Lunar Laser Ranging Experiment from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Lunar Laser Ranging Experiment from Wikipedia, the Free Encyclopedia Lunar Laser Ranging experiment From Wikipedia, the free encyclopedia The ongoing Lunar Laser Ranging Experiment measures the distance between the Earth and the Moon using laser ranging. Lasers on Earth are aimed at retroreflectors planted on the Moon during the Apollo program (11, 14, and 15), and the time for the reflected light to return is determined. The first successful tests were carried out in 1962 when a team from the Massachusetts Institute of Technology succeeded in observing laser pulses reflected from moon's surface using a laser with a millisecond pulse length. Similar The Lunar Laser Ranging measurements were obtained later the Experiment from the Apollo same year by a Soviet team at the Crimean 11 mission. Astrophysical Observatory using a Q- switched ruby laser.[1] Greater accuracy was achieved following the installation of a retroreflector array on July 21, 1969, by the crew of Apollo 11, and two more retroreflector arrays left by the Apollo 14 and Apollo 15 missions have also contributed to the experiment. Successful lunar laser range measurements to the retroreflectors were first reported by the 3.1 m telescope at Lick Observatory, Air Force Cambridge Research Laboratories Lunar Ranging Observatory in Arizona, the Pic du Midi Observatory in France, the Apollo 15 LRRR Tokyo Astronomical Observatory, and McDonald Observatory in Texas. The unmanned Soviet Lunokhod 1 and Lunokhod 2 rovers carried smaller arrays. Reflected signals were initially received from Lunokhod 1, but no return signals were detected after 1971 until a team from University of California rediscovered the array in April 2010 using images from NASA's Lunar Reconnaissance Orbiter.[2] Apollo 15 LRRR schematic Lunokhod 2's array continues to return signals to Earth.[3] The Lunokhod arrays suffer from decreased performance in direct sunlight, a factor which was considered in the reflectors placed during the Apollo missions.[4] The Apollo 15 array is three times the size of the arrays left by the two earlier Apollo missions. Its size made it the target of three-quarters of the sample measurements taken in the first 25 years of the experiment. Improvements in technology since then have resulted in greater use of the smaller arrays, by sites such as the Côte d'Azur Observatory in Grasse, France; and the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) at the Apache Point Observatory in New Mexico. Contents 1 Details 2 Results 3 Photo gallery 4 See also 5 References 6 External links Details The distance to the Moon is calculated approximately using this equation: Distance = (Speed of light × Time taken for light to reflect) / 2. In actuality, the round-trip time of about 2.5 seconds is affected by the relative motion of Earth and the Moon, Earth's rotation, lunar libration, weather, polar motion, propagation delay through Earth's atmosphere, the motion of the observing station due to crustal motion and tides, velocity of light in various parts of air and relativistic effects.[5] Nonetheless, the Earth–Moon distance has been measured with increasing accuracy for more than 35 years. The distance continually changes for a number of reasons, but averages about 384,467 kilometers. At the Moon's surface, the beam is about 6.5 kilometers wide[6] and scientists liken the task of aiming the beam to using a rifle to hit a moving dime 3 kilometers away. The reflected light is too weak to be seen with the human eye: out of 1017 photons aimed at the reflector, only one will be received back on Earth every few seconds, even under good conditions. They can be identified as originating from the laser because the laser is highly monochromatic. This is one of the most precise distance measurements ever made, and is equivalent in accuracy to determining the distance between Los Angeles and New York to 0.25 mm.[4][7] As of 2002 work is progressing on increasing the accuracy of the Earth–Moon measurements to near millimeter accuracy, though the performance of the reflectors continues to degrade with age.[4] Results Lunar laser ranging measurement data is available from the Paris Observatory Lunar Analysis Center,[8] and the active stations. Some of the findings of this long-term experiment are: The Moon is spiraling away from Earth at a rate of 3.8 cm per year.[6] This rate has been described as anomalously high.[9] The Moon probably has a liquid core of about 20% of the Moon's radius.