Jan-Feb 2013 Earth Observer Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Sea-Level Budget 1993–Present
Earth Syst. Sci. Data, 10, 1551–1590, 2018 https://doi.org/10.5194/essd-10-1551-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Global sea-level budget 1993–present WCRP Global Sea Level Budget Group A full list of authors and their affiliations appears at the end of the paper. Correspondence: Anny Cazenave ([email protected]) Received: 13 April 2018 – Discussion started: 15 May 2018 Revised: 31 July 2018 – Accepted: 1 August 2018 – Published: 28 August 2018 Abstract. Global mean sea level is an integral of changes occurring in the climate system in response to un- forced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g., acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled “Re- gional Sea Level and Coastal Impacts”, an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level budget during the altimetry era (1993 to present). These datasets are based on the combination of a broad range of space-based and in situ observations, model estimates, and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research. -
The Earth Observer. July
National Aeronautics and Space Administration The Earth Observer. July - August 2012. Volume 24, Issue 4. Editor’s Corner Steve Platnick obser ervth EOS Senior Project Scientist The joint NASA–U.S. Geological Survey (USGS) Landsat program celebrated a major milestone on July 23 with the 40th anniversary of the launch of the Landsat-1 mission—then known as the Earth Resources and Technology Satellite (ERTS). Landsat-1 was the first in a series of seven Landsat satellites launched to date. At least one Landsat satellite has been in operation at all times over the past four decades providing an uninter- rupted record of images of Earth’s land surface. This has allowed researchers to observe patterns of land use from space and also document how the land surface is changing with time. Numerous operational applications of Landsat data have also been developed, leading to improved management of resources and informed land use policy decisions. (The image montage at the bottom of this page shows six examples of how Landsat data has been used over the last four decades.) To commemorate the anniversary, NASA and the USGS helped organize and participated in several events on July 23. A press briefing was held over the lunch hour at the Newseum in Washington, DC, where presenta- tions included the results of a My American Landscape contest. Earlier this year NASA and the USGS sent out a press release asking Americans to describe landscape change that had impacted their lives and local areas. Of the many responses received, six were chosen for discussion at the press briefing with the changes depicted in time series or pairs of Landsat images. -
SEASAT Geoid Anomalies and the Macquarie Ridge Complex Larry Ruff *
Physics of the Earth and Planetary Interiors, 38 (1985) 59-69 59 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands SEASAT geoid anomalies and the Macquarie Ridge complex Larry Ruff * Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (U.S.A.) Anny Cazenave CNES-GRGS, 18Ave. Edouard Belin, Toulouse, 31055 (France) (Received August 10, 1984; revision accepted September 5, 1984) Ruff, L. and Cazenave, A., 1985. SEASAT geoid anomalies and the Macquarie Ridge complex. Phys. Earth Planet. Inter., 38: 59-69. The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone. Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Maequarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough. -
Sea Level Change 13SM Supplementary Material
