Heterozygous Inactivation of the Na/Ca Exchanger Increases

Total Page:16

File Type:pdf, Size:1020Kb

Heterozygous Inactivation of the Na/Ca Exchanger Increases ORIGINAL ARTICLE Heterozygous Inactivation of the Na/Ca Exchanger Increases Glucose-Induced Insulin Release, b-Cell Proliferation, and Mass Evrard Nguidjoe,1 Sophie Sokolow,1,2 Serge Bigabwa,1 Nathalie Pachera,1 Florent Allagnat,3 Jean-Marie Vanderwinden,4 Abdullah Sener,5 Mario Manto,6 Marianne Depreter,7 Jan Mast,7 Geraldine Joanny,8 Eduard Montanya,8 Jacques Rahier,9 Alessandra K. Cardozo,3 Décio L. Eizirik,3 Stéphane Schurmans,2 and André Herchuelz1 +/+ OBJECTIVE—We have previously shown that overexpression of diabetes cure than Ncx1 islets when transplanted into di- of the Na-Ca exchanger (NCX1), a protein responsible for Ca2+ abetic animals. extrusion from cells, increases b-cell programmed cell death (ap- CONCLUSIONS—Downregulation of the Na/Ca exchanger optosis) and reduces b-cell proliferation. To further characterize leads to an increase in b-cell function, proliferation, mass, and the role of NCX1 in b-cells under in vivo conditions, we devel- resistance to physiologic stress, namely to various changes in oped and characterized mice deficient for NCX1. b-cell function that are opposite to the major abnormalities seen RESEARCH DESIGN AND METHODS—Biologic and morpho- in type 2 diabetes. This provides a unique model for the preven- logic methods (Ca2+ imaging, Ca2+ uptake, glucose metabolism, tion and treatment of b-cell dysfunction in type 2 diabetes and insulin release, and point counting morphometry) were used to after islet transplantation. assess b-cell function in vitro. Blood glucose and insulin levels were measured to assess glucose metabolism and insulin sensi- tivity in vivo. Islets were transplanted under the kidney capsule to assess their performance to revert diabetes in alloxan-diabetic he prevalence of type 2 diabetes is progressing in mice. an alarming way in most regions of the world — (1,2). Type 2 diabetes is a complex disease RESULTS Heterozygous inactivation of Ncx1 in mice induced characterized by insulin resistance and b-cell an increase in glucose-induced insulin release, with a major en- T hancement of its first and second phase. This was paralleled by dysfunction. One of the earliest abnormalities occurring in an increase in b-cell proliferation and mass. The mutation also this disease is the alteration in pulsatile insulin release increased b-cell insulin content, proinsulin immunostaining, glu- with the suppression of the first phase of insulin response cose-induced Ca2+ uptake, and b-cell resistance to hypoxia. In to glucose (3). The second phase of insulin release is also addition, Ncx1+/2 islets showed a two- to four-times higher rate diminished and a number of abnormalities of continuous insulin release have been observed (4,5). In addition to a defect in b-cell function, a reduction in islet and b-cell mass has been observed (6,7). This reduction could be From the 1Laboratory of Pharmacology, Experimental Neurology, Université related to increased programmed cell death (apoptosis), to Libre de Bruxelles (ULB), Faculté de Médecine, Brussels, Belgium; the decreased b-cell replication, or both (8). 2 Institute of Interdisciplinary Research, Institute of Molecular Biology and In a previous work, we observed that overexpression of Medicine (IRIBHM-IBMM), Experimental Neurology, Université Libre de Bruxelles (ULB), Faculté de Médecine, Brussels, Belgium; the 3Experimen- the Na/Ca exchanger (isoform 1: Na-Ca exchanger [NCX1]), 2+ tal Medicine, Experimental Neurology, Université Libre de Bruxelles (ULB), a protein responsible for Ca extrusion from cells (9,10), Faculté de Médecine, Brussels, Belgium; the 4Neurophysiology, Experimen- increased b-cell apoptosis and reduced b-cell proliferation tal Neurology, Université Libre de Bruxelles (ULB), Faculté de Médecine, 5 (11). The increase in apoptosis resulted from endoplasmic Brussels, Belgium; the Experimental