Clues to Control of Bluetongue Virus

Total Page:16

File Type:pdf, Size:1020Kb

Clues to Control of Bluetongue Virus Bluetongue virus, spread by Culicoides gnat, causes mouth ulcers in sheep and lameness due to edema, inflammation of the hoof wall, and muscle damage. Abor- tion and congenitally deformed lambs may also occur. Clues- - -- to-- control-- -- of- bluetonaue- -~___ virus-- Bradley A. Mullens 0 Edmond C. Loomis 0 John R. Anderson Control strategy aimed at early life stages of vector gnats is one possibility Bluetongue disease of California live- ers at the School of Veterinary Medicine, Although the virus can be transmitted stock and wildlife is most severe in sheep University of California, Davis, demon- from an infected dam to her offspring and in certain species of wild ruminants, strated that at least 41 percent of cattle, through the placenta or from an infected notably white-tailed deer and antelope. 42 percent of sheep, and 21 percent of bull to a heifer or cow venereally (shed in Caused by a virus, the disease is generally goats had been exposed to bluetongue. the semen), bluetongue is transmitted pri- subclinical in cattle, but subtle losses as- The virus was more prevalent in central marily by blood-sucking Culicoides gnats sociated with reproductive failure may be and southern California; animals in the (fig. 1). Knowledge of the gnat’s biology more significant than producers realize. north had less exposure to bluetongue. and details of its role in virus transmis- Cattle are considered a primary reservoir Bluetongue virus serotype 11 was most sion are of considerable importance in host for the virus, which then may be commonly isolated from infected ani- controlling this disease. spread to other more susceptible species. mals. The disease apparently originated in Bluetongue affects animal agriculture Vector life cycle southern Africa, where many serotypes in several ways. Infected animals often The primary transmitting agent of have been isolated and identified in wild feed poorly because of ulcers in the mouth bluetongue virus in the United States is and domestic ruminants. Bluetongue was and lameness due to edema, inflamma- Culicoides variipennis, a blood-sucking first diagnosed in the United States in the tion of the hoof wall, and muscle damage. gnat about 2.5 mm (0.1 inch) long. A few late 1940s and was present in California Abortion and congenitally deformed workers feel that C. variipennis consists by 1952. Twenty-four serotypes are recog- calves and lambs also occur, and infected of multiple subspecies or perhaps two nized worldwide, of which five are known sheep often succumb to secondary pneu- species. Since behavioral and morphologi- to exist in the United States and four are monia. Additionally, there are interna- cal characteristics vary considerably in California (types 10, 11, 13, and 17). tional trade restrictions on animals and with habitat and temperature, most work- Statewide serological surveys in 1978- semen from bluetongue-endemic areas to ers currently consider C. variipennis to be 80 by B.I. Osburn, J.L. Stott, and cowork- countries free of the disease. a single species. CALIFORNIA AGRICULTURE, MARCH-APRIL 1986 23 The basic biology is similar regardless of geographic region or habitat. Eggs are laid at dusk or at night just above the wa- terline, primarily on shallow, silty mud banks at the edges of ponded or slowly moving water, particularly when it is pol- luted with manure. Eggs hatch in about three days, and the four larval stages de- velop in the surface mud at the pond edge, presumably feeding on bacteria, algae, and organic detritus. Larval development Wild ruminants time varies with temperature and per- haps larval dietary factors, but takes two shT t 1. to four weeks during warm weather. Pu- + Culicoides pation takes place above the waterline, Culicoides and adults emerge about three days later. After a delay of one to two days, fe- males are ready to seek a blood meal (needed for egg development), often from the most abundant mammals in the area. Cattle, sheep, rabbits, and even pigs have been reported as hosts. Humans are sel- dom attacked, though this trait apparent- ly varies in different gnat populations. After a blood meal, egg development re- quires about three days. Fig. 1. Transmission cycle of bluetonguevirus. Biting gnats (Culicoides) take blood meal Gnat distribution from virus-infectedanimal, and virus replicates in the insect’s body. The virus can be intro- duced into a susceptible ruminant when the gnat refeeds 10 to 14 days later. Venereal and From 1978 to 1980, larval and adult transplacentaltransmission are minor routes, best known in cattle, but transplacental trans- gnat sampling surveys were done in 10 mission also can occur in sheep. counties, from Butte and Mendocino in the north to Imperial in the south, to de- termine the distribution of C. variipennis in California and begin to characterize larval development sites. The gnat was widely distributed and is probably