ABYSS-Lite Decadal Survey Concept 1

Total Page:16

File Type:pdf, Size:1020Kb

ABYSS-Lite Decadal Survey Concept 1 5/16/05 ABYSS-Lite Decadal Survey Concept 1 ABYSS-Lite: A radar altimeter for bathymetry, geodesy and mesoscale oceanography A mission concept submitted to the NRC Decadal Survey Authored by: Smith Walter NOAA [email protected] Raney Keith Johns Hopkins Univ., MD [email protected] Sandwell David Scripps institution of Oceanography, UCSD [email protected] Anglin Lyn Geological Survey of Canada's Pacific Division [email protected] Andersen Ole Danish Space Center [email protected] Andreasen Chris NGA Office of Global Navigation [email protected] Arbic Brian Princeton University and NOAA GFDL [email protected] Blackman Donna Scripps Institution of Oceanography, UCSD [email protected] Camarda Tom National Geospatial Intelligence Agency [email protected] Cande Steve Scripps Institution of Oceanography, UCSD [email protected] Carron Michael NATO Undersea Research Center [email protected] Cazenave Anny CNES [email protected] Christie David Oregon State University [email protected] Coakley Bernie Univ. of Alaska, Fairbanks [email protected] Cochran James Lamont Doherty Earth Observatory [email protected] Douglas Bruce University of Maryland [email protected] Drinkwater Mark European Space Agency Earth Observation [email protected] Driscoll Mavis Northrop Grumman Corporation [email protected] Eakins Barry USGS, Menlo Park, CA [email protected] Egbert Gary Oregon State University, Corvallis, OR [email protected] Emery Bill University of Colorado [email protected] Factor John National Geospatial Intelligence Agency [email protected] Falconer Robin NZ Institute for Geological & Nuclear Sciences [email protected] Forsyth Donald Brown University [email protected] Friederich Jim National Geospatial Intelligence Agency [email protected] Geli Louis IFREMER [email protected] Gille Sarah UCSD [email protected] Godin Ray Integrated Program Office [email protected] Goff John Univ. of Texas, Austin, TX [email protected] Gonzalez Frank NOAA PMEL Tsunami group [email protected] Hensel Jerry Chevron/Texaco [email protected] Hunter Peter Southampton Oceanography Centre [email protected] Jacobs Gregg Naval Research Laboratory [email protected] Jakobsson Martin Stockholm University [email protected] Jayne Steve Woods Hole Oceanographic Inst., MA [email protected] Jensen Bob Johns Hopkins Univ., MD [email protected] 5/16/05 ABYSS-Lite Decadal Survey Concept 2 Kappel Ellen Geosciences Professional Services, MD [email protected] Karner Garry LDEO Columbia University [email protected] Kenyon Steve National Geospatial Intelligence Agency [email protected] Kruse Sarah University of South Florida [email protected] Kunze Eric Univ. of Victoria SEOS [email protected] Lillibridge John NOAA Lab for Satellite Altimetry [email protected] Llewellyn-Smith Stefan Mechanical and Aerospace Engineering, UCSD [email protected] Lonsdale Peter Scripps Institution of Oceanography, UCSD [email protected] Luther Doug Univ. of Hawaii, Honolulu [email protected] Mariano John Exxon-Mobil [email protected] Marks Karen NOAA Lab for Satellite Altimetry [email protected] Massell-Symons Christina Geological Data Center, UCSD [email protected] May Marvin Navigation R & D Center, Penn State Univ [email protected] Mayer Larry UNH Center for Coastal & Ocean Mapping [email protected] McGuire James Integrated Program Office [email protected] McNutt Marcia Monterey Bay Aquarium Research Institute [email protected] Metzger Joseph Naval Research Laboratory [email protected] Miller Stephen P. Scripps Institution of Oceanography, UCSD [email protected] Mitchell Roger Earth Satellite Corporation [email protected] Mitchum Gary University of South Florida, St. Petersburg [email protected] Mofjeld Harold NOAA PMEL Tsunami group [email protected] Monahan Dave Chairman, IHO-IOC GEBCO [email protected] Munk Walter Scripps Institution of Oceanography, UCSD [email protected] Naar David Univ. of South Florida [email protected] Nerem Steve University of Colorado Aerospace Engineering [email protected] Neumann Gregory Goddard Space Flight Center, NASA [email protected] O’Loughlin Michael National Geospatial Intelligence Agency [email protected] Orcutt John Scripps Institution of Oceanography, UCSD [email protected] Oswald John National Geospatial Intelligence Agency [email protected] Pavlis Nikolaos Raytheon ITSS