Hormonology, Experimental Neurol- 2+ ogy, Université Libre de Bruxelles (ULB), Faculté de Médecine, Brussels, reticulum (ER) Ca depletion with resulting ER stress (11). Belgium; the 6Experimental Neurology, Université Libre de Bruxelles (ULB), If it is possible to increase apoptosis and to decrease Faculté de Médecine, Brussels, Belgium; the 7Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium; the 8Laboratory of b-cell proliferation by increasing the activity of NCX1, it Diabetes and Experimental Endocrinology, Institut d’Investigació Biomèd- may be possible to obtain the opposite effects by down- ica de Bellvitge (IDIBELL)–University of Barcelona, Centro de Investigación regulating such a mechanism. To test this hypothesis, we Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabolicas Aso- +/2 9 generated Ncx1 heterozygous deficient mice (Ncx1 ). ciadas (CIBERDERM), Barcelona, Spain; and the Department of Pathology, +/2 Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium. Our data show that Ncx1 heterozygous inactivation Corresponding author: André Herchuelz, [email protected]. induces several b-cell modifications, including an increase Received 1 July 2010 and accepted 19 April 2011. in glucose-induced insulin release and in b-cell pro- DOI: 10.2337/db10-0924 +/2 This article contains Supplementary Data online at http://diabetes. liferation and mass. Ncx1 islets also displayed an in- diabetesjournals.org/lookup/suppl/doi:10.2337/db10-0924/-/DC1. creased resistance to hypoxia, and when transplanted in E.N. and S.S. contributed equally to this work. diabetic animals, showed a two- to four-times higher rate S.S. is currently affiliated with the University of California–Los Angeles School +/+ of Nursing, Los Angeles, California. of diabetes cure than Ncx1 islets. S.Sc is currently affiliated with Unité de Biochimie, Département des Sciences Fonctionnelles, Faculté de Médecine Vétérinaire, Groupe Interdisciplinaire de Génoprotéomique Appliquée Research, Université de Liège, Liège, RESEARCH DESIGN AND METHODS Belgium. 2/2 Ó 2011 by the American Diabetes Association. Readers may use this article as Generation of Ncx1 mice. Exon 11 of the murine Ncx1 gene (GenBank, long as the work is properly cited, the use is educational and not for profit, accession number AF409089) was cloned from a 129/Sv genomic phage library. and the work is not altered. See http://creativecommons.org/licenses/by The first 206-bp were amplified by PCR and a BamHI site was introduced for -nc-nd/3.0/ for details. cloning. A targeting vector was constructed by inserting the neomycin diabetes.diabetesjournals.org DIABETES 1 Diabetes Publish Ahead of Print, published online June 9, 2011 NCX1 HETEROZYGOUS INACTIVATION IN b-CELLS resistance cassette (neo) into the BamHI restriction site of that amplified Statistics. The results are expressed as means 6 SEM. The statistical sig- exon. Standard procedures were used to generate Ncx1+/2 mice (12). Except nificance of differences between data was assessed by using ANOVA, followed as otherwise stated, experimental mice were 2 to 6 months old, of both sexes, by the Tukey post-test. and had F2 genetic backgrounds from 129/Sv and CD1 mice. Ncx1+/+ mice consisted of age-matched littermates with two wild-type (WT) alleles at the Ncx1 locus (Ncx1+/+). RESULTS Intracellular Ca2+ concentration measurements. The measurement of Generation of Ncx12/2 mice. A mutant allele was con- intracellular Ca2+ concentration using fura-2 was done, as previously de- structed as described in RESEARCH DESIGN AND METHODS (Fig. scribed (11,13), using a camera-based image analysis system (MetaFluor, 1A). After electroporation with the targeting vector, the Universal Imaging, Ypsilanti, MI). fi Time-frequency analysis of spectral densities of the Ca2+ oscillations was recombinant embryonic stem cell clones were identi ed computed using Ackqnowledge Software, (Biopac Systems, Goleta, CA), with by DNA hybridization and used to produce chimeric mice a Hamming window. Data were segmented in successive epochs of 1 min. We (Fig. 1B). Transmission of the mutant allele produced computed the power spectral density (PSD), the integral below the power Ncx1 heterozygous mice that were mated to generate spectrum for the frequency band 0–0.17 Hz, and the crest factor for the same Ncx1 null mutants (Ncx12/2). The Ncx12/2 mice were not frequency band (ratio amplitude of the power spectra/integral 0–0.17 Hz). 