T H 1 I T B U T R a L R E D U C T I O N Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
List of Lists
United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals -
A Personal History of the Benzidine Rearrangement
Bull. Hist. Chem. 19 (1996) 77 A PERSONAL HISTORY OF THE BENZIDINE REARRANGEMENT nr . Shn, x h Unvrt What I have to say today amounts more to a personal pounds) and which I had been studying with E. E. Turner account rather than an honest-to-goodness history of the at Bedford College in London during the years benzidine rearrangements. Interest in the mechanism of 1945-1947. My arrangement with Henry Gilman broke these rearrangements spans this century from the early up in the fall, 1948, and I became an independent re- 1900s to the present day. Prominent in studies of the search associate supported by the Department of Chem- rearrangements and their mechanisms during these istry. In return for that support, I became an instructor ninety years is the name of the man whose memory we of a quiz section in sophomore organic chemistry when honor today, C. K. Ingold, associated also with his the section's graduate-student instructor left Ames on long-time colleague and collaborator E. D. Hughes and short notice. During one of the quiz-section periods a their younger coworker Derek Banthorpe. Also promi- student asked how the benzidine rearrangement, men- nent in these studies are the names of Paul Jacobson, tioned only briefly in his book, occurred (Eq. 1) this Michael Dewar, Robert Carlin, Miroslav Vecera, and equation shows two products, as is correct. George Hammond and me. I don't know how or why Carlin and Vecera took up the benzidine rearrangements. Carlin, of course, was much interested in the Fischer indole reaction, and that is connected with benzidine rearrangements, as you know. -
Hydrazobenzene Property Information Molecular Weight 184.2 CAS No
Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Hydrazobenzene Property Information Molecular weight 184.2 CAS No. 122-66-7 Specific gravity 1.158 at 16°C/4°C Melting point 131°C (decomposes) Reasonably anticipated to be a human carcinogen Boiling point 293°C at 760 mm Hg Log K 2.94 First listed in the Second Annual Report on Carcinogens (1981) ow Water solubility 221 mg/L at 25°C Also known as 1,2-diphenylhydrazine Vapor pressure 0.00044 mm Hg at 25°C Dissociation constant (pKa) –0.65 H H Source: HSDB 2009. N N Use Carcinogenicity Hydrazobenzene has been used primarily in the dye manufacturing industry as the precursor of the dye intermediate benzidine (HSDB Hydrazobenzene is reasonably anticipated to be a human carcino- 2009). It is also used as an intermediate in the manufacture of phar- gen based on sufficient evidence of carcinogenicity from studies in maceuticals such as sulfinpyrazone and phenylbutazone, which have experimental animals. been used to treat gout (Roberts and Morrow 2001, HSDB 2009). Some minor direct uses of hydrazobenzene are in polymerization Cancer Studies in Experimental Animals reactions and as an anti-sludging additive to motor oil, desucker- Dietary exposure to hydrazobenzene caused tumors in two rodent ing agent for tobacco plants, reductant in the reclamation of rubber, species and at several different tissue sites. It caused liver cancer component of experimental organometallic polymers, and compo- (hepatocellular carcinoma) in female mice and male rats and benign nent in photochromic resin compositions (HSDB 2009). -
Toxicological Profile for 1,2-Diphenylhydrazine Released for Public Comment in 2019
f Toxicological Profile for 1,2-Diphenylhydrazine October 2020 1,2-DIPHENYLHYDRAZINE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. 1,2-DIPHENYLHYDRAZINE iii FOREWORD This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. The adequacy of information to determine a substance's health effects is described in a health effects summary. Data needs that are of significance to the protection of public health are identified by ATSDR. -
CHEMICAL HYGIENE PLAN Department of Environmental Health and Safety General Services Bldg., Room 132 222 S
