Supported File Formats for Images

Total Page:16

File Type:pdf, Size:1020Kb

Supported File Formats for Images Supported File Formats for Images This topic provides short descriptions of the supported image formats. It also lists operations which can be carried out on each image format. Graphics Mill supports the following file formats: • BMP File Format • EPS File Format • GIF File Format • IDML File Format • JPEG File Format • PDF File Format • PNG File Format • PSD File Format • RAW File Format • SVG File Format • TARGA File Format • TIFF File Format • WebP File Format One of the main characteristics of an image format is the set of corresponding pixel formats. This defines a number of bits of memory associated with one pixel of data and an order of color components within a single pixel. The image formats listed above support one or several pixel formats. BMP File Format BMP (Bitmap Picture) is a standard bitmap image format used to store digital images on Microsoft Windows operating systems. BMP files range from monochrome (1 bit per pixel) to 32 bit color images. The BMP format can store both indexed and full-color images in various color depths, and optionally with data compression, and color profiles. MIME Type image/bmp File Extensions *.bmp, *.dib, *.rle Supported Format Features Name Description BmpSettings.Compression A compression type of BMP files. It can be either uncompressed for any allowed BMP file pixel formats, or use RLE compression for 4- bit and 8-bit bitmaps. EPS File Format EPS (Encapsulated PostScript) is a PostScript document used as a graphics file format. An EPS file may contain both raster and vector data descripted by the PostScript language. MIME Type application/postscript File Extension *.eps Supported Format Features Name Description Name Description Working with EPS Two ways to create EPS documents. Graphics: Drawing Images and How to draw on EPS. Geometric Shapes GIF File Format GIF (Graphics Interchange Format) is a bitmap image format which works well for saving any type of grayscale or 256 color image. The color limitation makes the GIF format unsuitable for reproducing color photographs and other images with continuous color, but it is well-suited for simpler images such as graphics or logos with solid areas of color. The GIF image format supports animations and one- dimensional interlacing (a method of progressive displaying). GIF interlacing makes this format convenient for transmission of images across slow communication links. MIME Type image/gif File Extension *.gif Supported Format Features Name Description Codecs.GifSettings Writer settings in GIF format. Loading and Saving Processing animated GIF images: creating a new animated GIF file, Name Description Animated GIFs loading an existing one, resizing animated GIFs. IDML File Format IDML (InDesign Markup Language) is an XML-based data format of the Adobe® InDesign® publishing software. An IDML file represents a ZIP archive containing a set of files and folders. MIME Type application/vnd.adobe.indesign-idml-package File Extension *.idml JPEG File Format JPEG (Joint Photographic Experts Group) is the most popular bitmap image format for storing digital photos using lossy compression. The JPEG format was designed for compressing either grayscale or full-color images of real-world scenes. It supports the sequential and progressive compression schemes, subsampling, and setting a quality range from 0 to 100. MIME Type image/jpeg File Extensions *.jpeg, *.jpg, *.jfif, *.jpe Supported Format Features Name Description Applying Lossless JPEG Implementing lossless JPEG operations (rotating, flipping, cropping, Transforms updating metadata) using Graphics Mill Working with Metadata Processing metadata: reading and writing EXIF, IPTC, XMP metadata, and Adobe Image Resource Blocks. Preserving metadata while processing images. Working with JPEG JPEG compression algorithm and Graphics Mill JPEG writer settings. PDF File Format PDF (Portable Document Format) was developed by Adobe Systems, Inc. for secure and reliable distribution of electronic documents independent of software, hardware, and operating system. In general, a PDF file includes a complete description of a fixed-layout flat document such as the text, fonts, graphics, and other information needed to display it. MIME Type application/pdf File Extension *.pdf Supported Format Features Name Description Working with PDF Two ways to create PDF documents. Name Description Graphics: Drawing Images and How to draw on PDF. Geometric Shapes PNG File Format PNG (Portable Network Graphics) was created to replace the obsolete GIF format due to a legal problem caused by the LZW algorithm used in GIF. In comparison with GIF, the PNG format has three main advantages: • alpha channel (variable transparency), • gamma correction (cross-platform control of image brightness), • two-dimensional interlacing (method of progressive displaying). PNG supports palette-based images with palettes of 24-bit RGB or 32-bit RGBA colors, grayscale images (with or without alpha channel), and full-color non- palette-based images with or without alpha channel. MIME Type image/png File Extension *.png