[3] The universal force of gravity is very stable. The experiments have constrained the change in Newton's gravitational constant G to (2±7)×10−13 per year. [10] The likelihood of any "Nordtvedt effect" (a differential acceleration of the Moon and Earth towards the Sun caused by their different degrees of compactness) has been ruled out to high precision,[11][12] strongly supporting the validity of the Strong Equivalence Principle. Einstein's theory of gravity (the general theory of relativity) predicts the Moon's orbit to within the accuracy of the laser ranging measurements.[3] Photo gallery Apollo 14 Lunar Ranging APOLLO Collaboration Retro Reflector (LRRR). photon pulse return times Laser ranging facility at Laser Ranging at Goddard Wettzell fundamental Spaceflight Center. station, Bavaria, Germany. See also Apache Point Observatory Lunar Laser-ranging Operation Apollo Lunar Surface Experiments Package Tom Murphy (Physicist) (principal investigator of Apollo's reflector experiment) Carroll Alley (previous principal investigator of Apollo's reflector experiment) EME (communications) Lidar Lunar distance (astronomy) Lunokhod programme Satellite laser ranging Third-party evidence for Apollo Moon landings References 1. Bender, P. L.; Currie, D. G.; Dicke, R. H. et al. (October 19, 1773). "The Lunar Laser Ranging Experiment" (http://www.physics.ucsd.edu/~tmurphy/apollo/doc/Bender.pdf) (PDF). Science 182 (4109): 229–238. Bibcode:1973Sci...182..229B (http://adsabs.harvard.edu/abs/1973Sci...182..229B). doi:10.1126/science.182.4109.229 (https://dx.doi.org/10.1126%2Fscience.182.4109.229). PMID 17749298 (https://www.ncbi.nlm.nih.gov/pubmed/17749298). Retrieved April 27, 2013. 2. McDonald, Kim (April 26, 2010). "UC San Diego Physicists Locate Long Lost Soviet Reflector on Moon" (http://ucsdnews.ucsd.edu/newsrel/science/04- 26SovietReflector.asp). UCSD. Retrieved 27 April 2010. 3. James G. Williams & Jean O. Dickey. "Lunar Geophysics, Geodesy, and Dynamics" (http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/10527/1/02-2551.pdf) (PDF). ilrs.gsfc.nasa.gov. Retrieved 2008-05-04. 13th International Workshop on Laser Ranging, October 7–11, 2002, Washington, D. C. 4. "It’s Not Just The Astronauts That Are Getting Older" (http://www.universetoday.com/2010/03/10/it%E2%80%99s-not-just-the- astronauts-that-are-getting-older/). Universe Today. March 10, 2010. Retrieved 24 August 2012. 5. Seeber, Gunter. Satellite Geodesy 2nd Edition. de Gruyter, 2003, p. 439 6. Fred Espenek (August 1994). "NASA - Accuracy of Eclipse Predictions" (http://eclipse.gsfc.nasa.gov/SEhelp/ApolloLaser.html). eclipse.gsfc.nasa.gov. Retrieved 2008-05-04. 7. "Apollo 11 Experiment Still Going Strong after 35 Years" (http://www.jpl.nasa.gov/news/features.cfm?feature=605). www.jpl.nasa.gov. July 20, 2004. Retrieved 2008-05-04. 8. "LUNAR LASER RANGING OBSERVATIONS FROM 1969 TO MAY 2013" (http://polac.obspm.fr/llrdatae.html) SYRTE Paris Observatory, retrieved 3 June 2014 9. Bills, B.G. & Ray, R.D. (1999), "Lunar Orbital Evolution: A Synthesis of Recent Results" (http://onlinelibrary.wiley.com/doi/10.1029/1999GL008348/pdf), Geophysical Research Letters 26 (19): 3045–3048, Bibcode:1999GeoRL..26.3045B (http://adsabs.harvard.edu/abs/1999GeoRL..26.3045B), doi:10.1029/1999GL008348 (https://dx.doi.org/10.1029%2F1999GL008348) 10. Müller, Jürgen; Liliane Biskupek (2007). "Variations of the gravitational constant from lunar laser ranging data" (http://iopscience.iop.org/0264-9381/24/17/017/). Classical and Quantum Gravity 24 (17): 4533. doi:10.1088/0264-9381/24/17/017 (https://dx.doi.org/10.1088%2F0264-9381%2F24%2F17%2F017). Retrieved 7 May 2014. 11. Adelberger, E.G.; Heckel, B.R.; Smith, G.; Su, Y. & Swanson, H.E. (20 September 1990), "Eötvös experiments, lunar ranging and the strong equivalence principle", Nature 347 (6290): 261–263, Bibcode:1990Natur.347..261A (http://adsabs.harvard.edu/abs/1990Natur.347..261A), doi:10.1038/347261a0 (https://dx.doi.org/10.1038%2F347261a0) 12. Williams, J.G.; Newhall, X.X. & Dickey, J.O. (1996), "Relativity parameters determined from lunar laser ranging", Phys. Rev. D 53: 6730–6739, Bibcode:1996PhRvD..53.6730W (http://adsabs.harvard.edu/abs/1996PhRvD..53.6730W), doi:10.1103/PhysRevD.53.6730 (https://dx.doi.org/10.1103%2FPhysRevD.53.6730) External links Apollo 15 Experiments - Laser Ranging Retroreflector (http://www.lpi.usra.edu/lunar/missions/apollo/apollo_15/experiments /lrr/) by the Lunar and Planetary Institute "History of Laser Ranging and