DEPARTMENT OF ENVIRONMENTAL HEALTH & SAFETY CHEMICAL HYGIENE PLAN Department of Environmental Health and Safety General Services Bldg., Room 132 222 S. Chapel Street Newark, DE 19716 302‐831‐8475 http://www.udel.edu/ehs Effective Date: May 1, 1990 Revised: September, 2015 University of Delaware Department of Environmental Health & Safety Chemical Hygiene Plan Emergency Phone Numbers Newark Campus Fire 911 University Police 911 Ambulance 911 Georgetown/Lewes Campus Fire 9‐911 Police 9‐911 Ambulance 9‐911 Dover Campus Fire 99‐911 Police 99‐911 Ambulance 99‐911 Wilmington Campus Fire 9‐911 University Police 9‐911 Ambulance 9‐911 Environmental Health & Safety 302‐831‐8475 University Police Non‐Emergency 302‐831‐2222 Student Health Services 302‐831‐2226 Poison Information Center 1‐800‐722‐7112 (Local) 1‐800‐222‐1222 (National) University of Delaware Department of Environmental Health & Safety Chemical Hygiene Plan Table of Contents University of Delaware Policy 7‐1 & 7‐37 iii 1 Purpose, Scope & Responsibilities 1 2 General Safety Guidelines 5 3 Exposure Control Methods 10 4 Engineering Controls and Laboratory Ventilation Program 17 5 Employee Training Program 21 6 Operations Requiring Prior Approval 22 7 Highly Toxic, Carcinogen, Reproductive Toxin Permit Process 27 8 Medical Consultation 35 9 Emergency Response 36 10 Chemical Waste Management Guidelines for Handling and Disposal of Chemical Waste 37 11 Chemical Spills 42 12 Injury, Illness, Personal Contamination, Minor First Aid 45 13 Transporting Hazardous Materials 48 14 Laboratory and -
Toxicological Review of Nitrobenzene (CAS No. 98-95-3) (PDF)
EPA/635/R-08/004F www.epa.gov/iris TOXICOLOGICAL REVIEW OF NITROBENZENE (CAS No. 98-95-3) In Support of Summary Information on the Integrated Risk Information System (IRIS) January 2009 U.S. Environmental Protection Agency Washington, DC i DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii CONTENTS—TOXICOLOGICAL REVIEW OF NITROBENZENE (CAS No. 98-95-3) LIST OF TABLES......................................................................................................................... vi LIST OF FIGURES ........................................................................................................................ x LIST OF ACRONYMS ................................................................................................................. xi FOREWORD xiii AUTHORS, CONTRIBUTORS, AND REVIEWERS ............................................................... xiv 1. INTRODUCTION ..................................................................................................................... 1 2. CHEMICAL AND PHYSICAL INFORMATION ................................................................... 3 3. TOXICOKINETICS .................................................................................................................. 5 3.1. ABSORPTION ................................................................................................................. -
Final Report (Posted 3/18)
FINAL REPORT Interaction of Microbial & Abiotic Processes in Soil Leading to the (Bio)Conversion and Ultimate Attenuation of New Insensitive Munitions Compounds SERDP Project ER-2221 DECEMBER 2016 Jim A. Field Jon Chorover Reyes Sierra-Alvarez Leif Abrell University of Arizona, Tucson, AZ John Coffey II CH2M HILL Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 30-12-2016 FinalReport Feb9th 2012- Feb 8th 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Interaction of Microbial & Abiotic Processes in Soil Leading to the (Bio)Conversion W912HQ-12-C-0021 and Ultimate Attenuation of New Insensitive Munitions Compounds 5b. GRANT NUMBER SERDP ER-2221 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Jim A Field ER-2221 Jon Chorover 5e. TASK NUMBER Reyes Sierra-Alvarez Leif Abrell 5f. WORK UNIT NUMBER John Coffey II 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT University of Arizona CH2 MHILL University of Arizona 888 N Euclid, Room 9191 South 104 Jamaica Street Tucson, AZ 85719 Englewood, CO 10. -
OAR 340-245-8010 Table 1 Risk Action Levels†
OAR 340-245-8010 Table 1 Risk Action Levels† Excess Cancer Noncancer Hazard Applicability Risk Action Level Risk per Million Index Aggregate TEU Level 0.5 0.1 Source Permit Level 0.5 0.5 New and Reconstructed Community Engagement Level 5 1 Source TLAER Level 10 1 Permit Denial Level 25 1 Aggregate TEU Level 2.5 0.1 Source Permit Level 5 0.5 Community Engagement Level 25 1 5a or 3b or TBACT Level 50 Risk Determination Ratio of> Existing Source 1.0c 10a or 6b or Risk Reduction Level 200 Risk Determination Ratio of 2.0c 20a or 12b or Immediate Curtailment Level 500 Risk Determination Ratio of 4.0c Footnotes for OAR 340-245-8010 Table 1: †Facility risk that is equal to or less than the values in the table is considered compliant with the Risk Action Level. Risk Action Levels are considered consistent with benchmarks in Oregon Laws 2018, chapter 102 (Senate Bill (SB) 1541 (2018)). a If all toxic air contaminants emitted by the source are identified as HI5 in OAR 340-245-8030, Table 3, and OAR 340-245-8040, Table 4. b If all toxic air contaminants emitted by the source are identified as HI3 in OAR 340-245-8030, Table 3, and OAR 340-245-8040, Table 4. c If toxic air contaminants emitted by the source include contaminants listed as both HI3 and HI5 in OAR 340-245-8030, Table 3, and OAR 340-245-8040, Table 4, and a Risk Determination Ratio is required to be calculated under OAR 340-245-0200. -