Corporation [email protected] Phipps Morgan Jason Cornell University [email protected] Polzin Kurt WHOI [email protected] Porter David L. Johns Hopkins Univ., MD [email protected] Rankin William Naval Oceanographic Office [email protected] Ray Richard Goddard Space Flight Center, NASA [email protected] Rodriguez Ernesto Jet Propulsion Laboratory, NASA [email protected] Ruder Michal Wintermoon Geotechnologies, Inc. [email protected] Ryan Bill Lamont Doherty Earth Observatory [email protected] Salman Richard National Geospatial Intelligence Agency [email protected] Sawyer Dale Rice Univ., Houston, TX [email protected] Schenke Hans-Werner Alfred Wegner Institute [email protected] Schrama Ejo Delft Technical University [email protected] Sharman George NOAA [email protected] 5/16/05 ABYSS-Lite Decadal Survey Concept 3 Shum C.K. Ohio State University, OH [email protected] Simmons Harper International Arctic Research Center [email protected] Small Chris Lamont Dohergy Earth Observatory [email protected] Soofi Khalid Conoco [email protected] St.Laurent Lou Florida State University, Tallahassee [email protected] Stammer Detlef Inst for Meereskunde, Hamburg [email protected] Talwani Manik Rice Univ., Houston, TX [email protected] Thurnheer Andreas Dept. of Oceanography, FL State Univ. [email protected] Titov Vasily NOAA PMEL Tsunami group [email protected] Tokmakian Robin Naval Postgraduate School, Monterey [email protected] Toohey Joseph National Geospatial Intelligence Agency [email protected] Trimmer Ron National Geospatial Intelligence Agency [email protected] True Scott National Geospatial Intelligence Agency [email protected] Watts Anthony Oxford University [email protected] Weatherall Pauline British Oceanographic Data Centre [email protected] Wessel Paul Univ. of Hawaii, Honolulu, HI [email protected] Wingham Duncan University College London [email protected] Young Bill Scripps Institution of Oceanography, UCSD [email protected] Zlotnicki Victor Jet Propulsion Laboratory, NASA [email protected] Zumberge Mark Scripps Institution of Oceanography, UCSD [email protected] Acknowledgements and Additional Supporting Materials: This mission concept has matured through its development as a NASA ESSP-3 proposal (“ABYSS: Altimetric Bathymetry from Surface Slopes”), in a NASA/NOAA/NSF funded workshop in 2002 (http://www.igpp.ucsd.edu/bathymetry_workshop), Navy workshops in 2003 and 2005, and articles in the 2004 “Bathymetry from Space” issue of Oceanography (http://www.tos.org/oceanography/issues/issue_archive/17_1.html). The concept presented here arranges these previously vetted materials to fit the NRC Decadal Survey outline. A website (http://topex.ucsd.edu/concept) holds additional supporting materials, including animated demonstrations of the effect of bathymetry in tsunami propagation and of the recovery of mesoscale eddies from a non-repeat orbit. Further discussion of the mission concept, resolving power, and applications to tsunami and seismic hazard, ocean circulation, ocean mixing, climate modeling, and the UN Law of the Sea can be found in peer-reviewed articles in Oceanography volume 17, number 1 (http://www.tos.org/oceanography/issues/issue_archive/17_1.html). Disclaimer The views, opinions and findings contained in this document are those of the authors and should not be construed as an official U.S. Government position, policy or decision. Co- authors of this report who are employees of U.S. federal agencies are acting in their capacities as scientific experts contributing to a science mission concept; they are not acting as advocates of U.S Government position, policy, or decision. Fact Sheet Abyss-Lite* An altimeter for geodesy and mesoscale oceanography Method • Radar measurement of sea surface slope reveals gravity anomalies & ocean flows Themes • The fine-scale (200-km to 5-km) ocean shape yields bathymetry, gravity anomalies, and deflections of the vertical (VD) unavailable by other means • The non-repeat orbit monitors ocean currents and eddies unseen by other missions Complements Related Missions • GRACE, Champ and GOCE sense gravity at orbital altitude, where resolution is limited to ~200 km; Abyss-Lite measures gravity at sea level, where resolution down to ~ 5 km is available. •Abyss-Lite’s drifting orbit fills holes in the exact-repeat orbits covered by TOPEX/Poseidon, GFO, Envisat, and Jason-1, enabling fine-scale geodesy and detailed recovery of mesoscale eddies. Implementation • ~800-km orbit, inclination ~120˚ (preferred) or ~60˚, non-repeat, ~22-day near-repeat, 6-y mission, small s/c • Delay-Doppler radar altimeter w/ on-board processing for fine measurement precision, near-shore tracking, resistance to “wave noise” •Low data rate; one ground station Science • Ocean bottom shape and roughness control tsunami propagation, steering of A new Bathymetry from Space