45Ca uptake, insulin content, and insulin release from isolated islets. viable and died during embryogenesis as described (28). The methods used to measure 45Ca uptake in intact islets and insulin release Heterozygous and WT mice genotyping from tail biopsy from perifused islets are described in detail elsewhere (11,13–15). Insulin was specimen DNA revealed an Ncx1 WT amplicon of ;250 bp assayed using an ELISA kit (Mercodia, Uppsala, Sweden). For the measure- and an Ncx1 recombinant allele of ;100 bp, which were ment of insulin content, the islets were homogenized in water in the absence simultaneously amplified by PCR (Fig. 1C). NCX1 mRNA of glucose. levels in batches of islets from Ncx1+/+ and Ncx1+/2 mice, Measurement of glucose metabolism and morphology. The methods used +/2 3 14 measured using RT-PCR, showed a clear decrease in Ncx1 to measure D-[5- H]glucose metabolism and D-[U- C]glucose oxidation in in- D +/2 tact islets, have been previously described (16,17). mice (Fig. 1 ). Ncx1 mice were viable, fertile, had Golgi proinsulin/b-cell area was evaluated on slides stained for proinsulin a normal body weight, and showed no macro- or micro- with immunoperoxidase (18) digitized through a JVC KY-F58 color digital scopic abnormalities at the level of the brain, heart, lung, camera (Japan Victor, Brussels, Belgium). Tissues sections (5-mm thick) were liver, spleen, stomach, intestine, and thymus (Supplemen- prepared according to Jacoby et al. (19) and processed for hematoxylin-eosin tary Fig. 1). Likewise, serum levels of glucagon, growth staining. fi hormone (GH) in the fasting state and GLP-1 in the fed For electron microscopy, groups of 30 islets were xed, epoxide-embedded, +/+ +/2 and analyzed as described previously (20). state were comparable in Ncx1 and Ncx1 mice at 12 Measurement of b-cell proliferation, apoptosis, mass, and size.
Recommended publications
  • Regulation of Phosphoinositide Levels in the Retina by Protein Tyrosine Phosphatase 1B and Growth Factor Receptor-Bound Protein 14
    biomolecules Article Regulation of Phosphoinositide Levels in the Retina by Protein Tyrosine Phosphatase 1B and Growth Factor Receptor-Bound Protein 14 Raju V. S. Rajala 1,2,3,4,* , Austin McCauley 1,4, Rahul Rajala 3,5 , Kenneth Teel 1,4 and Ammaji Rajala 1,4 1 Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; [email protected] (A.M.); [email protected] (K.T.); [email protected] (A.R.) 2 Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA 3 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; [email protected] 4 Dean McGee Eye Institute, Oklahoma City, OK 73104, USA 5 Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA * Correspondence: [email protected]; Tel.: +1-405-271-8255; Fax: +1-405-271-8128 Abstract: Protein tyrosine kinases and protein phosphatases play a critical role in cellular regulation. The length of a cellular response depends on the interplay between activating protein kinases and deactivating protein phosphatases. Protein tyrosine phosphatase 1B (PTP1B) and growth factor receptor-bound protein 14 (Grb14) are negative regulators of receptor tyrosine kinases. However, in the retina, we have previously shown that PTP1B inactivates insulin receptor signaling, whereas phosphorylated Grb14 inhibits PTP1B activity. In silico docking of phosphorylated Grb14 and PTP1B Citation: Rajala, R.V.S.; McCauley, indicate critical residues in PTP1B that may mediate the interaction. Phosphoinositides (PIPs) are A.; Rajala, R.; Teel, K.; Rajala, A. acidic lipids and minor constituents in the cell that play an important role in cellular processes.