MLRS" (http://www.csr.utexas.edu/mlrs/history.html) by the University of Texas at Austin, Center for Space Research "Lunar Retroreflectors" (http://physics.ucsd.edu/~tmurphy/apollo/lrrr.html) by Tom Murphy Station de Télémétrie Laser-Lune (http://www.obs- azur.fr/cerga/laser/laslune/llr.htm) in Grasse, France Lunar Laser Ranging (http://ilrs.gsfc.nasa.gov/science/scienceContributions/lunar.html) from International Laser Ranging Service "UW researcher plans project to pin down moon's distance from Earth" (http://www.washington.edu/news/2002/01/14/uw-researcher- plans-project-to-pin-down-moons-distance-from-earth/) by Vince Stricherz, UW Today, January 14, 2002 "What Neil & Buzz Left on the Moon" (http://science.nasa.gov/science- news/science-at-nasa/2004/21jul_llr/) by Science@NASA, July 20, 2004 "Apollo 11 Experiment Still Returning Results" (http://www.cnn.com/TECH/space/9907/21/apollo.experiment/) by Robin Lloyd, CNN, July 21, 1999 Retrieved from "https://en.wikipedia.org/w/index.php? title=Lunar_Laser_Ranging_experiment&oldid=666355051" Categories: Lunar science Apollo program Apollo program hardware Tests of general relativity This page was last modified on 10 June 2015, at 16:18.
Recommended publications
  • Annotating a Text
    HUNTER COLLEGE READING/WRITING CENTER THE WRITING PROCESS Invention: Annotating a Text Annotating a text, or marking the pages with notes, is an excellent, if not essential, way to make the most out of the reading you do for college courses. Annotations make it easy to find important information quickly when you look back and review a text. They help you familiarize yourself with both the content and organization of what you read. They provide a way to begin engaging ideas and issues directly through comments, questions, associations, or other reactions that occur to you as you read. In all these ways, annotating a text makes the reading process an active one, not just background for writing assignments, but an integral first step in the writing process. A well-annotated text will accomplish all of the following: •clearly identify where in the text important ideas and information are located •express the main ideas of a text •trace the development of ideas/arguments throughout a text •introduce a few of the reader’s thoughts and reactions Ideally, you should read a text through once before making major annotations. You may just want to circle unfamiliar vocabulary or concepts. This way, you will have a clearer idea about where major ideas and important information are in the text, and your annotating will be more efficient. A brief description and discussion of four ways of annotating a text and a sample annotated text follow: !Highlighting/Underlining Highlighting or underlining key words and phrases or major ideas is the most common form of annotating texts.
    [Show full text]
  • Measure for the Men and Women of Hewlett-Packard F APRIL 1977
    Measure For the men and women of Hewlett-Packard f APRIL 1977 • New proof of Einstein theory - pages 2A • Renegotiation - unnecessary burden - pages 5-7 • New ways of organizing work - pages 8-12 • The great all-Europe HP ski race - page 13 • From the president's desk - page 15 Another proof for Einstein... Lab director Len Cutler and HP atomic clocks help prove general relativity theory o The theories of Albert Einstein are effects would be working against each resonance and measures it so precisely that nearly 75 years old now, and several gener­ other. But, as any science-fiction buff it would take about 30,000 years for the ations of scientists have relied on them. knows, velocities approaching the speed clock to gain or lose even one second. The With the exception of a few skeptics, of light would age an interstellar traveller U.S. Bureau of Standards, the U.S. Naval modern·day physicists and astronomers very slowly in comparison with his friends Observatory, and similar agencies in other generally accept the curvature-of-time­ on Earth. countries rely on HP atomic clocks. In and-space concept as fact. Widely held be­ Experiments conducted in 1971 tend fact, the official definition of a second is liefs about the evolution of the universe to bear that out. Under the direction of now based on the oscillations of the free are based on relativity theory, and Professor Joseph Hafele of Washington cesium atom. Santa Clara Division also Einstein's hypotheses are considered "a University and Richard Keating, an as­ makes rubidium standards, which have dif­ cornerstone of modern cosmological tronomer with the U.S.
