a team member stating [4], “The operation was successful, but the patient died.” Starting in 1986, General Electric Aviation tested their GE36 open rotor engine (trade named Unducted Fan, or UDF) on both MD-80 and Boeing 727 aircraft. With ll.6 ft. diameter Figure 1. GE’s Unducted Fan Engine (open rotor) from the 1980s, mounted on an MD-80 aircraft. 47 propeller/fan blades, it had a direct turbine drive. The fiber 15 ft diameter propeller/fan blades. Recently plans GE36 demonstrated a 15% fuel burn reduction, compared for flight testing the engine on an Airbus aircraft have to contemporary turbofans [2], based on some 281 hours of been halted, with reports Airbus interest in the fuel-saving flight testing. Faced with a market where fuel prices were engine have been put on hold. dropping, the program was ended in 1989. In the words of a GE manager, “The signs were there the year before, that at 65 cents per gallon, the fuel price was too low to justify OPEN ROTOR CHALLENGES the UDF. If fuel were at a buck or so a gallon they’d be Van Zante [2] has outlined three technical challenges clamoring.” that remain to be addressed for successful open rotor In this new century, as fuel prices rose dramatically in the propulsion: early 2000s, the price of a barrel of oil continues to be a 1. Noise is a problem. Additional noise reduction deciding factor for the fate of open rotor engines. Added to beyond what has been accomplished to date, is Downloaded from http://asmedigitalcollection.asme.org/memagazineselect/article-pdf/140/12/S46/6352674/me-2018-dec9.pdf by guest on 24 September 2021 this, is the consideration of climate change and reduction necessary. of greenhouse gas emissions by aircraft engines. 2. Airframe integration, with open rotor propeller/fan Recent development efforts include Rolls-Royce, which blade diameters of 12-15 ft.
Recommended publications
  • Ivchenko Progress
    ® AdvancedAdvanced turboprop,turboprop, propfanpropfan andand turbojetturbojet bypassbypass enginesengines forfor GAGA andand lightlight airplanesairplanes S. DMYTRIYEV 23.11.09 ® HISTORY ZAPOROZHYE MACHINE-BUILDING DESIGN BUREAU PROGRESS STATE ENTERPRISE NAMED AFTER ACADEMICIAN A.G. IVCHENKO (SE IVCHENKO-PROGRESS) Foundation date: May 5, 1945 Over a whole past period, engine manufacturing plants have produced more than 80 , 000 aircraft gas turbine and piston engines, turbostarters and industrial plants. Today, the engines designed by SE IVCHENKO-PROGRESS power 57 types of flying vehicle in 109 countries. Over the years, SE IVCHENKO-PROGRESS engines logged more than 300 million flight hours. © SE Ivchenko-Progress, 2009 2 ® HISTORY D-27 propfan , ÒV3-117 VÌÀ- SBÌ1 turboprop , D-436 turbofan , AI -22 turbofan , AI -222 turbofan , AI -450 turboshaft , 4-th stage AI -450 turboprop , SPM-21 turbofan Turbofans with high power and thrust : 3- rd stage D-136, D-18Ò Turbofans : AI -25, AI -25ÒË, D-36 2-nd stage APUs: AI -9, AI -9 V Turboprops : AI -20, AI -24 1- st stage APU: AI -8 Piston engines: AI -26 , AI-14, AI-4 © SE Ivchenko-Progress, 2009 3 ® DIRECTIONS OF ACTIVITY CIVIL AVIATION: commercial aircraft and helicopters Ìè-2Ì Àí-140 Àí-14 8 STATE AVIATION : trainers and combat trainers, military transport aircraft and helicopters , multipurpose aircraft ßê-18Ò Àí-70 Ìè-26Ò ßê-130 Áe-200 Àí-124 © SE Ivchenko-Progress, 2009 4 ® THE BASIC SPHERES OF ACTIVITIES DESIGN MANUFACTURE OVERHAUL TEST AND DEVELOPMENT PUTTING IN SERIES PRODUCTION AND IMPROVEMENT OF CONSUMER'S CHARACTERISTICS © SE Ivchenko-Progress, 2009 5 INTERNATIONAL RECOGNITION OF ® CERTIFICATION AUTHORITIES Totally 60 certificates of various types European Aviation Safety Agency (Germany) Certificate No.