Sea Level Change 13SM Supplementary Material Coordinating Lead Authors: John A. Church (Australia), Peter U. Clark (USA) Lead Authors: Anny Cazenave (France), Jonathan M. Gregory (UK), Svetlana Jevrejeva (UK), Anders Levermann (Germany), Mark A. Merrifield (USA), Glenn A. Milne (Canada), R. Steven Nerem (USA), Patrick D. Nunn (Australia), Antony J. Payne (UK), W. Tad Pfeffer (USA), Detlef Stammer (Germany), Alakkat S. Unnikrishnan (India) Contributing Authors: David Bahr (USA), Jason E. Box (Denmark/USA), David H. Bromwich (USA), Mark Carson (Germany), William Collins (UK), Xavier Fettweis (Belgium), Piers Forster (UK), Alex Gardner (USA), W. Roland Gehrels (UK), Rianne Giesen (Netherlands), Peter J. Gleckler (USA), Peter Good (UK), Rune Grand Graversen (Sweden), Ralf Greve (Japan), Stephen Griffies (USA), Edward Hanna (UK), Mark Hemer (Australia), Regine Hock (USA), Simon J. Holgate (UK), John Hunter (Australia), Philippe Huybrechts (Belgium), Gregory Johnson (USA), Ian Joughin (USA), Georg Kaser (Austria), Caroline Katsman (Netherlands), Leonard Konikow (USA), Gerhard Krinner (France), Anne Le Brocq (UK), Jan Lenaerts (Netherlands), Stefan Ligtenberg (Netherlands), Christopher M. Little (USA), Ben Marzeion (Austria), Kathleen L. McInnes (Australia), Sebastian H. Mernild (USA), Didier Monselesan (Australia), Ruth Mottram (Denmark), Tavi Murray (UK), Gunnar Myhre (Norway), J.P. Nicholas (USA), Faezeh Nick (Norway), Mahé Perrette (Germany), David Pollard (USA), Valentina Radić (Canada), Jamie Rae (UK), Markku Rummukainen (Sweden), Christian Schoof (Canada), Aimée Slangen (Australia/Netherlands), Jan H. van Angelen (Netherlands), Willem Jan van de Berg (Netherlands), Michiel van den Broeke (Netherlands), Miren Vizcaíno (Netherlands), Yoshihide Wada (Netherlands), Neil J. White (Australia), Ricarda Winkelmann (Germany), Jianjun Yin (USA), Masakazu Yoshimori (Japan), Kirsten Zickfeld (Canada) Review Editors: Jean Jouzel (France), Roderik van de Wal (Netherlands), Philip L. -
Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry
remote sensing Article Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry Xi-Yu Xu 1,2,3,*, Florence Birol 2 and Anny Cazenave 2,4 1 The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China 2 Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Observatoire Midi-Pyrénées, 31400 Toulouse, France; fl[email protected] (F.B.); [email protected] (A.C.) 3 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China 4 International Space Science Institute, 3102 Bern, Switzerland * Correspondence: [email protected]; Tel.: +86-10-6255-0409 Received: 23 November 2017; Accepted: 6 February 2018; Published: 12 February 2018 Abstract: As altimeter satellites approach coastal areas, the number of valid sea surface height measurements decrease dramatically because of land contamination. In recent years, different methodologies have been developed to recover data within 10–20 km from the coast. These include computation of geophysical corrections adapted to the coastal zone and retracking of raw radar echoes. In this paper, we combine for the first time coastal geophysical corrections and retracking along a Jason-2 satellite pass that crosses the coast near the Hong-Kong tide gauge. Six years and a half of data are analyzed, from July 2008 to December 2014 (orbital cycles 1–238). Different retrackers are considered, including the ALES retracker and the different retrackers of the PISTACH products. For each retracker, we evaluate the quality of the recovered sea surface height by comparing with data from the Hong Kong tide gauge (located 10 km away). -
January/February 2012 Issue