Supported Format Features Name Description PngSettings.IsInterlaced A value that specifies if a PNG file should be interlaced or not. PSD File Format PSD (Photoshop Document) is a native bitmap file format of the Adobe® Photoshop® program using lossless data compression. This format is a de facto standard for designers all over the world. The PSD image format is rather complex and stores a lot of layers and additional data (image layers, text layers, applied effects, etc.). MIME Type image/vnd.adobe.photoshop File Extension *.psd Supported Format Features Name Description Loading Raster Layers Getting access to layers of a PSD file and extracting an image from layers of a PSD image. Loading Text Layers Extracting text data from layers of a PSD file. Merging Layers Merging raster and text layers. RAW File Format A camera raw image file contains minimally processed data from the image sensor of either a digital camera, image scanner, or motion picture film scanner. Raw files are named so because they are not yet processed and therefore are not ready to be printed or edited with a bitmap graphics editor. Supported Format Features Name Description Loading RAW files Two ways to load RAW files in Graphics Mill: through pipelines and via the GraphicsMill.Bitmap class. SVG File Format SVG (Scalable Vector Graphics) is an image format developed by the World Wide Web Consortium (W3C). This format defines vector-based graphics in the XML format. SVG is very popular standard in web design because using it you may achieve perfect graphics quality without thinking of the zoom level or screen resolution. MIME Type image/svg+xml File Extension *.svg TARGA File Format TARGA (Truevision Advanced Raster Graphics Adapter) is a raster graphics file format created by Truevision Inc. Graphics Mill supports the following compression methods for the TARGA format: • No compression • RLE compression MIME Type image/x-targa image/x-tga File Extension *.tga Supported Format Features Name Description Codecs.TgaSettings Writer settings of the TARGA format. TIFF File Format TIFF (Tagged Image File Format) is a bitmap file format for storing images that is very popular among professional photographers and graphic artists. TIFF is a flexible and adaptable file format for handling images and data within a single file. It includes the header tags (size, definition, image-data arrangement, applied image compression) and defines the image's geometry. Graphics Mill supports the following compression methods for the TIFF format: • CCITT RLE compression, • CCITT Group 3 compression, • CCITT Group 4 compression, • LZW compression, • JPEG compression, • ZIP "deflate" compression. MIME Type image/tiff File Extensions *.tiff, *.tif Supported Format Features Name Description Codecs.TiffSettings Writer settings of the TIFF format. Working with Metadata Processing metadata: reading and writing EXIF, IPTC, XMP metadata, and Adobe Image Resource Blocks. It also shows how to preserve metadata during processing images. Working with TIFF Extra Processing extra channels of TIFF images: adding/getting an extra Channels channel to/from a TIFF image and handling opacity in the extra channel. WebP File Format WebP is an image format developed by Google Inc. This format provides lossless and lossy compression for images on the web. WebP can be used for animated images as an alternative to the popular GIF format. MIME Type image/webp File Extension *.webp .
Recommended publications
  • Exploring the .BMP File Format
    Exploring the .BMP File Format Don Lancaster Synergetics, Box 809, Thatcher, AZ 85552 copyright c2003 as GuruGram #14 http://www.tinaja.com [email protected] (928) 428-4073 The .BMP image standard is used by Windows and elsewhere to represent graphics images in any of several different display and compression options. The .BMP advantages are that each pixel is usually independently available for any alteration or modification. And that repeated use does not normally degrade the image. Because lossy compression is not used. Its main disadvantage is that file sizes are usually horrendous compared to JPEG, fractal, GIF, or other lossy compression schemes. A comparison of popular image standards can be found here. I’ve long been using the .BMP format for my eBay and my other phototography, scanning, and post processing. I firmly believe that… All photography, scanning, and all image post-processing should always be done using .BMP or a similar non-lossy format. Only after all post-processing is complete should JPEG or another compressed distribution format be chosen. Some current examples of my .BMP work now do include the IMAGIMAG.PDF post-processing tutorial, the Bitmap Typewriterthat generates fully anti-aliased small fonts, the Aerial Photo Combiner, and similar utilities and tutorials found on our Fonts & Images, PostScript, and on our Acrobat library pages. A few projects of current interest involving .BMP files include true view camera swings and tilts for a digital camera, distortion correction, dodging & burning, preventing white punchthrough on knockouts, and emphasis vignetting. Mainly applied to uncompressed RGBX 24-bit color .BMP files.
