View Abstract Supplement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Analysis of the Gut Bacterial Microflora of the Fungus-Growing Termite Macrotermes Barneyi
African Journal of Microbiology Research Vol. 6(9), pp. 2071-2078, 9 March, 2012 Available online at http://www.academicjournals.org/AJMR DOI: 10.5897/AJMR11.1345 ISSN 1996-0808 ©2012 Academic Journals Full Length Research Paper Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Macrotermes barneyi Yunhua Zhu1,2,3, Jian Li1,2, Huhu Liu1,2, Hui Yang1,2, Sheng Xin1,2, Fei Zhao1,2, Xuejia Zhang1,2, Yun Tian1,2* and Xiangyang Lu1,2* 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China. 2Hunan Agricultural Bioengineering Research Institute, Changsha 410128, China. 3College of Pharmacy and Life Science, Nanhua University, Hengyang 421001, China. Accepted 29 December, 2011 Termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. To contribute to the evolutional study of termite digestive symbiosis, a bacterial 16S rRNA gene clone library from the gut microbial community of the fungus-growing termite Macrotermes barneyi was constructed. After screening by restriction fragment length polymorphism (RFLP) analysis, 25 out of 105 clones with unique RFLP patters were sequenced and phylogenetically analyzed. Many of the clones (95%) were derived from three phyla within the domain bacteria: Bacteroidetes, Firmicutes and Proteobacteria. In addition, a few clones derived from Deferribacteres, Actinobacteria and Planctomycetes were also found. No one clone affiliated with the phylum Spirochaetes was identified, in contrast to the case of wood-feeding termites. The phylogenetic analysis revealed that nearly half of the representative clones (11 phylotypes) formed monophyletic clusters with clones obtained from other termite species, especially with the sequences retrieved from fungus-growing termites. -
Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases
Current Genomics, 2010, 11, 591-606 591 Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases Loubna Akhabir and Andrew Sandford* Department of Medicine, University of British Columbia, UBC James Hogg Research Centre, Providence Heart + Lung Institute, Room 166, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada Abstract: Interleukin 1 receptor-like 1 (IL1RL1) is gaining in recognition due to its involvement in immune/inflamma- tory disorders. Well-designed animal studies have shown its critical role in experimental allergic inflammation and human in vitro studies have consistently demonstrated its up-regulation in several conditions such as asthma and rheumatoid ar- thritis. The ligand for IL1RL1 is IL33 which emerged as playing an important role in initiating eosinophilic inflammation and activating other immune cells resulting in an allergic phenotype. An IL1RL1 single nucleotide polymorphism (SNP) was among the most significant results of a genome-wide scan inves- tigating eosinophil counts; in the same study, this SNP associated with asthma in 10 populations. The IL1RL1 gene resides in a region of high linkage disequilibrium containing interleukin 1 receptor genes as well as in- terleukin 18 receptor and accessory genes. This poses a challenge to researchers interested in deciphering genetic associa- tion signals in the region as all of the genes represent interesting candidates for asthma and allergic disease. The IL1RL1 gene and its resulting soluble and receptor proteins have emerged as key regulators of the inflammatory proc- ess implicated in a large variety of human pathologies We review the function and expression of the IL1RL1 gene. -
IL-22 Binding Protein Promotes the Disease Process in Multiple Sclerosis Hannes Lindahl, André O
IL-22 Binding Protein Promotes the Disease Process in Multiple Sclerosis Hannes Lindahl, André O. Guerreiro-Cacais, Sahl Khalid Bedri, Mathias Linnerbauer, Magdalena Lindén, Nada This information is current as Abdelmagid, Karolina Tandre, Claire Hollins, Lorraine of September 24, 2021. Irving, Colin Glover, Clare Jones, Lars Alfredsson, Lars Rönnblom, Ingrid Kockum, Mohsen Khademi, Maja Jagodic and Tomas Olsson J Immunol published online 10 July 2019 Downloaded from http://www.jimmunol.org/content/early/2019/07/09/jimmun ol.1900400 Supplementary http://www.jimmunol.org/content/suppl/2019/07/10/jimmunol.190040 http://www.jimmunol.org/ Material 0.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published -
The Development of Asthma and Atopy Reijmerink, Naomi Elizabeth
University of Groningen A search for missing pieces of the puzzle; the development of asthma and atopy Reijmerink, Naomi Elizabeth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Reijmerink, N. E. (2009). A search for missing pieces of the puzzle; the development of asthma and atopy: innate immunity genes and environment. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Chapter 3 Association of IL1RL1, IL18R1 and IL18RAP gene cluster polymorphisms with asthma and atopy Naomi E. Reijmerink Dirkje S. Postma Marcel Bruinenberg Ilja M. Nolte Deborah A. Meyers Eugene R. Bleecker Gerard H. Koppelman J Allergy Clin Immunol. 2008 Sep;122(3):651-4. -
