Gauss's Definition of the Gamma Function

Total Page:16

File Type:pdf, Size:1020Kb

Gauss's Definition of the Gamma Function ¢¡£¡£¤¦¥¨§£© ¢ ¤¦ £§£¤¦§¤¦§£ £¤¦££ ¤¦§£¤¦ §£¡£©£© "!$# %'&( )"*,+ - # %'./%0*,1 2 3£%0*,# 45%7698 8 :; -=< 2@?A./"4 > B7¤¦C£©£©DE© £§ FG¡£ HG¡IJFHGK£§L£¤¦¤FGC£¡£ MHG¡ U VEW S X NPORQTS The present paper gives a historical account on extending the factorial function to complex numbers by Gauss. Y7Z0[0\0]_^a`0b0cPd0]EZ0e \0fge fP^T\g[0e ZP^T\0]Ehi\PjacP\0kJl0m `0bgf0d0kJn0`0]EZ Complex numbers (more exactly, square roots of negative numbers) have been used since the mid of the 16th century in mathematics. These numbers appeared when Italian mathematicians tried to solve polynomial equations of higher degrees. The use of complex numbers sometimes led to certain obscuri- ties. A change of the perception of the complex numbers came around the turn of the 18th and 19th century when Karl Friedrich Gauss (1777-1855) published several papers where he used an idea of complex numbers. Further progress came with representation of complex numbers by points or vectors in the plane. This idea occurred for the first time in the works of Caspar Wessel (1745-1818) and Jean Robert Argand (1768-1822); Argand introduced the term textitle module for an absolute value of the complex numbers. Both Wessel's and Argand's articles were written probably independently and these works have never received general awareness. The geometric interpretation of complex numbers was completely accepted when Gauss wrote his treatise Theo- ria residuorum biquadraticorum (Theory of the biquadratic residues) (1831), see [1]. In 1837 William Rowan Hamilton (1805-1865) introduced complex num- bers as ordered pairs of real numbers. In 1847 Louis Augustin Cauchy (1789- 1857) presented an algebraic definition of complex numbers. Y7o"pqd0Z0Zsr Zm `P^ ^T`0]=^T\it0`0Z0Z0`0m On 21st November 1811 Karl Friedrich Gauss wrote a letter to Friedrich Wilhelm Bessel (1784-1846) about his development on general factorials, see [3]. Gauss wrote the following text in that letter (authors translation). AMS (2000) Subject Classification: 01A55. uwvxwy{zP| }_~0"@ Thus the product 1 · 2 · 3 · : : : · x = x Y is the function that, in my opinion, must be introduced into Calculus, (. ). But if one wants to avoid countless Kramp's paradigms and para- doxes and contradictions, 1·2·3·: : : ·x must not be used as the definition of x, because such a definition has a precise meaning only when x is anQinteger; rather, one must start with a more general definition, which is applicable even to imaginary values of x, of which that one is a special case. I have chosen the following one x 1 · 2 · 3 · : : : · k · k x = ; x x x · : : : · x k Y ( + 1)( + 2)( + 3) ( + ) where k tends to infinity. Let us remark that Christian Kramp (1760-1826) was one of the mathe- maticians who sought a general rule for non-integer values of factorials. He introduced so-called “numerical factorial” by the form b a c = a(a + c)(a + 2c) · : : : · (a + (b − 1)c) (1) in the book [4]. The product on the right-hand side of (1) was studied in the first half of the 19th century under the name “analytic factorial”. In 1856 Karl Weierstrass (1815-1897) finished these activities, when he demonstrated