    [Show full text]
  • Free Lossless Image Format
    FREE LOSSLESS IMAGE FORMAT Jon Sneyers and Pieter Wuille [email protected] [email protected] Cloudinary Blockstream ICIP 2016, September 26th DON’T WE HAVE ENOUGH IMAGE FORMATS ALREADY? • JPEG, PNG, GIF, WebP, JPEG 2000, JPEG XR, JPEG-LS, JBIG(2), APNG, MNG, BPG, TIFF, BMP, TGA, PCX, PBM/PGM/PPM, PAM, … • Obligatory XKCD comic: YES, BUT… • There are many kinds of images: photographs, medical images, diagrams, plots, maps, line art, paintings, comics, logos, game graphics, textures, rendered scenes, scanned documents, screenshots, … EVERYTHING SUCKS AT SOMETHING • None of the existing formats works well on all kinds of images. • JPEG / JP2 / JXR is great for photographs, but… • PNG / GIF is great for line art, but… • WebP: basically two totally different formats • Lossy WebP: somewhat better than (moz)JPEG • Lossless WebP: somewhat better than PNG • They are both .webp, but you still have to pick the format GOAL: ONE FORMAT THAT COMPRESSES ALL IMAGES WELL EXPERIMENTAL RESULTS Corpus Lossless formats JPEG* (bit depth) FLIF FLIF* WebP BPG PNG PNG* JP2* JXR JLS 100% 90% interlaced PNGs, we used OptiPNG [21]. For BPG we used [4] 8 1.002 1.000 1.234 1.318 1.480 2.108 1.253 1.676 1.242 1.054 0.302 the options -m 9 -e jctvc; for WebP we used -m 6 -q [4] 16 1.017 1.000 / / 1.414 1.502 1.012 2.011 1.111 / / 100. For the other formats we used default lossless options. [5] 8 1.032 1.000 1.099 1.163 1.429 1.664 1.097 1.248 1.500 1.017 0.302� [6] 8 1.003 1.000 1.040 1.081 1.282 1.441 1.074 1.168 1.225 0.980 0.263 Figure 4 shows the results; see [22] for more details.
    [Show full text]
  • Package 'Magick'
    Package ‘magick’ August 18, 2021 Type Package Title Advanced Graphics and Image-Processing in R Version 2.7.3 Description Bindings to 'ImageMagick': the most comprehensive open-source image processing library available. Supports many common formats (png, jpeg, tiff, pdf, etc) and manipulations (rotate, scale, crop, trim, flip, blur, etc). All operations are vectorized via the Magick++ STL meaning they operate either on a single frame or a series of frames for working with layers, collages, or animation. In RStudio images are automatically previewed when printed to the console, resulting in an interactive editing environment. The latest version of the package includes a native graphics device for creating in-memory graphics or drawing onto images using pixel coordinates. License MIT + file LICENSE URL https://docs.ropensci.org/magick/ (website) https://github.com/ropensci/magick (devel) BugReports https://github.com/ropensci/magick/issues SystemRequirements ImageMagick++: ImageMagick-c++-devel (rpm) or libmagick++-dev (deb) VignetteBuilder knitr Imports Rcpp (>= 0.12.12), magrittr, curl LinkingTo Rcpp Suggests av (>= 0.3), spelling, jsonlite, methods, knitr, rmarkdown, rsvg, webp, pdftools, ggplot2, gapminder, IRdisplay, tesseract (>= 2.0), gifski Encoding UTF-8 RoxygenNote 7.1.1 Language en-US NeedsCompilation yes Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>) Maintainer Jeroen Ooms <[email protected]> 1 2 analysis Repository CRAN Date/Publication 2021-08-18 10:10:02 UTC R topics documented: analysis . .2 animation . .3 as_EBImage . .6 attributes . .7 autoviewer . .7 coder_info . .8 color . .9 composite . 12 defines . 14 device . 15 edges . 17 editing . 18 effects . 22 fx .............................................. 23 geometry . 24 image_ggplot .