present essentially throughout the state, except at high altitudes or in areas without water sources. Some larvae occurred along natural waterways, but most larval sites were man-made. Urban/industrial sources, such as oxidation ponds, supported light to moderate densities. Dense populations (more than 100 larvae per 25 cc of mud) generally were found in agricultural areas. Of these, dairy wastewater lagoons were prime sources; 55 percent of 113 dairy lagoons were positive for this spe- cies. In southern California, as many as 7,600 larvae have been recovered from only 30 cc (1 ounce) of mud in these habi- tats. Some large dairy lagoons produce literally millions of gnats per week during late summer and fall emergence periods. Studies on biology and dispersal Adult C. variipennis are most active at dusk, with a smaller peak of activity at Culicoides variipennis (adult, above, and dawn. We have observed that winds de- pupa, left) is widely distributed, especially crease flight activity, although some in southern areas of the state. It often oc- flight may persist close to the ground curs in sites such as dairy lagoons, where even during breezy periods. During cool dense populations expose animals to high weather, flight may begin well before biting intensity. sunset. Activity at night also is common, especially during moonlit periods, pro- vided temperatures are above 50°F. We usually collect adults with small suction 24 CALIFORNIA AGRICULTURE, MARCH-APRIL 1986 traps baited with carbon dioxide, which The basis of susceptibility is still poorly below the waterline. The eggs and early particularly attracts host-seeking fe- understood, but it appears to be influ- larval stages of these gnats are extremely males. Males often form mating swarms enced by both genetic and environmental small (less than 1 mm), but late fourth- 1 to 2 meters above the ground near ob- factors. stage larvae are 8 to 9 mm in length. Our jects that contrast with the background in This species is a good colonizer of new experiments also have shown that larvae color or height. developmental habitats. We have found strongly avoid deeply shaded areas, pre- We have shown that adult males and early larval instars within a week of the ferring shallow mud exposed to the sun. females often feed on sugar sources, such flooding of a new dairy lagoon. In Califor- This behavior is not related to tempera- as flower nectar and plant sap. This be- nia, gnats have been recaptured up to 2 ture or time of day as much as to light, havior probably contributes substantially miles from their emergence site. Younger and may be related to larval feeding to survival and dispersal capabilities of females show a greater tendency to dis- habits. the gnats in nature. In southern Califor- perse; dispersal to traps baited with car- nia, UC research has shown that the gnats bon dioxide generally is upwind from the Implications for control are active to some extent year-round, al- developmental sites. Control of these disease vectors re- though numbers are very small in late We sample immature C. variipennis by quires a thorough knowledge of their life winter and early spring (February to removing portions of the mud and rearing cycle and ecology and their relationship April). The presence of blood-feeding and the larvae, sieving them, or extracting to disease transmission. California popu- reproducing adult gnats in the winter them by salt flotation. Larval populations lations of C. variipennis are widespread raises the possiblity of the insect serving peak in the fall and can average over 500 and, particularly in southern areas, have as a reservoir of bluetongue, but this has larvae per 30 cc of mud in southern Cali- several characteristics that encourage not been proved. In more northerly re- fornia dairy lagoons (fig 2.) Densities of- virus transmission. First, the populations gions of the state, gnat activity ceases in ten are much lower during the winter, are dense, exposing animals to high biting late fall, and the Culicoides overwinter in averaging less than 10 larvae per 30 cc. intensities. Second, the gnats are, in gen- mud in the late larval stages, emerging as Fluctuations in larval numbers and eral, very susceptible to bluetongue virus adults the following spring (April to May). age structure can be extremely valuable replication. Third, survival of adult fe- We have collected females that have in determining when the successive gen- males appears to be more than sufficient completed at least five egg batches (at erations emerge. In southern California, to allow transmission, particularly in least five blood meals) in southern Cali- the generation interval appears to be light of the generally high biting intensi- fornia. The ability of females to survive close to seven weeks during cooler ties and susceptibility. and complete several ovarian cycles is a months, but shortens to 25 to 35 days dur- While much remains to be learned critical component of bluetongue trans- ing the hot summer months.