    [Show full text]
  • The Role of Genetic Variation in Predisposition to Alcohol-Related Chronic Pancreatitis
    The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Marianne Lucy Johnstone April 2015 The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis 2015 Abstract Background Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main causative agent. However, only a small proportion of alcoholics develop chronic pancreatitis. Genetic polymorphism may affect pancreatitis risk. Aim To determine the factors required to classify a chronic pancreatic population and identify genetic variations that may explain why only some alcoholics develop chronic pancreatitis. Methods The most appropriate method of diagnosing CP was assessed using a systematic review. Genetics of different populations of alcohol-related chronic pancreatitics (ACP) were explored using four different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. Results EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93).
    [Show full text]
  • Whole Exome Sequencing Analyses Reveal Gene–Microbiota Interactions
    Inflammatory bowel disease ORIGINAL RESEARCH Whole exome sequencing analyses reveal gene– Gut: first published as 10.1136/gutjnl-2019-319706 on 10 July 2020. Downloaded from microbiota interactions in the context of IBD Shixian Hu ,1,2 Arnau Vich Vila ,1,2 Ranko Gacesa,1,2 Valerie Collij,1,2 Christine Stevens,3 Jack M Fu,4,5,6 Isaac Wong,4,5 Michael E Talkowski,4,5,6,7,8 Manuel A Rivas,9 Floris Imhann,1,2 Laura Bolte,1,2 Hendrik van Dullemen,1 Gerard Dijkstra ,1 Marijn C Visschedijk,1 Eleonora A Festen,1 Ramnik J Xavier,10,11 Jingyuan Fu,2,12 Mark J Daly,3 Cisca Wijmenga,2 Alexandra Zhernakova,2 Alexander Kurilshikov,2 Rinse K Weersma 1 ► Additional material is ABSTRact published online only. To view Objective Both the gut microbiome and host genetics Significance of this study please visit the journal online are known to play significant roles in the pathogenesis (http:// dx. doi. org/ 10. 1136/ What is already known about this subject? gutjnl- 2019- 319706). of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain ► Gene–microbiome interactions are important in For numbered affiliations see the pathogenesis of IBD. end of article. underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. ► Multiple genetic and epidemiological factors have been identified to be associated to Correspondence to Design To evaluate the impact of host genetics on Professor Rinse K Weersma; the gut microbiota of patients with IBD, we combined changes in gut microbiome homeostasis in both r.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Epigenomic Signatures in Liver and Blood of Wilson Disease Patients Include Hypermethylation of Liver‑Specifc Enhancers Charles E
    Mordaunt et al. Epigenetics & Chromatin (2019) 12:10 https://doi.org/10.1186/s13072-019-0255-z Epigenetics & Chromatin RESEARCH Open Access Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specifc enhancers Charles E. Mordaunt1, Dorothy A. Kiefer2, Noreene M. Shibata2, Anna Członkowska3, Tomasz Litwin3, Karl‑Heinz Weiss4, Yihui Zhu1, Christopher L. Bowlus2, Souvik Sarkar2, Stewart Cooper5, Yu‑Jui Yvonne Wan6, Mohamed R. Ali7, Janine M. LaSalle1† and Valentina Medici2*† Abstract Background: Wilson disease (WD) is an autosomal recessive disease caused by mutations in ATP7B encoding a copper transporter. Consequent copper accumulation results in a variable WD clinical phenotype involving hepatic, neurologic, and psychiatric symptoms, without clear genotype–phenotype correlations. The goal of this study was to analyze alterations in DNA methylation at the whole‑genome level in liver and blood from patients with WD to investigate epigenomic alterations associated with WD diagnosis and phenotype. We used whole‑genome bisulfte sequencing (WGBS) to examine distinct cohorts of WD subjects to determine whether DNA methylation could dif‑ ferentiate patients from healthy subjects and subjects with other liver diseases and distinguish between diferent WD phenotypes. Results: WGBS analyses in liver identifed 969 hypermethylated and 871 hypomethylated diferentially methyl‑ ated regions (DMRs) specifcally identifying patients with WD, including 18 regions with genome‑wide signifcance. WD‑specifc liver DMRs were associated with genes enriched for functions in folate and lipid metabolism and acute infammatory response and could diferentiate early from advanced fbrosis in WD patients. Functional annotation revealed that WD‑hypermethylated liver DMRs were enriched in liver‑specifc enhancers, fanking active liver pro‑ moters, and binding sites of liver developmental transcription factors, including Hepatocyte Nuclear Factor 4 alpha (HNF4A), Retinoid X Receptor alpha (RXRA), Forkhead Box A1 (FOXA1), and FOXA2.