    [Show full text]
  • How to Exploit the Transferability of Learned Image Compression to Conventional Codecs
    How to Exploit the Transferability of Learned Image Compression to Conventional Codecs Jan P. Klopp Keng-Chi Liu National Taiwan University Taiwan AI Labs [email protected] [email protected] Liang-Gee Chen Shao-Yi Chien National Taiwan University [email protected] [email protected] Abstract Lossy compression optimises the objective Lossy image compression is often limited by the sim- L = R + λD (1) plicity of the chosen loss measure. Recent research sug- gests that generative adversarial networks have the ability where R and D stand for rate and distortion, respectively, to overcome this limitation and serve as a multi-modal loss, and λ controls their weight relative to each other. In prac- especially for textures. Together with learned image com- tice, computational efficiency is another constraint as at pression, these two techniques can be used to great effect least the decoder needs to process high resolutions in real- when relaxing the commonly employed tight measures of time under a limited power envelope, typically necessitating distortion. However, convolutional neural network-based dedicated hardware implementations. Requirements for the algorithms have a large computational footprint. Ideally, encoder are more relaxed, often allowing even offline en- an existing conventional codec should stay in place, ensur- coding without demanding real-time capability. ing faster adoption and adherence to a balanced computa- Recent research has developed along two lines: evolu- tional envelope. tion of exiting coding technologies, such as H264 [41] or As a possible avenue to this goal, we propose and investi- H265 [35], culminating in the most recent AV1 codec, on gate how learned image coding can be used as a surrogate the one hand.
    [Show full text]
  • Implementation of LSB Steganography and Its Evaluation for Various File Formats (LSB, JSTEG)
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 6, June - 2013 Implementation of LSB Steganography and its Evaluation for Various File Formats (LSB, JSTEG) Vivek Kumar, Sandesh Kumar, Lavalee Singh, Prateek Yadav MANGALAYATAN UNIVERSITY1, 2,3,4 ALIGARH Keywords: Steganography, Least ABSTRACT: Significant Bit (LSB), GIF, PNG, BMP. Steganography is derived from the Greek word steganos which literally means 1. INTRODUCTION “Covered” and graphy means “Writing”, In the current trends of the world, the i.e. covered writing. Steganography refers technologies have advanced so much that to the science of “invisible” Most of the individuals prefer using the communication. For hiding secret internet as the primary medium to transfer information in various file formats, there data from one end to another across the exists a large variety of steganographic IJERTIJERTworld. There are many possible ways to techniques some are more complex than transmit data using the internet: via e-mails, others and all of them have respective chats, etc. The data transition is made very strong and weak points. The Least simple, fast and accurate using the internet. Significant Bit (LSB) embedding However, one of the main problems with technique suggests that data can be sending data over the internet is the security hidden in the least significant bits of the threat it poses i.e. the personal or cover image and the human eye would be confidential data can be stolen or hacked in unable to notice the hidden image in the many ways. Therefore it becomes very cover file. This technique can be used for important to take data security into hiding images in 24-Bit, 8- Bit, Gray scale consideration, as it is one of the most format.
    [Show full text]
  • Binary Image Compression Using Neighborhood Coding
    BINARY IMAGE COMPRESSION USING NEIGHBORHOOD CODING Tiago B. A. de Carvalho1, Tsang Ing Ren1, George D.C. Cavalcanti1, Tsang Ing Jyh2 1Center of Informatics, Federal University of Pernambuco, Brazil. 2Alcatel-Lucent, Bell Labs, Belgium E-mail: 1{tbac,tir,gdcc}@cin.ufpe.br, [email protected] ABSTRACT Bitmap image format requires a reasonable great amount of computer memory, since for each pixel it is necessary a Compression plays an important role in the storage and set of bits to represent it, and a relatively small image can transmission of digital image. Binary image compression is contain millions of pixels. Even a binary image that uses just of essential value for document imaging. Here, we propose a a bit per pixel can demand a large amount of disk space. novel compression technique based on the concept of There are dozens of bitmap image formats that use neighborhood coding, which codes each pixel of an image compression techniques, e.g., TIFF, GIF, PNG, JBIG and according to the number of neighbor pixels in different JPEG. The TIFF format can also use different types of directions. The proposed technique is a lossless compression compression methods such as CCITT Group 3 or Group 4. scheme, which also uses run-length encoding (RLE) and We propose a novel lossless binary image compression Huffman coding. We evaluated and compared this method to technique based on neighborhood coding scheme described several image file format, using test images taken from the in [2]. The codification starts by transforming each pixel of MPEG-7 core experiment CE-shape and the binary image the image into a vector.