Recommended publications
  • Global Sea-Level Budget 1993–Present
    Earth Syst. Sci. Data, 10, 1551–1590, 2018 https://doi.org/10.5194/essd-10-1551-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Global sea-level budget 1993–present WCRP Global Sea Level Budget Group A full list of authors and their affiliations appears at the end of the paper. Correspondence: Anny Cazenave ([email protected]) Received: 13 April 2018 – Discussion started: 15 May 2018 Revised: 31 July 2018 – Accepted: 1 August 2018 – Published: 28 August 2018 Abstract. Global mean sea level is an integral of changes occurring in the climate system in response to un- forced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g., acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled “Re- gional Sea Level and Coastal Impacts”, an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level budget during the altimetry era (1993 to present). These datasets are based on the combination of a broad range of space-based and in situ observations, model estimates, and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research.
    [Show full text]
  • SEASAT Geoid Anomalies and the Macquarie Ridge Complex Larry Ruff *
    Physics of the Earth and Planetary Interiors, 38 (1985) 59-69 59 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands SEASAT geoid anomalies and the Macquarie Ridge complex Larry Ruff * Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (U.S.A.) Anny Cazenave CNES-GRGS, 18Ave. Edouard Belin, Toulouse, 31055 (France) (Received August 10, 1984; revision accepted September 5, 1984) Ruff, L. and Cazenave, A., 1985. SEASAT geoid anomalies and the Macquarie Ridge complex. Phys. Earth Planet. Inter., 38: 59-69. The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone. Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Maequarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough.
    [Show full text]
  • Sea Level Change 13SM Supplementary Material
    Sea Level Change 13SM Supplementary Material Coordinating Lead Authors: John A. Church (Australia), Peter U. Clark (USA) Lead Authors: Anny Cazenave (France), Jonathan M. Gregory (UK), Svetlana Jevrejeva (UK), Anders Levermann (Germany), Mark A. Merrifield (USA), Glenn A. Milne (Canada), R. Steven Nerem (USA), Patrick D. Nunn (Australia), Antony J. Payne (UK), W. Tad Pfeffer (USA), Detlef Stammer (Germany), Alakkat S. Unnikrishnan (India) Contributing Authors: David Bahr (USA), Jason E. Box (Denmark/USA), David H. Bromwich (USA), Mark Carson (Germany), William Collins (UK), Xavier Fettweis (Belgium), Piers Forster (UK), Alex Gardner (USA), W. Roland Gehrels (UK), Rianne Giesen (Netherlands), Peter J. Gleckler (USA), Peter Good (UK), Rune Grand Graversen (Sweden), Ralf Greve (Japan), Stephen Griffies (USA), Edward Hanna (UK), Mark Hemer (Australia), Regine Hock (USA), Simon J. Holgate (UK), John Hunter (Australia), Philippe Huybrechts (Belgium), Gregory Johnson (USA), Ian Joughin (USA), Georg Kaser (Austria), Caroline Katsman (Netherlands), Leonard Konikow (USA), Gerhard Krinner (France), Anne Le Brocq (UK), Jan Lenaerts (Netherlands), Stefan Ligtenberg (Netherlands), Christopher M. Little (USA), Ben Marzeion (Austria), Kathleen L. McInnes (Australia), Sebastian H. Mernild (USA), Didier Monselesan (Australia), Ruth Mottram (Denmark), Tavi Murray (UK), Gunnar Myhre (Norway), J.P. Nicholas (USA), Faezeh Nick (Norway), Mahé Perrette (Germany), David Pollard (USA), Valentina Radić (Canada), Jamie Rae (UK), Markku Rummukainen (Sweden), Christian Schoof (Canada), Aimée Slangen (Australia/Netherlands), Jan H. van Angelen (Netherlands), Willem Jan van de Berg (Netherlands), Michiel van den Broeke (Netherlands), Miren Vizcaíno (Netherlands), Yoshihide Wada (Netherlands), Neil J. White (Australia), Ricarda Winkelmann (Germany), Jianjun Yin (USA), Masakazu Yoshimori (Japan), Kirsten Zickfeld (Canada) Review Editors: Jean Jouzel (France), Roderik van de Wal (Netherlands), Philip L.