Volume 37, Issue 4 AIAA Houston Section www.aiaa-houston.org January / February 2012 First Confirmation: Planet Kepler-22b HubbleAn Revisited Earth-Like Exoplanet on NASA’s in a Habitable 50th Anniversary Zone Wes Kelly, Triton Systems LLC AIAA Houston Section Horizons January / February 2012 Page 1 January / February 2012 T A B L E O F C O N T E N T S (Page numbers are linked on this page. To return here, click on tops of pages.) From the Chair 3 HOUSTON From the Editor 4 Horizons is a bimonthly publication of the Houston Section Cover Story: Kepler-22b, by Wes Kelly, Triton Systems LLC 5 of the American Institute of Aeronautics and Astronautics. A Peek at Cassini After Seven Years in Orbit, by Daniel R. Adamo 14 Douglas Yazell Sustainable Use of Space Through Orbital Debris Control, by N. L. Johnson 18 Editor Past Editors: Dr. Steven E. Everett 1940 Air Terminal Museum at Hobby Airport 19 Editing team: Don Kulba, Ellen Gillespie, Robert Bere- mand, Alan Simon, Dr. Steven Everett, Shen Ge Isle of Man - An Excellent Space for Space, by Shen Ge 20 Regular contributors: Dr. Steven Everett, Don Kulba, Philippe Mairet, Alan Simon, Scott Lowther From our French Sister Section 3AF MP, Biodiversity and Light Pollution 22 Contributors this issue: Dr. Albert A. Jackson IV, Daniel R. Adamo, Wes Kelly Warp Drives: A Curious History, by Dr. Albert A. Jackson IV 26 AIAA Houston Section Phobos-Grunt’s Inexorable Trans-Mars Injection Countdown Clock, Adamo 30 Executive Council Phoenix-E, by Scott Lowther, Aerospace Projects Review 40 Sean Carter EAA Chapter 12 (Houston), The Experimental Aircraft Association 43 Chair Councilors Current Events 44 Daniel Nobles Irene Chan Chair-Elect Secretary Staying Informed 46 Sarah Shull John Kostrzewski AIAA Calendar 50 Past Chair Treasurer Cranium Cruncher 51 Julie Read Dr. -
S5P Mission Performance Centre NPP Cloud [L2__NP Bdx] Readme
S5P Mission Performance Centre NPP Cloud [L2__NP_BDx] Readme document number S5P-MPC-RAL-PRF-NPP issue 1.5 date 2021-07-05 product version V01.03 status Released MPC Product Lead Prepared by R. Siddans (RAL) MPC VAL Product Coordinator Reviewed by J. P. Veefkind (KNMI) MPC TecHnical Manager Approved by A. DeHn (ESA) ESA Data Quality Manager C. ZeHner (ESA) ESA Mission Manager S5P MPC Product Readme NPP Cloud V01.03 S5P-MPC-RAL-PRF-NPP issue 1.5, 2021-07-05 - Released Page 2 of 13 C. Lerot (BIRA-IASB) MPC, ESL-L2 Product Coordinator D. Loyola (DLR) MPC ESL-L2 Lead MPC Contributors A. SmitH (RAL) MPC ESL-L2 Processor Contributor R. Siddans (RAL) MPC ESL-L2 Product Contributor L. Saavedra de Miguel (ESA/Serco) ESA S5p Mission Support MPC Product Lead / PRF Lead Editor Signatures A. Dehn (ESA) – Data Quality Manager C. Zehner (ESA) - Mission Manager S5P MPC Product Readme NPP Cloud V01.03 S5P-MPC-RAL-PRF-NPP issue 1.5, 2021-07-05 - Released Page 3 of 13 Reason for change Issue Revision Date Cloud mask is based on VIIRS ECM product (instead for VICMO) since 1 4 11/03/2020 processor version 01.01.00 (see Table 1) • Table 1: adapting to version 01.03.00 of the processor • Section 4.1 & section 4.2: some text moved from section 4.1 (Known 1 5 05/07/2021 Data Quality Issues) to section 4.2 (Solved Data Quality Issues) • Section 6.1: added format cHanges related to version 01.03.00 S5P MPC Product Readme NPP Cloud V01.03 S5P-MPC-RAL-PRF-NPP issue 1.5, 2021-07-05 - Released Page 4 of 13 1 Summary This is the Product Readme File (PRF) for the Copernicus Sentinel 5 Precursor TropospHeric Monitoring Instrument (S5P/TROPOMI) NPP-Cloud auxiliary/support data product and is applicable for the Offline (OFFL) timeliness data product (there are no Near Real Time products). -
Sea Level: a Review of Present-Day and Recent-Past Changes and Variability
Journal of Geodynamics 58 (2012) 96–109 Contents lists available at SciVerse ScienceDirect Journal of Geodynamics jo urnal homepage: http://www.elsevier.com/locate/jog Review Sea level: A review of present-day and recent-past changes and variability ∗ Benoit Meyssignac , Anny Cazenave LEGOS-CNES, Toulouse, France a r t i c l e i n f o a b s t r a c t Article history: In this review article, we summarize observations of sea level variations, globally and regionally, during Received 12 December 2011 the 20th century and the last 2 decades. Over these periods, the global mean sea level rose at rates of Received in revised form 9 March 2012 1.7 mm/yr and 3.2 mm/yr