    [Show full text]
  • A Transient Role of the Ciliary Gene Inpp5e in Controlling Direct Versus
    RESEARCH ARTICLE A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development Kerstin Hasenpusch-Theil1,2, Christine Laclef3†, Matt Colligan1, Eamon Fitzgerald1, Katherine Howe1, Emily Carroll1, Shaun R Abrams4, Jeremy F Reiter4,5, Sylvie Schneider-Maunoury3, Thomas Theil1,2* 1Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; 2Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom; 3Sorbonne Universite´, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, Paris, France; 4Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; 5Chan Zuckerberg Biohub, San Francisco, United States Abstract During the development of the cerebral cortex, neurons are generated directly from radial glial cells or indirectly via basal progenitors. The balance between these division modes determines the number and types of neurons formed in the cortex thereby affecting cortical functioning. Here, we investigate the role of primary cilia in controlling the decision between forming neurons directly or indirectly. We show that a mutation in the ciliary gene Inpp5e leads to a transient increase in direct neurogenesis and subsequently to an overproduction of layer V *For correspondence: neurons in newborn mice. Loss of Inpp5e also affects ciliary structure coinciding with reduced Gli3 [email protected] repressor levels. Genetically restoring Gli3 repressor rescues the decreased indirect neurogenesis Present address: †Sorbonne in Inpp5e mutants. Overall, our analyses reveal how primary cilia determine neuronal subtype Universite´, Institut du Fer a` composition of the cortex by controlling direct versus indirect neurogenesis. These findings have Moulin INSERM U1270, Paris, implications for understanding cortical malformations in ciliopathies with INPP5E mutations.
    [Show full text]
  • The Dual Roles of Betacellulin and the ERBB Receptors in Acute Pancreatitis & Pancreatic Ductal Adenocarcinoma – a Mouse Study
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München The dual roles of betacellulin and the ERBB receptors in acute pancreatitis & pancreatic ductal adenocarcinoma – a mouse study Kathrin Verena Hedegger aus Frankfurt am Main 2019 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Eckhard Wolf betreut und von Herrn PD Dr. Dietmar Martin von der Fakultät für Chemie und Pharmazie vertreten. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 02.08.2019, Kathrin Verena Hedegger __________________________________ Dissertation eingereicht am: 02.08.2019 1. Gutachter: PD Dr. Dietmar Martin 2. Gutachter: Prof. Dr. Eckhard Wolf Mündliche Prüfung am: 13.09.2019 THE DUAL ROLES OF BETACELLULIN AND THE ERBB RECEPTORS IN ACUTE PANCREATITIS & PANCREATIC DUCTAL ADENOCARCINOMA – A MOUSE STUDY DANKSAGUNG Ein kleines Dankeschön an alle, die sowohl direkt, als auch indirekt an dieser Arbeit mitgewirkt haben. Mein Dank geht zunächst an meinen Doktorvater PD. Dr. Dietmar Martin für die Bereitschaft meine Dissertation an der Fakultät Chemie und Pharmazie zu betreuen, für die gute Zusammenarbeit und seine Ratschläge. Herrn Prof. Dr. Eckhard Wolf möchte ich für die Übernahme des Zweitgutachtens danken, sowie für die Bereitstellung seines Labors und für die zahlreichen Diskussionen und Anregungen. Mein Dank gilt außerdem Herrn PD Dr. Dietmar Martin, Herrn Prof. Dr. Eckhard Wolf, Herrn PD Dr. Maik Dahlhoff, Herrn Prof. Dr. Klaus Förstemann, Herrn Prof. Dr. Julian Stingele und Herrn Prof. Dr. Karl-Peter Hopfner für die Bereitschaft mein Prüfungskomitee zu bilden. PD Dr. Maik Dahlhoff möchte ich ganz herzlich für die Betreuung meiner Doktorarbeit danken, zunächst für die Auswahl der Projekte, vor allem aber für seine Unterstützung über all die Jahre.