Recommended publications
  • <I>Culicoides
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2015 A revision of the biting midges in the Culicoides (Monoculicoides) nubeculosus-stigma complex in North America with the description of a new species (Diptera: Ceratopogonidae) William L. Grogan Jr. Florida State Collection of Arthropods, [email protected] Timothy J. Lysyk Lethbridge Research Centre, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Grogan, William L. Jr. and Lysyk, Timothy J., "A revision of the biting midges in the Culicoides (Monoculicoides) nubeculosus-stigma complex in North America with the description of a new species (Diptera: Ceratopogonidae)" (2015). Insecta Mundi. 947. http://digitalcommons.unl.edu/insectamundi/947 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0441 A revision of the biting midges in the Culicoides (Monoculicoides) nubeculosus-stigma complex in North America with the description of a new species (Diptera: Ceratopogonidae) William L. Grogan, Jr. Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services Gainesville, Florida 32614-7100 U.S.A. Timothy J. Lysyk Lethbridge Research Centre 5401-1st Ave. South P. O. Box 3000 Lethbridge, Alberta T1J 4B1, Canada Date of Issue: August 28, 2015 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL William L.
    [Show full text]
  • Peruvian Horse Sickness Virus and Yunnan Orbivirus, Isolated from Vertebrates and Mosquitoes in Peru and Australia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 394 (2009) 298–310 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia Houssam Attoui a,⁎,1, Maria Rosario Mendez-lopez b,⁎,1, Shujing Rao c,1, Ana Hurtado-Alendes b,1, Frank Lizaraso-Caparo b, Fauziah Mohd Jaafar a, Alan R. Samuel a, Mourad Belhouchet a, Lindsay I. Pritchard d, Lorna Melville e, Richard P. Weir e, Alex D. Hyatt d, Steven S. Davis e, Ross Lunt d, Charles H. Calisher f, Robert B. Tesh g, Ricardo Fujita b, Peter P.C. Mertens a a Department of Vector Borne Diseases, Institute for Animal Health, Pirbright, Woking, Surrey, GU24 0NF, UK b Research Institute and Institute of Genetics and Molecular Biology, Universidad San Martín de Porres Medical School, Lima, Perú c Clemson University, 114 Long Hall, Clemson, SC 29634-0315, USA d Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia e Northern Territory Department of Primary Industries, Fisheries and Mines, Berrimah Veterinary Laboratories, Berrimah, Northern Territory 0801, Australia f Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA g Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA article info abstract Article history: During 1997, two new viruses were isolated from outbreaks of disease that occurred in horses, donkeys, Received 11 June 2009 cattle and sheep in Peru.
    [Show full text]
  • GB Bluetongue Virus Disease Control Strategy
    www.gov.uk/defra GB Bluetongue Virus Disease Control Strategy August 2014 © Crown copyright 2014 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.2. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/2/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Animal Health Policy & Implementation, Area 5B, Nobel House, 17 Smith Square, London SW1P 3JR PB13752 Contents Introduction .......................................................................................................................... 1 Summary ............................................................................................................................. 2 BTV disease ..................................................................................................................... 2 Disease scenarios ............................................................................................................ 2 Disease scenarios and expected actions for kept animals ............................................... 3 Disease control measures ................................................................................................ 4 The disease ......................................................................................................................... 5 Signs of infection .............................................................................................................