nonsense resulting from that definition, see [8]. Moreover, Kramp was the first mathematician who used the notation n! for n-factorials in the book [5]. Gauss acquired his knowledge about the function x during an investiga- tion of properties of the hypergeometric series. The generalizedQ hypergeometric function pFq(α1; : : : ; αp; β1; : : : ; βp; x) 1 k is defined by the sum of a hypergeometric series, i.e., series k=0 akx for a ak+1 which 0 = 1 and the ratio of consecutive terms ak can be expressedP as the fraction a (α + k)(α + k) · : : : · (α + k) k+1 = 1 2 p x: ak (k + 1)(β1 + k)(β2 + k) · : : : · (βq + k) If p = 2 and q = 1, we get Gauss's hypergeometric function 2F1(α, β; γ; x), which is the sum of the series αβ α(α + 1)β(β + 1) α(α + 1)(α + 2)β(β + 1)(β + 2) 1+ x+ x2+ x3+: : : : (2) 1 · γ 1 · 2 · γ(γ + 1) 1 · 2 · 3 · γ(γ + 1)(γ + 2) Gauss dealt with that series in [2]. He stated a condition for the convergence of (2) in the terms of the coefficients α, β, γ, x, which is described in the following theorem. z y y y yuw w ¨{{E ¨aa ~, RP {~ _ Theorem Let x 2 C and γ 2 Cnf0; −1; −2; −3; : : :g. If jxj < 1, then the series (2) is convergent. If jxj = 1, then the series (2) is convergent if and only if jγ − α − βj > 0 holds. In case of jxj > 1, the series (2) is divergent. "[0`ge fP^T]E\00d0cE^Te \0fJ^T\ ^T[0`^T[0`0\0]Ehg\Pj"^T[0`0pqkJkJp/jTd0f0cE^Te \0f Gauss derived a following formula for hypergeometric series (γ − α)(γ − β) F (α, β; γ; 1) = F (α, β; γ + 1; 1): (3) γ(γ − α − β) Then he generalized equation (3) into the form F (α, β; γ; 1) (γ − α)(γ + 1 − α) · : : : · (γ + k − 1 − α) = (4) γ(γ + 1) · : : : · (γ + k − 1) (γ − β)(γ + 1 − β) · : : : · (γ + k − 1 − β) × F (α, β; γ + k; 1); (γ − α − β)(γ + 1 − α − β) · : : : · (γ + k − 1 − α − β) where k 2 N. This recurrence formula became a starting point for his next investigation about the gama function. For k 2 N, z 2 C, Gauss introduced the function (k; z) by Q 1 · 2 · 3 · : : : · k (k; z) = kz: z z z : : : z k Y ( + 1)( + 2)( + 3) · · ( + ) A simple calculation shows that the expression (k; γ − 1) · (k; γ − α − β − 1) Q(k; γ − α −Q1) · (k; γ − β − 1) Q Q can be reduced to the fraction (γ − α)(γ + 1 − α) · : : : · (γ + k − 1 − α) γ(γ + 1) · : : : · (γ + k − 1) (γ − β)(γ + 1 − β) · : : : · (γ + k − 1 − β) × : (γ − α − β)(γ + 1 − α − β) · : : : · (γ + k − 1 − α − β) It means that the equation (4) can be transformed to the form (k; γ − 1) · (k; γ − α − β − 1) F (α, β; γ; 1) = · F (α, β; γ + k; 1): Q(k; γ − α −Q1) · (k; γ − β − 1) Q Q uwxwy{zP| }_~0"@ It is easily seen that (k; z) is defined for all z 2 C except the negative integers. If z is a nonnegativQ e integer, we get (for all k 2 N) (k; 0) = 1; Y 1 · k 1 (k; 1) = = ; k + 1 1 Y 1 + k 1 · 2 · k2 1 · 2 (k; 2) = = ; (k + 1)(k + 2) 1 2 Y 1 + k 1 + k . . 1 · 2 · 3 · : : : · z (k; z) = : 1 2 3 : : : z Y 1 + k 1 + k 1 + k · · 1 + k Gauss determined the values of the function (k; z + 1) for given k and z by the recurrence formula Q z + 1 (k; z + 1) = (k; z) · z+1 : Y Y 1 + k In a similar way, Gauss found a recurrence formula with respect to k z+1 1 + 1 (k + 1; z) = (k; z) · k : (5) 1+ z Y Y 1 + k The formula (5) yields the following equalities 1 (1; z) = ; z Y 1 + z+1 1 2 1 2z+1 (2; z) = · 1 = · ; 1 + z 2+ z 1 + z 2 + z Y 1 . 