    [Show full text]
  • Lunar Laser Ranging Experiment
    Lunar Laser Ranging experiment The ongoing Lunar Laser Ranging experiment or Apollo landing mirror measures the distance between surfaces of Earth and the Moon using laser ranging. Lasers at observatories on Earth are aimed at retroreflectors planted on the Moon during the Apollo program (11, 14, and 15), and the two Lunokhod missions.[1] Laser light pulses are transmitted and reflected back to Earth, and the round-trip duration is measured. The lunar distance is calculated from this value. Contents Overview Lunar Laser Ranging Experiment Principle from the Apollo 11 mission Results Photo gallery See also References External links Overview The first successful tests were carried out in 1962 when a team from the Massachusetts Institute of Technology succeeded in observing laser pulses reflected from the Moon's surface using a laser with a millisecond pulse length.[2] Similar measurements were obtained later the same year by a Soviet team at the Crimean Astrophysical Observatory using a Q-switched ruby laser.[3] Greater accuracy was achieved following the installation of a retroreflector array on July 21, 1969, by the crew of Apollo 11, and two more retroreflector arrays left by the Apollo 14 and Apollo 15 missions have also contributed to the experiment. Successful lunar laser range measurements to the retroreflectors were first reported by the 3.1 m telescope at Lick Observatory, Air Force Cambridge Research Laboratories Lunar Ranging Observatory in Arizona, the Pic du Apollo 15 LRRR Midi Observatory in France, the Tokyo Astronomical Observatory, and McDonald Observatory in Texas. The uncrewed Soviet Lunokhod 1 and Lunokhod 2 rovers carried smaller arrays.
    [Show full text]
  • Universal Design Toolkit Santa Rosa Junior College
    Universal Design Toolkit Santa Rosa Junior College Course Component Universal Design for Learning Practices Appendices & Websites Syllabus • Available in hardcopy and online. Appendix A: • Available to students prior to the start of the semester. • Syllabus Rubric • Offer varied ways to contact instructor for questions/concerns. • Syllabus Tips • Provide a brief overview of instructor. • Sample Syllabus • Textbooks: • SLO's Graphically -List required and recommended texts with purchase Organized information. • Syllabus Questionairre -Electronic equivalent provided or texts ordered early to ensure timely conversion in an alternative format. Websites: • Clearly explain and link all learning objectives, course • Sample Syllabus requirements/assignments, and appropriate due dates (even if Statements tentative). Provide detailed guidance on how to complete major course projects, activities, or papers and offers links to examples and illustrations as appropriate. • Provide instructions and passwords for any online components of the course. • Include statement regarding accommodations. • Include link to the student code of conduct. • Include information about what to do in an emergency. • Consider the language you use, steer clear from subjective and/or vague language. • Keep language succinct and simple. Avoid metaphor, figures of speech and other forms of representational language. • Include a calendar of due dates, and highlight key course events and activities. • Include information about student-orientated campus resources and highlight specific additional resources that may be unique to your course. • Periodically review key items throughout the semester. • Check for comprehension. In Class Writing • Allow students to use a word processor. Appendix B: Assignments • Have a “plan B” for students who will need more than the • Sample Writing allotted time.
    [Show full text]
  • Robert Dicke and the Naissance of Experimental Gravity Physics
    Eur. Phys. J. H 42, 177–259 (2017) DOI: 10.1140/epjh/e2016-70034-0 THE EUROPEAN PHYSICAL JOURNAL H RobertDickeandthenaissance of experimental gravity physics, 1957–1967 Phillip James Edwin Peeblesa Joseph Henry Laboratories, Princeton University, Princeton NJ, USA Received 27 May 2016 / Received in final form 22 June 2016 Published online 6 October 2016 c The Author(s) 2016. This article is published with open access at Springerlink.com Abstract. The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of devel- opments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of nat- ural science. The role of contingency is illustrated by Robert Dicke’s decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The re- view also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach’s Principle and Dirac’s Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity.