    [Show full text]
  • Robust Gas Turbine and Airframe System Design in Light of Uncertain
    Robust Gas Turbine and Airframe System Design in Light of Uncertain Fuel and CO2 Prices Stephan Langmaak1, James Scanlan2, and András Sóbester3 University of Southampton, Southampton, SO16 7QF, United Kingdom This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should y at and whether a con- ventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft pro- ductivity, the passenger value of time, and the modal shift into account. To answer this question, an optimization loop was set up in MATLAB consisting of nine modules covering gas turbine and airframe design and performance, ight and aircraft eet sim- ulation, operating cost, and optimization. If the passenger value of time is included, the most robust aircraft design is powered by geared turbofan engines and cruises at Mach 0.80. If the value of time is ignored, however, then a turboprop aircraft ying at Mach 0.70 is the optimum solution. This demonstrates that the most fuel-ecient option, the open rotor, is not automatically the most cost-ecient solution because of the relatively high engine and airframe costs. 1 Research Engineer, Computational Engineering and Design 2 Professor of Aerospace Design, Computational Engineering and Design, AIAA member 3 Associate Professor in Aircraft Engineering, Computational Engineering and Design, AIAA member 1 I. Introduction A. Background IT takes around 5 years to develop a gas turbine engine, which then usually remains in pro- duction for more than two decades [1, 2].
    [Show full text]
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • Regulatory Support Document Control of Air Pollution from Aircraft
    Regulatory Support Document Control of Air Pollution from Aircraft and Aircraft Engines For the Direct Final Rule for aircraft emission standards Published May 8, 1997 Harmonizes US aircraft standards with international standards U.S. Environmental Protection Agency Office of Air and Radiation Office of Mobile Sources February, 1997 Table of Contents Page Part 1: Introduction..................................... 1 1.1 Background....................................... 1 ICAO............................................. 1 Setup....................................... 1 Establishment of standards.................. 1 Rulemaking-EPA................................... 2 1.2 Description of Regulatory Action................. 2 EPA.............................................. 2 Responsibilities............................ 2 Emissions and power setting................. 2 Comparison to ICAO.......................... 3 1.3 Certification Process............................ 3 FAA.............................................. 3 Engine certification........................ 3 Designee system........................ 3 Enforcement of rules........................ 3 Granting of exemptions...................... 4 Part 2: Turbine Engine Technology........................ 4 2.1 Overview......................................... 4 2.2 Turboprops....................................... 5 2.3 Turbojets........................................ 6 2.4 Turbofans........................................ 7 2.5 Propfan/Unducted Fan............................. 8 2.6 Combustion......................................