    [Show full text]
  • Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry
    remote sensing Article Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry Xi-Yu Xu 1,2,3,*, Florence Birol 2 and Anny Cazenave 2,4 1 The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China 2 Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Observatoire Midi-Pyrénées, 31400 Toulouse, France; fl[email protected] (F.B.); [email protected] (A.C.) 3 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China 4 International Space Science Institute, 3102 Bern, Switzerland * Correspondence: [email protected]; Tel.: +86-10-6255-0409 Received: 23 November 2017; Accepted: 6 February 2018; Published: 12 February 2018 Abstract: As altimeter satellites approach coastal areas, the number of valid sea surface height measurements decrease dramatically because of land contamination. In recent years, different methodologies have been developed to recover data within 10–20 km from the coast. These include computation of geophysical corrections adapted to the coastal zone and retracking of raw radar echoes. In this paper, we combine for the first time coastal geophysical corrections and retracking along a Jason-2 satellite pass that crosses the coast near the Hong-Kong tide gauge. Six years and a half of data are analyzed, from July 2008 to December 2014 (orbital cycles 1–238). Different retrackers are considered, including the ALES retracker and the different retrackers of the PISTACH products. For each retracker, we evaluate the quality of the recovered sea surface height by comparing with data from the Hong Kong tide gauge (located 10 km away).
    [Show full text]
  • L'aquarium: Vision Et Représentation Des Mondes Subaquatiques
    L’Aquarium : vision et représentation des mondes subaquatiques : un dispositif d’exposition au croisement de l’art et de la science Quentin Montagne To cite this version: Quentin Montagne. L’Aquarium : vision et représentation des mondes subaquatiques : un dispositif d’exposition au croisement de l’art et de la science. Art et histoire de l’art. Université Rennes 2, 2019. Français. NNT : 2019REN20010. tel-02410780v2 HAL Id: tel-02410780 https://tel.archives-ouvertes.fr/tel-02410780v2 Submitted on 28 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse soutenue le 07 janvier 2019, devant le jury composé de: L'.Aquarium: Éric Baratay vision et représentation Professeur des universités, Université Jean Moulin Lyon 3 (rapporteur) des mondes subaquatiques Sandrine Ferret Professeure des universités, Université Rennes 2 Un dispositif d'exposition Nicolas Roc'h au croisement de l'art et de la science artiste plasticien Corine Pencenat Maître de conférences HDR, Université de Strasbourg Olivier Schefer Professeur des universités. Université Paris 1 Panthéon-Sorbonne (rapporteur) UNIVERSITE Christophe Viart j:f;jil+iCHII Professeur des unrversités. Université Paris 1 Panthéon-Sorbonne Montagne,l!IJl;J=i Quentin.
    [Show full text]
  • Closure of the Meridional Overturning Circulation Through Southern Ocean Upwelling
    REVIEW ARTICLE PUBLISHED ONLINE: 26 FEBRUARY 2012 | DOI: 10.1038/NGEO1391 Closure of the meridional overturning circulation through Southern Ocean upwelling John Marshall1* and Kevin Speer2 The meridional overturning circulation of the ocean plays a central role in climate and climate variability by storing and transporting heat, fresh water and carbon around the globe. Historically, the focus of research has been on the North Atlantic Basin, a primary site where water sinks from the surface to depth, triggered by loss of heat, and therefore buoyancy, to the atmosphere. A key part of the overturning puzzle, however, is the return path from the interior ocean to the surface through upwelling in the Southern Ocean. This return path is largely driven by winds. It has become clear over the past few years that the importance of Southern Ocean upwelling for our understanding of climate rivals that of North Atlantic downwelling, because it controls the rate at which ocean reservoirs of heat and carbon communicate with the surface. conceptual model of the meridional overturning circulation Observations of Southern Ocean circulation (MOC) of the ocean is that of the filling box1,2. The Key climatological features of the circulation and hydrography Abox represents the ocean basin. The filling process is the of the Southern Ocean are shown in Fig. 2. The circulation is conversion in polar oceans of light upper water to denser deep dominated by the eastward-flowing, vigorously eddying ACC. The water by convection and mixing in the open seas and in shelf ACC has a braided flow structure with embedded regions of strong and bottom boundary-layer processes3.