    [Show full text]
  • ARL13B, PDE6D, and CEP164 Form a Functional Network for INPP5E Ciliary Targeting
    ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting Melissa C. Humberta,b, Katie Weihbrechta,b, Charles C. Searbyb,c, Yalan Lid, Robert M. Poped, Val C. Sheffieldb,c, and Seongjin Seoa,1 aDepartment of Ophthalmology and Visual Sciences, bDepartment of Pediatrics, cHoward Hughes Medical Institute, and dProteomics Facility, University of Iowa, Iowa City, IA 52242 Edited by Kathryn V. Anderson, Sloan-Kettering Institute, New York, NY, and approved October 19, 2012 (received for review June 28, 2012) Mutations affecting ciliary components cause a series of related polydactyly, skeletal defects, cleft palate, and cerebral develop- genetic disorders in humans, including nephronophthisis (NPHP), mental defects (11). Inactivation of Inpp5e in adult mice results in Joubert syndrome (JBTS), Meckel-Gruber syndrome (MKS), and Bar- obesity and photoreceptor degeneration. Interestingly, many pro- det-Biedl syndrome (BBS), which are collectively termed “ciliopa- teins that localize to cilia, including INPP5E, RPGR, PDE6 α and thies.” Recent protein–protein interaction studies combined with β subunits, GRK1 (Rhodopsin kinase), and GNGT1 (Transducin γ genetic analyses revealed that ciliopathy-related proteins form sev- chain), are prenylated (either farnesylated or geranylgeranylated), eral functional networks/modules that build and maintain the pri- and mutations in these genes or genes involved in their prenylation mary cilium. However, the precise function of many ciliopathy- (e.g., AIPL1 and RCE1) lead to photoreceptor
    [Show full text]
  • Downloaded October, 2015) 83
    bioRxiv preprint doi: https://doi.org/10.1101/522607; this version posted January 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Induction of an alternative 5’ leader enhances translation of Inpp5e and resistance to oncolytic virus infection Huy-Dung Hoang1,Δ, Tyson E. Graber1,2,Δ, Jian-Jun Jia1, Nasana Vaidya1, Victoria Gilchrist1, Wencheng Li3, Christos G. Gkogkas4, Maritza Jaramillo5, Seyed Mehdi Jafarnejad6, and Tommy Alain1* 1 Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada 2 Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, Quebec, Canada 3 Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA 4 Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK. 5 INRS Institut Armand-Frappier Research Centre, Laval, Quebec, Canada 6 Centre for Cancer Research and Cell Biology, The Queen’s University of Belfast, Belfast, UK *correspondence: Tommy Alain Children’s Hospital of Eastern Ontario Research Institute 401 Smyth Road Ottawa, Ontario, Canada Δ These authors contributed equally to this work. Short Title: Oncolytic viruses trigger an innate RNA translation response ABSTRACT variant that lacks repressive upstream open reading frames (uORFs) within its 5’ leader and is consequently Residual cell-intrinsic innate immunity in cancer cells efficiently translated. Furthermore, we show that INPP5E hampers infection with oncolytic viruses. mRNA contributes to antiviral immunity by altering virus translation is an important component of innate attachment. These findings uncover a role for immunity, yet the targeted cellular mRNAs remain ill- translational control through alternative 5’ leader defined.