    [Show full text]
  • Bluetongue and Related Diseases
    established where tabanids, Stomoxys, Simulium, African Animal Trypanosomiasis. II. Chemoprophylaxis and the Raising Chrysops, and other biting flies are prevalent. It could be ofTrypanotolerant Livestock. World Animal Review 8:24-27. -3. Fine lie, introduced into the United States of America and become P. African Animal Trypanosamiasis. Ill. Control of Vectors. World Animal Review 9:39-43. ( 1974) . -4. Griffin, L. and Allonby, E.W. Studies established, creating a problem of enormous economic on the Epidemiology of Trypanosomiasis in Sheep and Goats in Kenya. significance. Trop, Anim. Hlth. Prod. 11:133-142. (1979). - 5. Losos, G. J. and Chouinard, A. "Pathogenicity of Trypanosomes." IDRC Press, Ottawa, References Canada. ( 1979). - 6. Losos, G. J. and lkede, B. 0. Review oft he Pathology of Disease in Domestic and Laboratory Animals Caused by Trypanosoma I. Finelle, P. African Animal Trypanosomiasis. I. Disease and con!{olense, T. l'il•ax. T. hrucei, T. rhodesiense, and !{ambiense. Vet. Path. 9 Chemotherapy. World Anii:nal Review 7: 1-6. ( 1973). - 2. Finelle, P. (Suppl.): 1-71. (1972). Bluetongue and Related Diseases Hugh E. Metcalf, D. V. M., M. P.H. USDA, A PHIS, Veterinary Services, Denver, Colorado and Albert J. Luedke, D. V.M., M.S. USDA, SEA, Agricultural Research Arthropod-borne Animal Disease Research Labortory, Denver, Colorado Identification virus was isolated and identified from cattle in South Africa with a disease described as .. Pseudo-Foot-and-Mouth."8 A. Definition. Infectious, non-contagious viral diseases During the l 94O's, BT appeared throughout medeastern of ruminants transmitted by insects and characterized by Asia in Palestine, .B,60 Syria, and Turkey,35, 120 and in 1943, inflammation and congestion of the mucous membranes, the most severe epizootic of BT known occurred on the leading to cyanosis, ede_ma, hemorrages and ulceration.
    [Show full text]
  • Detection of Vesicular Stomatitis Virus Indiana from Insects Collected During the 2020 Outbreak in Kansas, USA
    pathogens Article Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA Bethany L. McGregor 1,† , Paula Rozo-Lopez 2,† , Travis M. Davis 1 and Barbara S. Drolet 1,* 1 Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; [email protected] (B.L.M.); [email protected] (T.M.D.) 2 Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Vesicular stomatitis (VS) is a reportable viral disease which affects horses, cattle, and pigs in the Americas. Outbreaks of vesicular stomatitis virus New Jersey serotype (VSV-NJ) in the United States typically occur on a 5–10-year cycle, usually affecting western and southwestern states. In 2019–2020, an outbreak of VSV Indiana serotype (VSV-IN) extended eastward into the states of Kansas and Missouri for the first time in several decades, leading to 101 confirmed premises in Kansas and 37 confirmed premises in Missouri. In order to investigate which vector species contributed to the outbreak in Kansas, we conducted insect surveillance at two farms that experienced confirmed VSV-positive cases, one each in Riley County and Franklin County. Centers for Disease Control and Prevention miniature light traps were used to collect biting flies on the premises. Two genera of known VSV vectors, Culicoides biting midges and Simulium black flies, were identified to species, Citation: McGregor, B.L.; Rozo- pooled by species, sex, reproductive status, and collection site, and tested for the presence of VSV- Lopez, P.; Davis, T.M.; Drolet, B.S.