    [Show full text]
  • Lossy Image Compression Based on Prediction Error and Vector Quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan
    Ayoobkhan et al. EURASIP Journal on Image and Video Processing (2017) 2017:35 EURASIP Journal on Image DOI 10.1186/s13640-017-0184-3 and Video Processing RESEARCH Open Access Lossy image compression based on prediction error and vector quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan Abstract Lossy image compression has been gaining importance in recent years due to the enormous increase in the volume of image data employed for Internet and other applications. In a lossy compression, it is essential to ensure that the compression process does not affect the quality of the image adversely. The performance of a lossy compression algorithm is evaluated based on two conflicting parameters, namely, compression ratio and image quality which is usually measured by PSNR values. In this paper, a new lossy compression method denoted as PE-VQ method is proposed which employs prediction error and vector quantization (VQ) concepts. An optimum codebook is generated by using a combination of two algorithms, namely, artificial bee colony and genetic algorithms. The performance of the proposed PE-VQ method is evaluated in terms of compression ratio (CR) and PSNR values using three different types of databases, namely, CLEF med 2009, Corel 1 k and standard images (Lena, Barbara etc.). Experiments are conducted for different codebook sizes and for different CR values. The results show that for a given CR, the proposed PE-VQ technique yields higher PSNR value compared to the existing algorithms. It is also shown that higher PSNR values can be obtained by applying VQ on prediction errors rather than on the original image pixels.
    [Show full text]
  • Download This PDF File
    Sindh Univ. Res. Jour. (Sci. Ser.) Vol.47 (3) 531-534 (2015) I NDH NIVERSITY ESEARCH OURNAL ( CIENCE ERIES) S U R J S S Performance Analysis of Image Compression Standards with Reference to JPEG 2000 N. MINALLAH++, A. KHALIL, M. YOUNAS, M. FURQAN, M. M. BOKHARI Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar Received 12thJune 2014 and Revised 8th September 2015 Abstract: JPEG 2000 is the most widely used standard for still image coding. Some other well-known image coding techniques include JPEG, JPEG XR and WEBP. This paper provides performance evaluation of JPEG 2000 with reference to other image coding standards, such as JPEG, JPEG XR and WEBP. For the performance evaluation of JPEG 2000 with reference to JPEG, JPEG XR and WebP, we considered divers image coding scenarios such as continuous tome images, grey scale images, High Definition (HD) images, true color images and web images. Each of the considered algorithms are briefly explained followed by their performance evaluation using different quality metrics, such as Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Structure Similarity Index (SSIM), Bits Per Pixel (BPP), Compression Ratio (CR) and Encoding/ Decoding Complexity. The results obtained showed that choice of the each algorithm depends upon the imaging scenario and it was found that JPEG 2000 supports the widest set of features among the evaluated standards and better performance. Keywords: Analysis, Standards JPEG 2000. performance analysis, followed by Section 6 with 1. INTRODUCTION There are different standards of image compression explanation of the considered performance analysis and decompression.
    [Show full text]
  • Understanding Image Formats and When to Use Them
    Understanding Image Formats And When to Use Them Are you familiar with the extensions after your images? There are so many image formats that it’s so easy to get confused! File extensions like .jpeg, .bmp, .gif, and more can be seen after an image’s file name. Most of us disregard it, thinking there is no significance regarding these image formats. These are all different and not cross‐ compatible. These image formats have their own pros and cons. They were created for specific, yet different purposes. What’s the difference, and when is each format appropriate to use? Every graphic you see online is an image file. Most everything you see printed on paper, plastic or a t‐shirt came from an image file. These files come in a variety of formats, and each is optimized for a specific use. Using the right type for the right job means your design will come out picture perfect and just how you intended. The wrong format could mean a bad print or a poor web image, a giant download or a missing graphic in an email Most image files fit into one of two general categories—raster files and vector files—and each category has its own specific uses. This breakdown isn’t perfect. For example, certain formats can actually contain elements of both types. But this is a good place to start when thinking about which format to use for your projects. Raster Images Raster images are made up of a set grid of dots called pixels where each pixel is assigned a color.