respectively, as a result of both increase of ocean thermal expansion and land Accepted 10 March 2012 ice loss. The regional sea level variations, however, have been dominated by the thermal expansion factor Available online 19 March 2012 over the last decades even though other factors like ocean salinity or the solid Earth’s response to the last deglaciation can have played a role. We also present examples of total local sea level variations Keywords: that include the global mean rise, the regional variability and vertical crustal motions, focusing on the Sea level Altimetry tropical Pacific islands. Finally we address the future evolution of the global mean sea level under on- going warming climate and the associated regional variability. Expected impacts of future sea level rise Global mean sea level Regional sea level are briefly presented. Sea level reconstruction © 2012 Elsevier Ltd. -
1999 EOS Reference Handbook
1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System http://eos.nasa.gov/ 1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System Editors Michael D. King Reynold Greenstone Acknowledgements Special thanks are extended to the EOS Prin- Design and Production cipal Investigators and Team Leaders for providing detailed information about their Sterling Spangler respective instruments, and to the Principal Investigators of the various Interdisciplinary Science Investigations for descriptions of their studies. In addition, members of the EOS Project at the Goddard Space Flight Center are recognized for their assistance in verifying and enhancing the technical con- tent of the document. Finally, appreciation is extended to the international partners for For Additional Copies: providing up-to-date specifications of the instruments and platforms that are key ele- EOS Project Science Office ments of the International Earth Observing Mission. Code 900 NASA/Goddard Space Flight Center Support for production of this document, Greenbelt, MD 20771 provided by Winnie Humberson, William Bandeen, Carl Gray, Hannelore Parrish and Phone: (301) 441-4259 Charlotte Griner, is gratefully acknowl- Internet: [email protected] edged. Table of Contents Preface 5 Earth Science Enterprise 7 The Earth Observing System 15 EOS Data and Information System (EOSDIS) 27 Data and Information Policy 37 Pathfinder Data Sets 45 Earth Science Information Partners and the Working Prototype-Federation 47 EOS Data Quality: Calibration and Validation 51 Education Programs 53 International Cooperation 57 Interagency Coordination 65 Mission Elements 71 EOS Instruments 89 EOS Interdisciplinary Science Investigations 157 Points-of-Contact 340 Acronyms and Abbreviations 354 Appendix 361 List of Figures 1. -
Global Sea Level Budget 1993-Present
1 1 2 3 4 5 6 7 8 9 10 11 Global Sea Level Budget 1993-Present 12 13 14 WCRP Global Sea Level Budget Group* 15 16 *A full list of authors and their affiliations appears at the end of the paper 17 18 19 20 Revised version 21 23 July 2018 22 23 24 25 26 27 Corresponding author: Anny Cazenave, LEGOS, 18 Avenue Edouard Belin, 31401 Toulouse, 28 Cedex 9, France; [email protected] 29 30 1 2 31 Abstract 32 33 Global mean sea level is an integral of changes occurring in the climate system in response to 34 unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal 35 evolution allows detecting changes (e.g., acceleration) in one or more components. Study of 36 the sea level budget provides constraints on missing or poorly known contributions, such as 37 the unsurveyed deep ocean or the still uncertain land water component. In the context of the 38 World Climate Research Programme Grand Challenge entitled “Regional Sea Level and 39 Coastal Impacts”, an international effort involving the sea level community worldwide has 40 been recently initiated with the objective of assessing the various data sets used to estimate 41 components of the sea level budget during the altimetry era (1993 to present). These data sets 42 are based on the combination of a broad range of space-based and in situ observations, model 43 estimates and algorithms. Evaluating their quality, quantifying uncertainties and identifying 44 sources of discrepancies between component estimates is extremely useful for various 45 applications in climate research. -