    [Show full text]
  • Culicoides Variipennis and Bluetongue-Virus Epidemiology in the United States1
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 1996 CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES1 Walter J. Tabachnick Arthropod-Borne Animal Diseases Research Laboratory, USDA, ARS Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Tabachnick, Walter J., "CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES1" (1996). Publications from USDA-ARS / UNL Faculty. 2218. https://digitalcommons.unl.edu/usdaarsfacpub/2218 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN~URev. Entomol. 19%. 41:2343 CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES' Walter J. Tabachnick Arthropod-Borne Animal Diseases Research Laboratory, USDA, ARS, University Station, Laramie, Wyoming 8207 1 KEY WORDS: arbovirus, livestock, vector capacity, vector competence, population genetics ABSTRACT The bluetongue viruses are transmitted to ruminants in North America by Culi- coides vuriipennis. US annual losses of approximately $125 million are due to restrictions on the movement of livestock and germplasm to bluetongue-free countries. Bluetongue is the most economically important arthropod-borne ani- mal disease in the United States. Bluetongue is absent in the northeastern United States because of the inefficient vector ability there of C. variipennis for blue- tongue. The vector of bluetongue virus elsewhere in the United States is C.
    [Show full text]
  • Some Irradiation Studies and Related Biological Data for Culicoides Variipennis (Diptera: Ceratopogonidae)1
    836 X\NNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA [Vol. 60, No. 4 tory, natural enemies and the poisoned bait spray as a of the Diptera of America North of Mexico. USDA method of control of the imported onion fly (Phorbia Agr. Handbook 276. 1696 p. scpctorum Meade) with notes on other onion pests. Vos de Wilde, B. 1935. Contribution a l'etude des lar- J. Econ. Entomol. 8: 342-50. ves de Dipteres Cyclorraphes, plus specialament des Steyskal, G. C. 1947. The genus Diacrita Gerstaecker larvae d'Anthomyides. (Reference in Hennig 1939, (Diptera, Otitidae). Bull. Brooklyn Entomol. Soc. p. 11.) 41: 149-54. Wahlberg, P. F. 1839. Bidrag till Svenska dipternas 1951. The dipterous fauna of tree trunks. Papers Kannedom. Kungl. Vetensk.-Akad. Handl. 1838: Mich. Acad. Sci., Arts, Letters (1949). 35: 121-34. 1-23. 1961. The genera of Platystomatidae and Otitidae Weiss, A. 1912. Sur un diptere du genre Chrysoviyaa known to occur in America north of Mexico (Diptera, nuisable a l'etat de larve a la cultur du dattier dans Acalyptratae). Ann. Entomol. Soc. Amer. 54: 401-10. l'Afrique de Nord. Bull. Soc. Hist. Nat. Afrique 1962. The American species of the genera Melieria Nord. 4: 68-69. and Pseudotcphritis (Diptera: Otitidae). Papers Weiss, H. B., and B. West. 1920. Fungus insects and Mich. Acad. Sci., Arts, Letters (1961) 47: 247-62. their hosts. Proc. Biol. Soc. Wash. 33: 1-19. 1963. The genus Notogramma Loew (Diptera Acalyp- Wolcott, G. N. 1921. The minor sugar-cane insects of tratae, Otitidae). Proc. Entomol. Soc. Wash. 65: Porto Rico.