    [Show full text]
  • JPEG Image Compression.Pdf
    JPEG image compression FAQ, part 1/2 2/18/05 5:03 PM Part1 - Part2 - MultiPage JPEG image compression FAQ, part 1/2 There are reader questions on this topic! Help others by sharing your knowledge Newsgroups: comp.graphics.misc, comp.infosystems.www.authoring.images From: [email protected] (Tom Lane) Subject: JPEG image compression FAQ, part 1/2 Message-ID: <[email protected]> Summary: General questions and answers about JPEG Keywords: JPEG, image compression, FAQ, JPG, JFIF Reply-To: [email protected] Date: Mon, 29 Mar 1999 02:24:27 GMT Sender: [email protected] Archive-name: jpeg-faq/part1 Posting-Frequency: every 14 days Last-modified: 28 March 1999 This article answers Frequently Asked Questions about JPEG image compression. This is part 1, covering general questions and answers about JPEG. Part 2 gives system-specific hints and program recommendations. As always, suggestions for improvement of this FAQ are welcome. New since version of 14 March 1999: * Expanded item 10 to discuss lossless rotation and cropping of JPEGs. This article includes the following sections: Basic questions: [1] What is JPEG? [2] Why use JPEG? [3] When should I use JPEG, and when should I stick with GIF? [4] How well does JPEG compress images? [5] What are good "quality" settings for JPEG? [6] Where can I get JPEG software? [7] How do I view JPEG images posted on Usenet? More advanced questions: [8] What is color quantization? [9] What are some rules of thumb for converting GIF images to JPEG? [10] Does loss accumulate with repeated compression/decompression?
    [Show full text]
  • Vue PACS 12.2 DICOM Conformance Statement
    Clinical Collaboration Platform Vue PACS 12.2 DICOM Conformance Statement Part # AD0536 2017-11-23 Vue PACS 12.2 DICOM Conformance Statement AD0536 A Uncontrolled unless otherwise indicated Confidential Vue PACS 12.2 - DICOM Conformance Statement - AD0536.docx PAGE 1 of 155 Table of Contents 1 Introduction ............................................................................................................................................ 3 1.1 Terms and Definitions ...................................................................................................................... 3 1.2 About This Document ....................................................................................................................... 4 1.3 Important Remarks ........................................................................................................................... 4 2 Implementation Model............................................................................................................................ 5 2.1 Application Data Flow Diagram ........................................................................................................ 5 2.2 Functional Definitions of AEs ......................................................................................................... 11 2.3 Sequencing of Real World Activities .............................................................................................. 12 3 AE Specifications ................................................................................................................................
    [Show full text]
  • The Rehabilitation of Gamma
    The rehabilitation of gamma Charles Poynton poynton @ poynton.com www.poynton.com Abstract Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value – in an 8-bit system, from 0 through 255 – and luminance. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again. Gamma’s bad reputation The left-hand column in this table summarizes the allegations that have led to gamma’s bad reputation. But the reputation is ill-founded – these allegations are false! In the right column, I outline the facts: Misconception Fact A CRT’s phosphor has a nonlinear The electron gun of a CRT is responsible for its nonlinearity, not the phosphor. response to beam current. The nonlinearity of a CRT monitor The nonlinearity of a CRT is very nearly the inverse of the lightness sensitivity is a defect that needs to be of human vision. The nonlinearity causes a CRT’s response to be roughly corrected. perceptually uniform. Far from being a defect, this feature is highly desirable. The main purpose of gamma The main purpose of gamma correction in video, desktop graphics, prepress, JPEG, correction is to compensate for the and MPEG is to code luminance or tristimulus values (proportional to intensity) into nonlinearity of the CRT.
    [Show full text]