Ad-Hoc Regional Coverage Constellations of Cubesats Using Secondary Launches
AD-HOC REGIONAL COVERAGE CONSTELLATIONS OF CUBESATS USING SECONDARY LAUNCHES A Thesis Presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Guy G. Zohar March 2013 © 2013 Guy G. Zohar ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Ad-Hoc Regional Coverage Constellations of CubeSats using Secondary Launches AUTHOR: Guy G. Zohar DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Dr. Jordi Puig-Suari, Professor Cal Poly Aerospace Engineering Department COMMITTEE MEMBER: Dr. Kira J Abercromby, Assistant Professor Cal Poly Aerospace Engineering Department COMMITTEE MEMBER: Daniel J Wait; Lecturer Cal Poly Aerospace Engineering Department COMMITTEE MEMBER: Dr. Gerald L. Shaw; Senior Research Engineer SRI International iii ABSTRACT Ad-Hoc Regional Coverage Constellations of CubeSats Using Secondary Launches Guy G. Zohar As development of CubeSat based architectures increase, methods of deploying constellations of CubeSats are required to increase functionality of future systems. Given their low cost and quickly increasing launch opportunities, large numbers of CubeSats can easily be developed and deployed in orbit. However, as secondary payloads, CubeSats are severely limited in their options for deployment into appropriate constellation geometries. This thesis examines the current methods for deploying cubes and proposes new and efficient geometries using secondary launch opportunities. Due to the current deployment hardware architecture, only the use of different launch opportunities, deployment direction, and deployment timing for individual cubes in a single launch are explored. The deployed constellations are examined for equal separation of Cubes in a single plane and effectiveness of ground coverage of two regions. -
Hal Maring Earth Science Division, Science Mission Directorate November 2013 Atmospheric Composition Research at NASA
Hal Maring Earth Science Division, Science Mission Directorate November 2013 Atmospheric Composition Research at NASA • How is atmospheric composition changing? Carbon Cycle & • What chemical & Ecosystems (CO2, CH4) physical processes are important for air quality, Climate Variability radiative transfer and & Change (atmospheric climate? constituent effects on climate) • What trends in atmospheric Missions constituents, clouds and Atmospheric cloud properties as well as solar radiation are Models Composition driving global climate? • How do atmospheric Water & Energy trace constituents Technology respond to and affect Cycle (atmospheric water vapor) global environmental change? • How will changes in Earth Surface & atmospheric Interior (volcanic composition affect effects on atmosphere) ozone and regional- global climate? Weather (effects on air quality) 2 NASA Operating Missions Denotes International Collaboration LDCM NPP 3 Operating Satellite Status Current Life Mission Launch Phase Design Life (yr) (yr) Expected End Terra 18-Dec-99 Extended 5 13.3 2017 ACRIMSat 20-Dec-99 Extended 5 13.3 2020 Aqua 03-May-02 Extended 5 11.0 2022 SORCE 25-Jan-03 Extended 5 10.2 2015 Aura 15-Jul-04 Extended 5 8.8 2018 Cloudsat 28-Apr-06 Extended 3 7.0 2015 CALIPSO 28-Apr-06 Extended 3 7.0 2016 OCO - 1 24-Feb-09 Launch Failure 2 N/A N/A Glory 04-Mar-11 Launch Failure 3 N/A N/A Suomi-NPP 25-Oct-11 Prime till Oct 2016 5 1.4 not enough data 4 Operating Instrument Status INSTRUMENT INSTRUMENT MISSION STATUS Spectral Irradiance Monitor SIM SORCE Operating in