    [Show full text]
  • Sea Level: a Review of Present-Day and Recent-Past Changes and Variability
    Journal of Geodynamics 58 (2012) 96–109 Contents lists available at SciVerse ScienceDirect Journal of Geodynamics jo urnal homepage: http://www.elsevier.com/locate/jog Review Sea level: A review of present-day and recent-past changes and variability ∗ Benoit Meyssignac , Anny Cazenave LEGOS-CNES, Toulouse, France a r t i c l e i n f o a b s t r a c t Article history: In this review article, we summarize observations of sea level variations, globally and regionally, during Received 12 December 2011 the 20th century and the last 2 decades. Over these periods, the global mean sea level rose at rates of Received in revised form 9 March 2012 1.7 mm/yr and 3.2 mm/yr respectively, as a result of both increase of ocean thermal expansion and land Accepted 10 March 2012 ice loss. The regional sea level variations, however, have been dominated by the thermal expansion factor Available online 19 March 2012 over the last decades even though other factors like ocean salinity or the solid Earth’s response to the last deglaciation can have played a role. We also present examples of total local sea level variations Keywords: that include the global mean rise, the regional variability and vertical crustal motions, focusing on the Sea level Altimetry tropical Pacific islands. Finally we address the future evolution of the global mean sea level under on- going warming climate and the associated regional variability. Expected impacts of future sea level rise Global mean sea level Regional sea level are briefly presented. Sea level reconstruction © 2012 Elsevier Ltd.
    [Show full text]
  • 1999 EOS Reference Handbook
    1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System http://eos.nasa.gov/ 1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System Editors Michael D. King Reynold Greenstone Acknowledgements Special thanks are extended to the EOS Prin- Design and Production cipal Investigators and Team Leaders for providing detailed information about their Sterling Spangler respective instruments, and to the Principal Investigators of the various Interdisciplinary Science Investigations for descriptions of their studies. In addition, members of the EOS Project at the Goddard Space Flight Center are recognized for their assistance in verifying and enhancing the technical con- tent of the document. Finally, appreciation is extended to the international partners for For Additional Copies: providing up-to-date specifications of the instruments and platforms that are key ele- EOS Project Science Office ments of the International Earth Observing Mission. Code 900 NASA/Goddard Space Flight Center Support for production of this document, Greenbelt, MD 20771 provided by Winnie Humberson, William Bandeen, Carl Gray, Hannelore Parrish and Phone: (301) 441-4259 Charlotte Griner, is gratefully acknowl- Internet: [email protected] edged. Table of Contents Preface 5 Earth Science Enterprise 7 The Earth Observing System 15 EOS Data and Information System (EOSDIS) 27 Data and Information Policy 37 Pathfinder Data Sets 45 Earth Science Information Partners and the Working Prototype-Federation 47 EOS Data Quality: Calibration and Validation 51 Education Programs 53 International Cooperation 57 Interagency Coordination 65 Mission Elements 71 EOS Instruments 89 EOS Interdisciplinary Science Investigations 157 Points-of-Contact 340 Acronyms and Abbreviations 354 Appendix 361 List of Figures 1.
    [Show full text]
  • Global Sea Level Budget 1993-Present
    1 1 2 3 4 5 6 7 8 9 10 11 Global Sea Level Budget 1993-Present 12 13 14 WCRP Global Sea Level Budget Group* 15 16 *A full list of authors and their affiliations appears at the end of the paper 17 18 19 20 Revised version 21 23 July 2018 22 23 24 25 26 27 Corresponding author: Anny Cazenave, LEGOS, 18 Avenue Edouard Belin, 31401 Toulouse, 28 Cedex 9, France; [email protected] 29 30 1 2 31 Abstract 32 33 Global mean sea level is an integral of changes occurring in the climate system in response to 34 unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal 35 evolution allows detecting changes (e.g., acceleration) in one or more components. Study of 36 the sea level budget provides constraints on missing or poorly known contributions, such as 37 the unsurveyed deep ocean or the still uncertain land water component. In the context of the 38 World Climate Research Programme Grand Challenge entitled “Regional Sea Level and 39 Coastal Impacts”, an international effort involving the sea level community worldwide has 40 been recently initiated with the objective of assessing the various data sets used to estimate 41 components of the sea level budget during the altimetry era (1993 to present). These data sets 42 are based on the combination of a broad range of space-based and in situ observations, model 43 estimates and algorithms. Evaluating their quality, quantifying uncertainties and identifying 44 sources of discrepancies between component estimates is extremely useful for various 45 applications in climate research.