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]
  • Mediated Sorting of INPP5E Into the Cilium Is Determined by Cargo-Carrier Affinity
    ARTICLE Received 2 Sep 2015 | Accepted 18 Mar 2016 | Published 11 Apr 2016 DOI: 10.1038/ncomms11366 OPEN PDE6d-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity Eyad Kalawy Fansa1,*, Stefanie Kristine Ko¨sling1,*, Eldar Zent1, Alfred Wittinghofer1 & Shehab Ismail2 The phosphodiesterase 6 delta subunit (PDE6d) shuttles several farnesylated cargos between membranes. The cargo sorting mechanism between cilia and other compartments is not understood. Here we show using the inositol polyphosphate 50-phosphatase E (INPP5E) and the GTP-binding protein (Rheb) that cargo sorting depends on the affinity towards PDE6d and the specificity of cargo release. High-affinity cargo is exclusively released by the ciliary transport regulator Arl3, while low-affinity cargo is released by Arl3 and its non-ciliary homologue Arl2. Structures of PDE6d/cargo complexes reveal the molecular basis of the sorting signal which depends on the residues at the À 1 and À 3 positions relative to far- nesylated cysteine. Structure-guided mutation allows the generation of a low-affinity INPP5E mutant which loses exclusive ciliary localization. We postulate that the affinity to PDE6d and the release by Arl2/3 in addition to a retention signal are the determinants for cargo sorting and enrichment at its destination. 1 Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. 2 CR-UK Beatson Institute, Garscube Estate Switchback Road, Glasgow G61 1BD, UK. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to A.W. (email: [email protected]) or to S.I.
    [Show full text]
  • Phosphatases Page 1
    Phosphatases esiRNA ID Gene Name Gene Description Ensembl ID HU-05948-1 ACP1 acid phosphatase 1, soluble ENSG00000143727 HU-01870-1 ACP2 acid phosphatase 2, lysosomal ENSG00000134575 HU-05292-1 ACP5 acid phosphatase 5, tartrate resistant ENSG00000102575 HU-02655-1 ACP6 acid phosphatase 6, lysophosphatidic ENSG00000162836 HU-13465-1 ACPL2 acid phosphatase-like 2 ENSG00000155893 HU-06716-1 ACPP acid phosphatase, prostate ENSG00000014257 HU-15218-1 ACPT acid phosphatase, testicular ENSG00000142513 HU-09496-1 ACYP1 acylphosphatase 1, erythrocyte (common) type ENSG00000119640 HU-04746-1 ALPL alkaline phosphatase, liver ENSG00000162551 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPPL2 alkaline phosphatase, placental-like 2 ENSG00000163286 HU-07767-1 BPGM 2,3-bisphosphoglycerate mutase ENSG00000172331 HU-06476-1 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 ENSG00000162813 HU-09086-1 CANT1 calcium activated nucleotidase 1 ENSG00000171302 HU-03115-1 CCDC155 coiled-coil domain containing 155 ENSG00000161609 HU-09022-1 CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) ENSG00000079335 HU-11533-1 CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) ENSG00000081377 HU-06323-1 CDC25A cell division cycle 25 homolog A (S. pombe) ENSG00000164045 HU-07288-1 CDC25B cell division cycle 25 homolog B (S. pombe) ENSG00000101224 HU-06033-1 CDKN3 cyclin-dependent kinase inhibitor 3 ENSG00000100526 HU-02274-1 CTDSP1 CTD (carboxy-terminal domain,
    [Show full text]