Ru Single Atoms for Efficient Chemoselective Hydrogenation of Nitrobenzene to Azoxybenzene
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021 Ru Single Atoms for Efficient Chemoselective Hydrogenation of Nitrobenzene to Azoxybenzene Bo Wu, Tiejun Lin, Ruoou Yang, Min Huang, Huan Zhang, Ji Li, Fanfei Sun, Fei Song, Zheng Jiang, Liangshu Zhong,* Yuhan Sun* The supporting information including Scheme S1-S2 Table S1 Figure S1-S7 Azoxybenzene, AOB Azobenzene, AB Condensation route Nitrobenzene, NB Nitrosobenzene, NSB Phenylhydroxylamine, PHA Aniline, AN Direct hydrogenation pathway Scheme S1. Schematic illustrations of reaction pathway for nitrobenzene hydrogenation reaction, with C in gray, O in red, N in blue and H in white. Ce(NO ) 3 3 RuCl3 CO(NH2)2 Cl Ru C O N Ce H Ru-SAs/CeO2 Stirring for 30 min Hydrothermal synthesis Synthesis Room Temperature 180 oC, 16 h 400 oC, 4 h, 1 °C/min Scheme S2. Schematic illustrations of the preparation of Ru-SAs/CeO2 catalyst, with C in gray, O in red, N in blue, H in white, Ru in teal, Ce in yellow, Cl in green. Table S1. Element analysis and texture properties of various samples. Ru loading S b V b Pore size b Entry Catalysts BET p [wt%] [m2/g] [cm3/g] [nm] 1 CeO2 0 53.9 0.08 6.2 2 Ru-SAs/CeO2 1.6 88.2 0.09 3.9 3 Ru-NPs/CeO2 1.7 51.8 0.06 4.3 aThe concentration of Ru was measured by ICP-OES. b Determined by N2 adsorption/desorption isotherms. a b c d Figure S1. (a, b) SEM images. -
A Study of the Benzidine Rearrangement
A STUDY OF THE BENZIDINE REARRANGEMENT BY MAURICE HARRIS /^^^^ THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of BACHELOR OF SCIENCE IN CHEMISTRY COLLEGE OF LIBERAL ARTS AND SCIENCE UNIVERSITY OF ILLINOIS 1920 4 UNIVERSITY OF ILLINOIS .J.an......sa ig£.0.. THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Blaurice Harris ENTITLED A...S.tM3f.,.Q;f ...ti.lje ...B.en.?.idlne ..H^ IS APPROVED BY AlE AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF .....:B.§i.Q]a.e.lo.r....Qf ...3.c.i.exi.G.e.,. in Chemistry <^i^O^>V>7Q Instructor in Charge Approved : HEAD OF DEPARTMENT OF .ahejuls.try.. Digitized by the Internet Archive in 2013 http://archive.org/details/studyofbenzidineOOharr The author wishes to express his appreciation to Dr. Oliver Kamm for his suggestions and help "both in the experimental work and in the writing of this thesis. » . A Study of the Benzidine Rearrangement. Table of Contents. Page Introduction 1. Historical Part 2. Theoretical Part 6. .[Experimental Part 9. Preparation of hydrazobenzene 9. Rearrangement of hydrazobenzene to benzidine.... 10. Preparation of xanthone from diphenyl ether by means of the Priedel and Crafts Reaction 13. Sunimary 14. Bibliography 15. Page 1. lUTRODUOTIOU . Tho primary olaject of this work has heen the preparation of hydrazobenzene by means of a cheaper method than that developed 5 by Alexeyeff and to study the Benzidine rearrangement. All references in the laboratory manuals recommend the use of strong hydrochloric aQid for the transformation, without any regard as to the relative amounts of benzidine and diphenyline formed. -
Chemical Hygiene Plan 03/01/10
OFFICIAL POLICY 0.000 Chemical Hygiene Plan 03/01/10 Policy Statement It is the policy of the College of Charleston teaching and research laboratories in any department that use chemicals, to comply with the letter and intent of the Occupational Safety and Health Administration’s standard for safety in laboratories. This standard (29 CFR 1910.1450), requires that employers who may expose employees to potentially hazardous chemicals in laboratories have written policies and procedures for preventing employee illness or injury due to that potential exposure. This policy satisfies this requirement and is applicable to all employees working in laboratories where such exposure is possible. _______________________________________________________________ Policy Manager and Responsible Department or Office Randy L. Beaver, Director, Environmental Health and Safety Department _______________________________________________________________ Purpose/Reason for the Policy Manage the large numbers of chemical and biological agents used in student and research laboratories at all College of Charleston facilities and locations. _______________________________________________________________ Departments/Offices Affected by the Policy Any department that uses chemicals or biological agents in the process of laboratory activity. _______________________________________________________________ Procedures Related to the Policy All procedures related to this policy are attached to this file form in a .pdf file format. _______________________________________________________________