    [Show full text]
  • APPLIED to GENERAL AVIATION by R. W. Awker BEECH AIRCRAFT
    NASA CR 175020 NfLg/ APPLIED TO GENERAL AVIATION [N&SA-CR-175320) EVAIUAIICN CF _OPFAN N86-24695 _OPULSICN APSLIE_ TO G_N£_AL AVIATION [Beech Aircraft Corp.) |45 p HC A07/_F A01 CSCL 21E Unclas G3/07 43075 by R. W. Awker BEECH AIRCRAFT CORPORATION WICHITA, KANSAS Prepared For NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, Ohio 44135 Contract NAS3- 24349 NASA CR 175020 I /ISA EVALUATION OF PROPFAN PROPULSION APPLIED TO GENERAL AVIATION by R. W. Awker BEECH AIRCRAFT CORPORATION WICHITA, KANSAS Prepared For NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, Ohio 44135 Contract NAS3- 24349 FORWARD This report presents the results of a study conducted by The Beech Aircraft Corporation with support from Hamilton Standard Division of United Technologies Corporation (UTC) and Pratt and Whitney, Canada Division of United Technologies Corporation (UTC) for the National Aeronautics and Space Administration, Lewis Research Center (NASA-LeRC) under NASA contract NAS3-24349, "Multiple Application Propfan Studies (MAPS) Category One (1)" The study was conducted from August, 1984 to June, 1985. The Study Manager for Beech was Randal W. Awker. The NASA Contract Manager for the study was Susan M. Johnson, NASA-LeRC, Cleveland, Ohio. The author wishes to express special thanks to the following UTC personel who provided valuable technical assistance and propulsion system data that made this report possible. Derek Emerson Pratt and Whitney, Canada Ira Kei ter Hamilton Standard Richard Millar Pratt and Whitney, Canada Bernard Palfreeman --- Pratt and Whitney, Canada Additionally, the author wishes to express his appreciation to Pratt and Whitney, Canada for supporting the study at no cost.
    [Show full text]
  • Off-Design Performance Prediction of the CFM56-3 Aircraft Engine
    Off-Design Performance Prediction of the CFM56-3 Aircraft Engine Daniel Alexandre Rodrigues Martins Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor(s): Prof. André Calado Marta Eng. António Miguel Abreu Ribeiro Henriques Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. André Calado Marta Member of the Committee: Prof. João Eduardo de Barros Teixeira Borges November 2015 ii To my family and friends. iii iv Acknowledgments Firstly I would like to thank Engineer Antonio´ Ferreira, for the opportunity of developing this work in TAP Portugal. To both my supervisors, Engineer Antonio´ Miguel Abreu Ribeiro Henriques, of TAP, and Professor Andre´ Calado Marta, of IST, for all the support, confidence, solutions and encouragements. I am ex- tremely thankful and indebted to them for sharing expertise, and sincere and valuable guidance which resulted in all the improvements that led to the final version of this thesis. To every person that I have worked with in TAP M&E during my internship. Their knowledge in their areas of expertise contributed to the development of this work. To my colleagues Mario´ Ferreira, Julien Pabiot and Luis de Botton. I am also grateful to my IST colleagues who supported me throughout these last five years of my academic life. To my parents, I would like to thank their unconditional support, encouragements all across my life. Finally, to the rest of my family and friends, for being present, in all the good, but specially, in all the bad moments. v vi Resumo Desde o aparecimento das aeronaves no inicio do seculo´ passado, estas temˆ transformado o mundo.
    [Show full text]
  • On the Design of Energy Efficient Aero Engines Some Recent Innovations
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in Thermo and Fluid Dynamics On the Design of Energy Efficient Aero Engines Some Recent Innovations By Richard Avellán Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2011 On the Design of Energy Efficient Aero Engines: Some Recent Innovations Richard Avellán © RICHARD AVELLÁN, 2011. ISBN 978-91-7385-564-8 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3245 ISSN 0346-718X Department of Applied Mechanics Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: [Artist’s impression of a future energy efficient aircraft driven by counter-rotating propeller engines. Source: Volvo Aero Corporation] Printed at Chalmers Reproservice Göteborg, Sweden On the Design of Energy Efficient Aero Engines Some Recent Innovations By Richard Avellán Division of Fluid Dynamics Department of Applied Mechanics Chalmers University of Technology SE-412 96 Göteborg Abstract n the light of the energy crisis of the 1970s, the old aerospace paradigm of flying higher and I faster shifted towards the development of more energy efficient air transport solutions. Today, the aeronautical research and development community is more prone to search for innovative solutions, in particular since the improvement rate of change is decelerating somewhat in terms of energy efficiency, which still is far from any physical limits of aero engine and aircraft design. The Advisory Council for Aeronautics Research in Europe has defined a vision for the year of 2020 for aeronautical research in Europe which states a 50% reduction in CO2, 80% reduction in NOx and a 50% reduction in noise.