    [Show full text]
  • Measure for the Men and Women of Hewlett-Packard I APRIL 1977
    Measure For the men and women of Hewlett-Packard I APRIL 1977 • New proof of Einstein theory - pages 2-4 • Renegotiation - unnecessary burden - pages 5-7 • New ways of organizing work - pages 8-12 • The great all-Europe HP ski race - page 13 • From the president's desk - page 15 www.HPARCHIVE.com Another proof for Einstein... Lab director Len Cutler and HP atomic clocks help prove general relativity theory o The theories of Albert Einstein are effects would be working against each resonance and measures it so precisely that nearly 75 years old now, and several gener­ other. But, as any science-fiction buff it would take about 30,000 years for the ations of scientists have relied on them. knows, velocities approaching the speed clock to gain or lose even one second. The With the exception of a few skeptics, of light would age an interstellar traveller U.S. Bureau of Standards, the U.S. Naval modern-day physicists and astronomers very slowly in comparison with his friends Observatory, and similar agencies in other generally accept the curvature-of-time­ on Earth. countries rely on HP atomic clocks. In and-space concept as fact. Widely held be­ Experiments conducted in 1971 tend fact, the official definition of a second is liefs about the evolution of the universe to bear that out. Under the direction of now based on the oscillations of the free are based on relativity theory, and Professor Joseph Hafele of Washington cesium atom. Santa Clara Division also Einstein's hypotheses are considered "a University and Richard Keating, an as­ makes rubidium standards, which have dif­ cornerstone of modern cosmological tronomer with the U.S.
    [Show full text]
  • Its OK to Say Einstein Is Wrong Roger J Anderton [email protected]
    Its OK to say Einstein is wrong Roger J Anderton [email protected] What a dissident astronomer has to say is contrasted with what an Einstein believer says, and then its pointed out this means it is OK to say Einstein is wrong; because the case of the Einstein believers evaporate. Hilton Ratcliffe describes himself as a dissident astronomer who has struggled for 30-years to try to put the "physical" back into "physics".[1] He says there is “ blatant skewing of scientific data by an informally associated league of mathematical theorists. The author argues that the method adopted by scientific elite not only leads the world up the garden path, but also brings with it a slew of associated misconceptions.” In his book he says he :”details the nuances of classical relativity, compares them with the abstractions proposed by Einstein, and exposes the scientific malpractice that was used to entrench Albert Einstein and his theories as models of advanced thinking. Famous experimental verifications of Special and General Relativity are dissected and found wanting, and experiments clearly falsifying tenets of Einstein’s theoretical model are discussed. Alternative explanations using non- relativistic physics are suggested.” He continues his analysis: “discusses the implications of quasi-scientific theories that completely abandon experimental evidence and logic. We meet Planck, Heisenberg, Schrödinger, Dirac, and Hawking. Beginning with the intrinsically implausible case of quantum mechanics, the chapter traces the decline of theoretical physics to the point where it becomes unapologetically irrational.” He explains how Einstein started the trend of sanctifying nonsense [2] : “I have colleagues who have been barred from observatories, had been refused publication, had research funding withdrawn, lost jobs and even been chased from their country of birth -– all because they insisted on publicly announcing what they had seen in the heavens, which did not fit the preferred model.
    [Show full text]
  • MOONSHOTS 15 Retroreflector; Earth Rises Above the Moon As Seen from Apollo 11
    Clockwise from right: McDonald Observatory’s 107-inch telescope fires a laser at the Moon; a laser lights up the Apache Point 3.5-meter telescope; part of the Apollo MOONSHOTS 15 retroreflector; Earth rises above the Moon as seen from Apollo 11. 40 years after the first astronauts walked on the Moon, Apollo’s last experiment is still probing the Moon, Earth, and much more By Damond Benningfield om Murphy scrambles up a narrow about the thickness of a paperclip. ladder into a concrete vestibule be- Murphy’s observations could add one more Tneath the 3.5-meter telescope at the “giant step” to Apollo’s accomplishments by Apache Point Observatory in southern New showing that Albert Einstein’s theory of grav- Mexico. A blue metallic cone punctures the ity is wrong. Such a result could explain dark center of the tiny room, part of the support energy, provide the first support for string structure for the 45-ton telescope. But Mur- theory, and unify two fundamental fields of phy is there to check on a boxy electronics physics — general relativity and quantum cabinet in the corner. A new addition to the mechanics. room, it measures the up-and-down flex of the “It sticks in the craw that the two pillars of 9,200-foot mountain peak below the telescope physics don’t get along,” Murphy says. “When in response to changes in air pressure, tides you try to merge them, it simply doesn’t work. in Earth’s crust, and even the crash of storm- You get pathologies in that marriage that make driven waves on shores thousands of miles physicists scratch their heads.” away.