    [Show full text]
  • Continuous Cell Lines from the European Biting Midge Culicoides Nubeculosus (Meigen, 1830)
    microorganisms Article Continuous Cell Lines from the European Biting Midge Culicoides nubeculosus (Meigen, 1830) Lesley Bell-Sakyi 1,* , Fauziah Mohd Jaafar 2, Baptiste Monsion 2 , Lisa Luu 1 , Eric Denison 3, Simon Carpenter 3, Houssam Attoui 2 and Peter P. C. Mertens 4 1 Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; [email protected] 2 UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; [email protected] (F.M.J.); [email protected] (B.M.); [email protected] (H.A.) 3 The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; [email protected] (E.D.); [email protected] (S.C.) 4 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK; [email protected] * Correspondence: [email protected] Received: 12 May 2020; Accepted: 28 May 2020; Published: 30 May 2020 Abstract: Culicoides biting midges (Diptera: Ceratopogonidae) transmit arboviruses of veterinary or medical importance, including bluetongue virus (BTV) and Schmallenberg virus, as well as causing severe irritation to livestock and humans. Arthropod cell lines are essential laboratory research tools for the isolation and propagation of vector-borne pathogens and the investigation of host-vector-pathogen interactions. Here we report the establishment of two continuous cell lines, CNE/LULS44 and CNE/LULS47, from embryos of Culicoides nubeculosus, a midge distributed throughout the Western Palearctic region. Species origin of the cultured cells was confirmed by polymerase chain reaction (PCR) amplification and sequencing of a fragment of the cytochrome oxidase 1 gene, and the absence of bacterial contamination was confirmed by bacterial 16S rRNA PCR.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into the Trans-Seasonal Persistence of Culicoides Sonorensis and Bluetongue Vi
    UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Trans-Seasonal Persistence of Culicoides sonorensis and Bluetongue Virus A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Emily Gray McDermott December 2016 Dissertation Committee: Dr. Bradley Mullens, Chairperson Dr. Alec Gerry Dr. Ilhem Messaoudi Copyright by Emily Gray McDermott 2016 ii The Dissertation of Emily Gray McDermott is approved: _____________________________________________ _____________________________________________ _____________________________________________ Committee Chairperson University of California, Riverside iii ACKNOWLEDGEMENTS I of course would like to thank Dr. Bradley Mullens, for his invaluable help and support during my PhD. I am incredibly lucky to have had such a dedicated and supportive mentor. I am truly a better scientist because of him. I would also like to thank my dissertation committee. Drs. Alec Gerry and Ilhem Messaoudi provided excellent feedback during discussions of my research and went above and beyond in their roles as mentors. Dr. Christie Mayo made so much of this work possible, and her incredible work ethic and enthusiasm have been an inspiration to me. Dr. Michael Rust provided me access to his laboratory and microbalance for the work in Chapter 1. My co-authors, Dr. N. James MacLachlan and Mr. Damien Laudier, contributed their skills, guidance, and expertise to the virological and histological work, and Dr. Matt Daugherty gave guidance and advice on the statistics in Chapter 4. All molecular work was completed in Dr. MacLachlan’s laboratory at the University of California, Davis. Jessica Zuccaire and Erin Reilly helped enormously in counting and sorting thousands of midges. The Mullens lab helped me keep my colony alive and my experiments going on more than one occasion.
    [Show full text]
  • Bluetongue Virus in Sheep Information for Producers Kaylie M
    Bluetongue Virus in Sheep Information for Producers Kaylie M. Shaver WSU College of Veterinary Medicine, Class of 2020 What is Bluetongue Virus? KEY POINTS Bluetongue Virus (BTV) infects cattle, sheep, goats and wildlife Virus transmitted by biting (deer). Infected animals don’t shed the virus, it is spread by midges, Culicoides Culicoides biting midges (no-see-ums, punkies) when they take Outbreaks typically observed in a blood meal. Clinical signs of BTV resemble Foot and Mouth late summer to early fall disease, a devastating disease not present in the US. Symptoms include fever, Confirmed infections are reportable to the State Veterinarian. dullness, mouth sores, lameness Disease in sheep often follows outbreaks and die-offs in deer. and nasal discharge Epizootic hemorrhagic disease (EHD) virus is a related Orbivirus Can cause infertility in rams and that commonly infects deer and causes similar disease signs ewes but rarely causes disease in sheep. Treatment BTV is supportive but important to differentiate from BTV in Washington State and the Northwest pneumonia that needs Recently, BTV outbreaks have become an almost annual antibiotics occurrence in Washington state sheep flocks and white tail Reduce standing water near deer populations. BTV serotypes 10, 11 and 17 have been sheep to control midge identified in the region. Late summer to early fall is the peak populations season for BTV when the biting midges are most active. Vaccines have limited Weather is a key predictor of outbreaks. Mild winters and effectiveness increased spring rainfall typically increase Culicoides population densities thereby increasing the risk of BTV outbreaks as was the case in WA during fall 2015.