    [Show full text]
  • Aerospace Propulsion
    Unmanned Aerial Vehicle Propulsion by Sean Brown A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate) Presented February 27th, 2015 Commencement June 2015 2 4 ©Copyright by Sean Brown February 27th, 2015 All Rights Reserved 5 Unmanned Aerial Vehicle Propulsion by Sean Brown A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate) Presented February 27th, 2015 Commencement June 2015 6 TABLE OF CONTENTS Table of Contents ............................................................................................................................. 8 1 Introduction ............................................................................................................................ 12 2 Propulsion Systems ................................................................................................................ 12 2.1 Piston-Propeller.............................................................................................................. 12 2.2 Gas turbine ..................................................................................................................... 12 2.2.1 Turbojets ................................................................................................................ 12 2.2.2 Turboprops
    [Show full text]
  • Assessment of Propfan Propulsion Systems for Reduced
    Assessment of Propfan Propulsion Systems for Reduced Environmental Impact by Andreas Peters Diplom-Ingenieur, RWTH Aachen University (2007) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY January 2010 c Massachusetts Institute of Technology 2010. All rights reserved. Author.............................................................. Department of Aeronautics and Astronautics January 29, 2010 Certified by. Zolt´anS. Spakovszky H. N. Slater Associate Professor Thesis Supervisor Accepted by . Eytan H. Modiano Associate Professor of Aeronautics and Astronautics Chair, Committee on Graduate Students 2 Assessment of Propfan Propulsion Systems for Reduced Environmental Impact by Andreas Peters Submitted to the Department of Aeronautics and Astronautics on January 29, 2010, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract Current aircraft engine designs tend towards higher bypass ratio, low-speed fan designs for improved fuel burn, reduced emissions and noise. Alternative propulsion concepts include counter-rotating propfans (CRPs) which have been investigated intensively in the 1970s and 1980s and demonstrated significant reductions in fuel burn. Currently, propfans are being studied again due to their inherent noise challenge and the potential for reduced environmental impact. A newly developed, integrated noise and performance assessment methodology for advanced propfan powered aircraft configura- tions is introduced. The approach is based on first principles and combines a coupled aircraft and propulsion system performance analysis with 3-D unsteady, full-wheel CRP CFD computations and aero-acoustic simulations. Special emphasis is put on computing CRP interaction tones.
    [Show full text]
  • Superefficient Quiet Short Range Aircraft
    Deutscher Luft- und Raumfahrtkongress 2014 DocumentID: 340222 SUPEREFFICIENT QUIET SHORT RANGE AIRCRAFT M. C. Schwarze, Stuttgart, DE T. Zold, London, UK [email protected] Abstract In the scope of this technical paper a novel aircraft configuration for a superefficient aircraft is developed within an inte- grated approach and conceptually be built on an existing short range aircraft. The “Inliner”, a novel standard short range aircraft, is mainly characterized by a unique architecture, consisting of a set of two counter-rotating open-fans positioned in-line and thereby encircling the fuselage at a longitudinal fuselage station in front of the wings. Remarkably improved fuel efficiency of the Inliner is first achieved by a significantly increased propulsive efficiency (as a result of its special Open Fan-engine architecture), second by its improved thermodynamic efficiency (as a result of special recuperative technical measures on the two driving turboprop-engines) as well as third by its improved aerody- namic efficiency (resulting from the omission of engine pylons and nacelles, from boundary layer ingestion, from pres- sure recovery and from a clean wing with optional laminar flow concept). The combined measures of this integrated approach result in a significantly improved efficiency and realistic fuel savings of 40-45 % on a standard short range mission of 700 nm. At the same time with this innovative propulsion architecture according to first calculations the outward perceptible noise could be lowered by around -15 to -23 dB, meaning by - 67 to -75% regarding the outside perceived human noise inten- sity. The two Open Fans, however they rotate open in the fluid for best efficiency, are completely different from known open rotor configurations in terms of their aerodynamic design and their accompanied noise level.