1 2z+1 3z+1 kz+1 (k; z) = · · · : : : · : z z z z z k z k z Y + 1 1 · (2 + ) 2 · (3 + ) ( − 1) · ( + ) Then Gauss supposed k ! 1, z as fixed point and set k = h, z < h. If h increase to h + 1, then the value of log (k; z) increase too. It holds by (5) Q z+1 z 1 + 1 1 + 1 log (h + 1; z) − log (h; z) = log h = log h : (6) 1+ z 1 + z Y Y 1 + h h+1 h+1 1 According to the equality = h and the equation (6), Gauss got h h+1 1 z log (h + 1; z) − log (h; z) = −z log 1 − − log 1 + : (7) h h Y Y + 1 + 1 z y y y yuw w ¨{{E ¨aa ~, RP {~ _ Both logarithms on the right-hand side of (7) can be expressed in the form of power series 1 1 z z2 z + + : : : − − + : : : : h + 1 2(h + 1)2 h + 1 2(h + 1)2 Assuming the absolute convergence of both series, Gauss got for the increase of log (h; z) the convergent series Q z(1 + z) z(1 − z2) z(1 + z3) z(1 − z4) + + + + : : : : : 2(h + 1)2 3(h + 1)3 4(h + 1)4 5(h + 1)5 If the value k increases from h + 1 to h + 2, then one has z(1 + z) z(1 − z2) z(1 + z3) log (h + 2; z) − log (h + 1; z) = + + + : : : : : h 2 h 3 h 4 Y Y 2( + 2) 3( + 2) 4( + 2) Generally, if the value k increases from h to h+n, then the difference log (h+ n; z) − log (h; z) equals Q 1 Q 1 1 1 1 z(1 + z) + + + : : : + 2 (h + 1)2 (h + 2)2 (h + 3)2 (h + n)2 1 1 1 1 1 + z(1 − z2) + + + : : : + 3 (h + 1)3 (h + 2)3 (h + 3)3 (h + n)3 1 1 1 1 1 + z(1 + z3) + + + : : : + + : : : : 4 (h + 1)4 (h + 2)4 (h + 3)4 (h + n)4 For n ! 1 Gauss obtained an absolute convergent double series 1 1 z + z2i z − z2i+1 + : 2i(h + j)2i (2i + 1)(h + j)2i+1 Xi=1 Xj=1 Gauss proved the finitness of limk!1 (k; z) for every C\{−1; −2; −3; : : :g.
Recommended publications
  • Two Series Expansions for the Logarithm of the Gamma Function Involving Stirling Numbers and Containing Only Rational −1 Coefficients for Certain Arguments Related to Π
    J. Math. Anal. Appl. 442 (2016) 404–434 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational −1 coefficients for certain arguments related to π Iaroslav V. Blagouchine ∗ University of Toulon, France a r t i c l e i n f o a b s t r a c t Article history: In this paper, two new series for the logarithm of the Γ-function are presented and Received 10 September 2015 studied. Their polygamma analogs are also obtained and discussed. These series Available online 21 April 2016 involve the Stirling numbers of the first kind and have the property to contain only Submitted by S. Tikhonov − rational coefficients for certain arguments related to π 1. In particular, for any value of the form ln Γ( 1 n ± απ−1)andΨ ( 1 n ± απ−1), where Ψ stands for the Keywords: 2 k 2 k 1 Gamma function kth polygamma function, α is positive rational greater than 6 π, n is integer and k Polygamma functions is non-negative integer, these series have rational terms only. In the specified zones m −2 Stirling numbers of convergence, derived series converge uniformly at the same rate as (n ln n) , Factorial coefficients where m =1, 2, 3, ..., depending on the order of the polygamma function. Explicit Gregory’s coefficients expansions into the series with rational coefficients are given for the most attracting Cauchy numbers −1 −1 1 −1 −1 1 −1 values, such as ln Γ(π ), ln Γ(2π ), ln Γ( 2 + π ), Ψ(π ), Ψ( 2 + π )and −1 Ψk(π ).