The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer
Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer Authors: Sarah McCuaig1, David Barras,2, Elizabeth Mann1, Matthias Friedrich1, Samuel Bullers1, Alina Janney1, Lucy C. Garner1, Enric Domingo3, Viktor Hendrik Koelzer3,4,5, Mauro Delorenzi2,6,7, Sabine Tejpar8, Timothy Maughan9, Nathaniel R. West1, Fiona Powrie1 Affiliations: 1 Kennedy Institute of Rheumatology, University of Oxford, Oxford UK. 2 SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland. 3Department of Oncology, University of Oxford, Oxford UK. 4Nuffield Department of Medicine, University of Oxford, Oxford UK. 5Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich Switzerland. 6 Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland. 7 Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne Switzerland. 8 Molecular Digestive Oncology, KU Leuven, Belgium. 9 CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Correspondence to: Professor Fiona Powrie; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7YF, UK. Email: [email protected] Conflicts of Interest: S.M., N.R.W., and F.P. -
Inhibition of Tumor Growth by Dietary Indole-3-Carbinol in a Prostate Cancer Xenograft Model May Be Associated with Disrupted Gut Microbial Interactions
nutrients Article Inhibition of Tumor Growth by Dietary Indole-3-Carbinol in a Prostate Cancer Xenograft Model May Be Associated with Disrupted Gut Microbial Interactions Yanbei Wu 1,2,3, Robert W. Li 4, Haiqiu Huang 3 , Arnetta Fletcher 2,5, Lu Yu 2, Quynhchi Pham 3, Liangli Yu 2, Qiang He 1,* and Thomas T. Y. Wang 3,* 1 College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; [email protected] 2 Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; afl[email protected] (A.F.); [email protected] (L.Y.); [email protected] (L.Y.) 3 Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA; [email protected] (H.H.); [email protected] (Q.P.) 4 Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA; [email protected] 5 Department of Family and Consumer Sciences, Shepherd University, Shepherdstown, WV 25443, USA * Correspondence: [email protected] (Q.H.); [email protected] (T.T.Y.W.); Tel.: +86-28-85468323 (Q.H.); +(301)-504-8459 (T.T.Y.W.) Received: 2 January 2019; Accepted: 19 February 2019; Published: 22 February 2019 Abstract: Accumulated evidence suggests that the cruciferous vegetables-derived compound indole-3-carbinol (I3C) may protect against prostate cancer, but the precise mechanisms underlying its action remain unclear. This study aimed to verify the hypothesis that the beneficial effect of dietary I3C may be due to its modulatory effect on the gut microbiome of mice. Athymic nude mice (5–7 weeks old, male, Balb c/c nu/nu) with established tumor xenografts were fed a basal diet (AIN-93) with or without 1 µmoles I3C/g for 9 weeks. -
Exploring the Role of Mucispirillum Schaedleri in Enteric Salmonella Enterica Serovar Typhimurium Infection
Aus dem Max von Pettenkofer-Institut Lehrstuhl für Medizinische Mikrobiologie und Krankenhaushygiene der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. med. Sebastian Suerbaum Exploring the role of Mucispirillum schaedleri in enteric Salmonella enterica serovar Typhimurium infection Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Simone Herp aus Offenburg 2018 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuerin: Prof. Dr. Barbara Stecher-Letsch Zweitgutachterin: Prof. Dr. Gabriele Rieder Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 19.02.2019 i Eidesstattliche Erklärung Ich, Simone Herp, erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema: Exploring the role of Mucispirillum schaedleri in enteric Salmonella enterica serovar Typhimurium infection selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. München, den 07.03.2019 Simone Herp ii Table of Contents Table of Contents Table of Contents ....................................................................................................................... -
Comprehensive Association Study of Genetic Variants in the IL-1 Gene Family in Systemic Juvenile Idiopathic Arthritis