    [Show full text]
  • Bluetongue and Epizootic Hemorrhagic Disease in the United States of America at the Wildlife–Livestock Interface
    pathogens Review Bluetongue and Epizootic Hemorrhagic Disease in the United States of America at the Wildlife–Livestock Interface Nelda A. Rivera 1,* , Csaba Varga 2 , Mark G. Ruder 3 , Sheena J. Dorak 1 , Alfred L. Roca 4 , Jan E. Novakofski 1,5 and Nohra E. Mateus-Pinilla 1,2,5,* 1 Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; [email protected] (S.J.D.); [email protected] (J.E.N.) 2 Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA; [email protected] 3 Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; [email protected] 4 Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, USA; [email protected] 5 Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA * Correspondence: [email protected] (N.A.R.); [email protected] (N.E.M.-P.) Abstract: Bluetongue (BT) and epizootic hemorrhagic disease (EHD) cases have increased world- wide, causing significant economic loss to ruminant livestock production and detrimental effects to susceptible wildlife populations. In recent decades, hemorrhagic disease cases have been re- ported over expanding geographic areas in the United States. Effective BT and EHD prevention and control strategies for livestock and monitoring of these diseases in wildlife populations depend Citation: Rivera, N.A.; Varga, C.; on an accurate understanding of the distribution of BT and EHD viruses in domestic and wild Ruder, M.G.; Dorak, S.J.; Roca, A.L.; ruminants and their vectors, the Culicoides biting midges that transmit them.
    [Show full text]
  • Response of Culicoides Sonorens/S(Diptera: Ceratopogonidae) to I-Octen-3-Ol and Three Plant- Derived Repellent Formulations in the Field
    Journal of the American Mosquito Control Association, 16(2):158-163, 2000 Copyright @ 2000 by the American Mosquito Control Association, Inc. RESPONSE OF CULICOIDES SONORENS/S(DIPTERA: CERATOPOGONIDAE) TO I-OCTEN-3-OL AND THREE PLANT- DERIVED REPELLENT FORMULATIONS IN THE FIELD YEHUDA BRAVERMAN,T MARY C. WEGIS' rxo BRADLEY A. MULLENS3 ABSTRACT The potential attractant l-octen-3-ol and 3 potential repellents were assayed for activity for Culicoides sonorensis, the primary vector of bluetongue virus in North America. Collections using octenol were low, but numbers in suction traps were greater in the high-octenol treatment (11.5 mg/h) than in the low-octenol treatment (1.2 mg/h) or unbaited control for both sexes. Collections using high octenol, CO, (-1,000 ml/min), or both showed octenol alone to be significantly less attractive than either of the CO, treatments and that octenol did not act synergistically with this level of COr. A plant-derived (Meliaceae) extract with 4.5Vo of active ingredient (AI) (AglOOO), heptanone solvent, Lice free@ (24o Al from plant extracts in water), Mosi-guard with 5OVo Eucalyptus maculata v^r. citriodora Hook extract, and N,N-diethyl-m-toluamide (deet) were applied to polyester--cotton coarse mesh nets and deployed in conjunction with suction light traps plus COr. Collections in the trap with deet were 667o lower (P < 0.05) than the heptanone and 56Vo (P > 0.05) less than the untreated (negative) control. Relative to deet, collections in the traps with the lice repellent, Ag1000, and Mosi-guard were reduced by 15,34, and 39Vo, respectively (P > 0.05).
    [Show full text]