    [Show full text]
  • Méthodes, Figures Et Pratiques De La Géométrie Au Début Du Dix
    THÈSE DE DOCTORAT Discipline : Mathématiques présentée par Jemma Lorenat pour obtenir le grade de Docteur de l’université Pierre et Marie Curie et de Doctor of Philosophy of Simon Fraser University “Die Freude an der Gestalt ”: méthodes, figures et pratiques de la géométrie au début du dix-neuvième siècle Thèse dirigée par Thomas Archibald et Catherine Goldstein présentée et soutenue publiquement le 10 avril 2015 devant un jury composé de Mme Nilima Nigam, professor, Simon Fraser University (Burnaby, Canada), présidente du jury M. Christian Gilain, professeur émérite, Université Pierre et Marie Curie (Paris, France), examinateur M. Dirk Schlimm, associate professor, Mac Gill University (Montréal, Canada), rapporteur M. Thomas Archibald, professor, Simon Fraser University (Burnaby, Canada), directeur Mme Catherine Goldstein, directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Gauche (Paris, France), directrice Rapporteur non présent à la soutenance : M. Philippe Nabonnand, pro- fesseur à l’université de Lorraine (Nancy, France) c Simon Fraser University (Canada) et Université Pierre et Marie Curie (France) ii ACKNOWLEDGEMENTS First, this research would not have been possible without the encouragements, critiques, and administrative feats of my dissertation directors, Tom Archibald and Catherine Goldstein. They continually inspire me with their dedication, understanding, exactitude, generosity, and often uncanny ability to succinctly state what I am trying to express in so many words. I am grateful for all the reporters and members of my committee, in particular to Nilima Nigam who joined at the very beginning and has offered valuable support and recommendations over the past four years. My family has been a source of comfort and wisdom.
    [Show full text]
  • Methods, Figures, and Practices in Early Nineteenth Century Geometry
    Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry by Jemma Lorenat M. A., City University of New York Graduate Center, B. A., San Francisco State University Dissertation Submitted in Partial Fulfillment of the Requirements for the Joint Degree (cotutelle) Doctor of Philosophy in the Department of Mathematics, Faculty of Science at Simon Fraser University (Canada); Sorbonne Universités, Université Pierre et Marie Curie (Paris 6), Institut de mathématiques de Jussieu-Paris Rive Gauche (France) c Jemma Lorenat 2015 SIMON FRASER UNIVERSITY Spring 2015 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Jemma Lorenat Degree: Doctor of Philosophy (Mathematics) Title of Thesis: Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry Examining Committee: Brenda Davison Chair Department of Mathematics Dr. Thomas Archibald Senior Supervisor (co-tutelle) Professor Dr. Catherine Goldstein Senior Supervisor (co-tutelle) Directrice de recherche au CNRS, Institut de mathématiques de Jussieu-Paris Rive gauche Dr. Nilima Nigam Supervisor Professor Dr. Christian Gilain Internal Examiner (co-tutelle) by videoconference (Paris) Professeur émérite à l’Université Pierre-et-Marie-Curie (Paris 6) Dr. Dirk Schlimm External Examiner Associate Professor, Department of Philosophy, McGill University Date Defended: 10 April 2015 ii Partial Copyright Licence iii ABSTRACT As recounted by later historians, modern geometry began with Jean Victor Poncelet, whose contributions then spread to Germany alongside an opposition between geometric methods that came to be exemplified by the antagonism of Julius Plücker, an analytic geometer, and Jakob Steiner, a synthetic geometer.
    [Show full text]
  • Schwermer the Shaping of Arithmetic After CF Gauss's Disquisitiones
    Goldstein · Schappacher · Schwermer The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae Catherine Goldstein Norbert Schappacher Joachim Schwermer Editors The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae With 36 Figures 123 Catherine Goldstein Joachim Schwermer Histoire des sciences mathématiques Fakultät für Mathematik Institut de mathématiques de Jussieu Universität Wien 175 rue du Chevaleret Nordbergstraße 15 75013 Paris, France 1090 Wien, Austria E-mail: [email protected] E-mail: [email protected] Norbert Schappacher UFR de mathématique et d’informatique / IRMA 7rueRenéDescartes 67084 Strasbourg Cedex, France E-mail: [email protected] Library of Congress Control Number: 2006932291 ISBN 978-3-540-20441-1 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]