    [Show full text]
  • Present-Day Sea-Level Change: a Review
    C. R. Geoscience 338 (2006) 1077–1083 http://france.elsevier.com/direct/CRAS2A/ External Geophysics, Climate and Environment Present-day sea-level change: A review Robert Steven Nerem a, Éric Leuliette a, Anny Cazenave b,∗ a Colorado Center for Astrodynamics Research, University of Colorado at Boulder, Boulder, CO 80309-0431, USA b LEGOS-CNES, 18, av. Édouard-Belin, 31401 Toulouse cedex 9, France Received 6 August 2006; accepted after revision 25 August 2006 Available online 17 October 2006 Written on invitation of the Editorial Board Abstract Understanding of sea-level change has improved considerably over the last decade. Present-day knowledge of sea-level change is derived from tide gauge observations and satellite altimetry measurements. The average rate of sea-level change obtained from tide − gauges over the last 50 years is +1.8 ± 0.3mmyr 1. In comparison, altimeter measurements from TOPEX/Poseidon and Jason-1 − have shown an average rise of +3.1 ± 0.4mmyr 1 since 1993. It is not clear yet whether the larger rate of rise of the last decade reflects acceleration or decadal fluctuation. The causes of the present-day rate are a combination of increases in ocean temperatures and land ice melt from mountain glaciers, Greenland, and Antarctica. Regional variability in sea-level change, as evidenced by the quasi global coverage of altimeter satellites, appears dominated by non uniform change of thermal expansion. New satellite technologies, such as InSAR, ICESat, and GRACE make significant contributions to understanding sea-level change. To cite this article: R.S. Nerem et al., C. R. Geoscience 338 (2006).
    [Show full text]
  • The Thermal Structure of the Upper Ocean
    888 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 The Thermal Structure of the Upper Ocean GIULIO BOCCALETTI Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey RONALD C. PACANOWSKI NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey S. GEORGE H. PHILANDER AND ALEXEY V. F EDOROV Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey (Manuscript received 19 November 2002, in ®nal form 3 September 2003) ABSTRACT The salient feature of the oceanic thermal structure is a remarkably shallow thermocline, especially in the Tropics and subtropics. What factors determine its depth? Theories for the deep thermohaline circulation provide an answer that depends on oceanic diffusivity, but they deny the surface winds an explicit role. Theories for the shallow ventilated thermocline take into account the in¯uence of the wind explicitly, but only if the thermal structure in the absence of any winds, the thermal structure along the eastern boundary, is given. To complete and marry the existing theories for the oceanic thermal structure, this paper invokes the constraint of a balanced heat budget for the ocean. The oceanic heat gain occurs primarily in the upwelling zones of the Tropics and subtropics and depends strongly on oceanic conditions, speci®cally the depth of the thermocline. The heat gain is large when the thermocline is shallow but is small when the thermocline is deep. The constraint of a balanced heat budget therefore implies that an increase in heat loss in high latitudes can result in a shoaling of the tropical thermocline; a decrease in heat loss can cause a deepening of the thermocline.
    [Show full text]
  • Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era
    University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 2019 Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era Anny Cazenave LEGOS, France Ben Hamlington NASA Jet Propulsion Laboratory, United States Martin Horwath Technische Universität Dresden Valentina R. Barletta DTU Space, Denmark Jérôme Benveniste European Space Agency (ESA-ESRIN), Italy See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub Part of the Life Sciences Commons Scholar Commons Citation Cazenave, Anny; Hamlington, Ben; Horwath, Martin; Barletta, Valentina R.; Benveniste, Jérôme; Chambers, Don; Döll, Petra; Hogg, Anna E.; Legeais, Jean François; Merrifield, Mark; Meyssignac, Benoit; Mitchum, Garry; Nerem, Steve; Pail, Roland; Palanisamy, Hindumathi; Paul, Frank; von Schuckmann, Schuckmann, Karina; and Thompson, Philip, "Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era" (2019). Marine Science Faculty Publications. 1378. https://scholarcommons.usf.edu/msc_facpub/1378 This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors Anny Cazenave; Ben Hamlington; Martin Horwath; Valentina
    [Show full text]