Genes and Immunity (2008) 9, 349–357 & 2008 Nature Publishing Group All rights reserved 1466-4879/08 $30.00 www.nature.com/gene ORIGINAL ARTICLE Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis CJW Stock1, EM Ogilvie1, JM Samuel1, M Fife1, CM Lewis2 and P Woo1 1Centre for Paediatric and Adolescent Rheumatology, Windeyer Institute for Medical Sciences, University College London, London, UK and 2Guy’s, Kings and St Thomas’ School of Medicine, London, UK Patients with systemic juvenile idiopathic arthritis (sJIA) have a characteristic daily spiking fever and elevated levels of inflammatory cytokines. Members of the interleukin-1 (IL-1) gene family have been implicated in various inflammatory and autoimmune diseases, and treatment with the IL-1 receptor antagonist, Anakinra, shows remarkable improvement in some patients. This work describes the most comprehensive investigation to date of the involvement of the IL-1 gene family in sJIA. A two-stage case–control association study was performed to investigate the two clusters of IL-1 family genes using a tagging single nucleotide polymorphism (SNP) approach. Genotyping data of 130 sJIA patients and 151 controls from stage 1 highlighted eight SNPs in the IL1 ligand cluster region and two SNPs in the IL1 receptor cluster region as showing a significant frequency difference between the populations. These 10 SNPs were typed in an additional 105 sJIA patients and 184 controls in stage 2. Meta-analysis of the genotypes from both stages showed that three IL1 ligand cluster SNPs (rs6712572, rs2071374 and rs1688075) and one IL1 receptor cluster SNP (rs12712122) show evidence of significant association with sJIA. -
Igs Cells Recognize Bacteria with Polyreactive Memory B +Iga
Circulating Human CD27−IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs This information is current as Magdalena A. Berkowska, Jean-Nicolas Schickel, Christina of October 2, 2021. Grosserichter-Wagener, Dick de Ridder, Yen Shing Ng, Jacques J. M. van Dongen, Eric Meffre and Menno C. van Zelm J Immunol 2015; 195:1417-1426; Prepublished online 6 July 2015; doi: 10.4049/jimmunol.1402708 Downloaded from http://www.jimmunol.org/content/195/4/1417 Supplementary http://www.jimmunol.org/content/suppl/2015/07/03/jimmunol.140270 http://www.jimmunol.org/ Material 8.DCSupplemental References This article cites 57 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/195/4/1417.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Circulating Human CD272IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs Magdalena A. -
1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A -
Regnase-1 Degradation Is Crucial for IL-33– and IL-25–Mediated ILC2 Activation
Regnase-1 degradation is crucial for IL-33– and IL-25–mediated ILC2 activation Kazufumi Matsushita, … , Shizuo Akira, Tomohiro Yoshimoto JCI Insight. 2020;5(4):e131480. https://doi.org/10.1172/jci.insight.131480. Research Article Immunology Graphical abstract Find the latest version: https://jci.me/131480/pdf RESEARCH ARTICLE Regnase-1 degradation is crucial for IL-33– and IL-25–mediated ILC2 activation Kazufumi Matsushita,1,2 Hiroki Tanaka,3,4 Koubun Yasuda,2 Takumi Adachi,2 Ayumi Fukuoka,2 Shoko Akasaki,1 Atsuhide Koida,2 Etsushi Kuroda,2 Shizuo Akira,3,4 and Tomohiro Yoshimoto1,2 1Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and 2Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan. 3Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and 4Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan. Group 2 innate lymphoid cells (ILC2s) are a critical innate source of type 2 cytokines in allergic inflammation. Although ILC2s are recognized as a critical cell population in the allergic inflammation, the regulatory mechanism(s) of ILC2s are less well understood. Here, we show that Regnase-1, an immune regulatory RNAse that degrades inflammatory mRNAs, negatively regulates ILC2 function and that IκB kinase (IKK) complex–mediated Regnase-1 degradation is essential for IL-33– and IL-25–induced ILC2 activation. ILC2s from Regnase-1AA/AA mice expressing a Regnase-1 S435A/S439A mutant resistant to IKK complex–mediated degradation accumulated Regnase-1 protein in response to IL-33 and IL-25. IL-33– and IL-25–stimulated Regnase-1AA/AA ILC2s showed reduced cell proliferation and type 2 cytokine (IL-5, IL-9, and IL-13) production and increased cell death. -
Single-Cell Analysis of Crohn's Disease Lesions Identifies
bioRxiv preprint doi: https://doi.org/10.1101/503102; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy JC Martin1,2,3, G Boschetti1,2,3, C Chang1,2,3, R Ungaro4, M Giri5, LS Chuang5, S Nayar5, A Greenstein6, M. Dubinsky7, L Walker1,2,5,8, A Leader1,2,3, JS Fine9, CE Whitehurst9, L Mbow9, S Kugathasan10, L.A. Denson11, J.Hyams12, JR Friedman13, P Desai13, HM Ko14, I Laface1,2,8, Guray Akturk1,2,8, EE Schadt15,16, S Gnjatic1,2,8, A Rahman1,2,5,8, , M Merad1,2,3,8,17,18*, JH Cho5,17,*, E Kenigsberg1,15,16,17* 1 Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 2 Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 3 Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 4 The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA. 5 Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 6 Department of Colorectal Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 7 Department of Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.