    [Show full text]
  • Open Rotor Engine Aeroacoustic Technology Final Report Continuous Lower Energy, Emissions and Noise (CLEEN) Program
    Open Rotor Engine Aeroacoustic Technology Final Report Continuous Lower Energy, Emissions and Noise (CLEEN) Program Submitted by General Electric CLEARED FOR PUBLIC RELEASE. UNLIMITED DISTRIBUTION. The Continuous Lower Energy, Emissions and Noise (CLEEN) Program is a Federal Aviation Administration NextGen effort to accelerate development of environmentally promising aircraft technologies and sustainable alternative fuels. The CLEEN Program is managed by the FAA’s Office of Environment and Energy. The report presented herein is the final report deliverable submitted by General Electric for a project conducted under the CLEEN Program to mature open rotor engine aeroacoustic design. This project was conducted under FAA other transaction agreement (OTA) DTFAWA-10-C-00046. This is report is report number DOT/FAA/AEE/2014-04 by the FAA’s Office of Environment and Energy. CLEARED FOR PUBLIC RELEASE. UNLIMITED DISTRIBUTION. GENERAL ELECTRIC COMPANY FAA CLEEN PROGRAM OPEN ROTOR AEROACOUSTIC TECHNOLOGY NON-PROPRIETARY REPORT 2013 General Electric Company GE Aviation, One Neumann Way, Evendale, OH 45215 May 2013 S. Arif Khalid, David Lurie, Andrew Breeze-Stringfellow1 Trevor Wood, Kishore Ramakrishnan, Umesh Paliath2 John Wojno, Bangalore Janardan, Trevor Goerig3 Anthony Opalski4 Jack Barrett5 6 Prepared for Rhett Jefferies 1 GE Aviation – Fan & Compressor Aero Design 2 GE Global Research – Aerodynamics & Acoustics Laboratory 3 GE Aviation – Acoustics & Installation Aerodynamics 4 GE Aviation – Aero Technology Laboratory 5 GE CLEEN Program Manager
    [Show full text]
  • Influence of Regeneration in the Performance of a Propfan Engine
    UNIVERSIDADE DA BEIRA INTERIOR Engenharia Influence of Regeneration in the Performance of a Propfan Engine Carolina da Silva Ferreira Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautical Engineering (Ciclo de Estudos Integrado) Orientador: Prof. Doutor Francisco Miguel Ribeiro Proença Brójo Covilhã, October 2013 1 To my parents Elisabete e Joaquim and my brother Miguel 2 Resumo A indústria da aviação é um elemento essencial na sociedade de hoje em dia, e como tal, não pode ignorar as preocupações públicas sobre o aquecimento global e as questões ambientais, e sobre a economia global e o preço dos combustíveis. O actual pensamento “verde” e as novas políticas de protecção ambiental promoveram a criação de alguns projectos aeronáuticos amigos do ambiente. Estes projectos são destinados à criação de novas e melhores soluções procurando reduzir a pegada ambiental da indústria da aviação. Estas considerações envolvem o desenvolvimento de novos conceitos de aeronaves com menores emissões poluentes e consumo de combustível. Assim sendo, este estudo visa analisar a viabilidade de um motor propfan incorporado com um regenerador de calor. De acordo com vários autores, os motores propfan são mais eficientes que os actuais turbofans e a introdução de regeneradores de calor em turbinas de gás reduz o seu consumo específico de combustível. Assim sendo, a combinação de ambos pode ser uma solução viável para uma redução ainda maior do consumo específico nos actuais motores. O principal propósito desta tese é analisar se este novo conceito de motor poderá ser um substituto mais amigo do ambiente dos actuais turbofans.
    [Show full text]