    [Show full text]
  • Robert Dicke and the Naissance of Experimental Gravity Physics, 1957-1967
    EPJ manuscript No. (will be inserted by the editor) Robert Dicke and the naissance of experimental gravity physics, 1957-1967 P. J. E. Peeblesa Joseph Henry Laboratories Princeton University, Princeton NJ USA Abstract. The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of devel- opments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of nat- ural science. The role of contingency is illustrated by Robert Dicke's decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The re- view also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach's Principle and Dirac's Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity. I conclude by offering lessons from this history, some peculiar to the study of grav- ity physics during the naissance, some of more general relevance. The central lesson, which is familiar but not always well advertised, is that physical theories can be empirically established, sometimes with sur- prising results.
    [Show full text]
  • The Writing Process: Annotating a Text
    THE WRITING PROCESS Annotating a Text Annotating a text, or marking the pages with notes, is an excellent, if not essential, way to make the most out of the reading you do for college courses. Annotations make it easy to find important information quickly when you look back and review a text. They help you familiarize yourself with both the content and organization of what you read. They provide a way to begin engaging with ideas and issues directly through comments, questions, associations, or other reactions that occur to you as you read. In all these ways, annotating a text makes the reading process an active one, not just background for writing assignments, but an integral first step in the writing process. A well-annotated text will accomplish all of the following: • clearly identify where in the text important ideas and information are located • express the main ideas of a text • trace the development of ideas/arguments throughout a text • introduce a few of the reader’s thoughts and reactions Ideally, you should read a text through once before making major annotations. You may just want to circle unfamiliar vocabulary or concepts. This way, you will have a clearer idea about where major ideas and important information are in the text, and your annotating will be more efficient. A brief description and discussion of four ways of annotating a text—highlighting/underlining, paraphrase/summary of main ideas, descriptive outline, and comments/responses—and a sample annotated text follow: HIGHLIGHTING/UNDERLINING Highlighting or underlining key words and phrases or major ideas is the most common form of annotating texts.
    [Show full text]
  • Robert Dicke and the Naissance of Experimental Gravity Physics
    Eur. Phys. J. H DOI: 10.1140/epjh/e2016-70034-0 THE EUROPEAN PHYSICAL JOURNAL H RobertDickeandthenaissance of experimental gravity physics, 1957–1967 Phillip James Edwin Peeblesa Joseph Henry Laboratories, Princeton University, Princeton NJ, USA Received 27 May 2016 / Received in final form 22 June 2016 Published online 6 October 2016 c The Author(s) 2016. This article is published with open access at Springerlink.com Abstract. The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of devel- opments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of nat- ural science. The role of contingency is illustrated by Robert Dicke’s decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The re- view also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach’s Principle and Dirac’s Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity.
    [Show full text]
  • Arxiv:1601.04360V3 [Quant-Ph] 28 Jun 2016
    On Participatory Realism Christopher A. Fuchs Department of Physics, University of Massachusetts Boston 100 Morrissey Boulevard, Boston MA 02125, USA and Max Planck Institute for Quantum Optics Hans-Kopfermann-Strasse 1, 85748 Garching, Germany 12 January 2016 Abstract: In the Philosophical Investigations, Ludwig Wittgenstein wrote, \ `I' is not the name of a person, nor `here' of a place, . But they are connected with names. [And] it is characteristic of physics not to use these words." This statement expresses the dominant way of thinking in physics: Physics is about the impersonal laws of nature; the \I" never makes an appearance in it. Since the advent of quantum theory, however, there has always been a nagging pressure to insert a first-person perspective into the heart of physics. In incarnations of lesser or greater strength, one may consider the \Copenhagen" views of Bohr, Heisenberg, and Pauli, the observer-participator view of John Wheeler, the informational interpretation of Anton Zeilinger and Caslavˇ Brukner, the relational interpretation of Carlo Rovelli, and, most radically, the QBism of N. David Mermin, R¨udigerSchack, and the present author, as acceding to the pressure. These views have lately been termed \participatory realism" to emphasize that rather than relinquishing the idea of reality (as they are often accused of), they are saying that reality is more than any third-person perspective can capture. Thus, far from instances of instrumentalism or antirealism, these views of quantum theory should be regarded as attempts to make a deep statement about the nature of reality. This paper explicates the idea for the case of QBism.
    [Show full text]