2019 Gone Fishin’ – Observing List Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
Download This Article in PDF Format
A&A 454, 527–536 (2006) Astronomy DOI: 10.1051/0004-6361:20053468 & c ESO 2006 Astrophysics A search for photometric variability of hydrogen-deficient planetary-nebula nuclei, J. M. González Pérez1,2, J.-E. Solheim2,3, and R. Kamben2 1 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Institut of Physics, University of Tromsø, 9037 Tromsø, Norway 3 Institut of Theoretical Astrophysics, University of Oslo, PO box 1029 Blindern, 0315 Oslo, Norway Received 18 May 2005 / Accepted 9 March 2006 ABSTRACT Aims. We searched for photometric variability in a sample of hot, hydrogen-deficient planetary nebula nuclei (PNNi) with “PG 1159” or “O VI” spectral type, most of them embedded in a bipolar or elliptical planetary nebula envelope (PNe). These characteristics may indicate the presence of a hidden close companion and an evolution affected by episodes of interaction between them. Methods. We obtained time-series photometry from a sample of 11 candidates using the Nordic Optical Telescope (NOT) with the Andalucía Faint Object Spectrograph and Camera (ALFOSC), modified with our own control software to be able to observe in a high- speed multi-windowing mode. The data were reduced on-line with the real time photometry (RTP) code, which allowed us to detect periodic variable stars with small amplitudes from CCD data in real time. We studied the properties of the observed modulation fre- quencies to investigate their nature. Results. We report the first detection of low-amplitude pulsations in the PNNi VV 47, NGC 6852, and Jn 1. In addition, we investi- gated the photometric variability of NGC 246. -
Download And/Or Print One Copy of Any Article(S) in LJMU Research Online to Facilitate Their Private Study Or for Non-Commercial Research
LJMU Research Online Tartaglia, L, Sand, DJ, Valenti, S, Wyatt, S, Anderson, JP, Arcavi, I, Ashall, C, Botticella, MT, Cartier, R, Chen, TW, Cikota, A, Coulter, D, Valle, MD, Foley, RJ, Gal-Yam, A, Galbany, L, Gall, C, Haislip, JB, Harmanen, J, Hosseinzadeh, G, Howell, DA, Hsiao, EY, Inserra, C, Jha, SW, Kankare, E, Kilpatrick, CD, Kouprianov, VV, Kuncarayakti, H, Maccarone, TJ, Maguire, K, Mattila, S, Mazzali, PA, McCully, C, Melandri, A, Morrell, N, Phillips, MM, Pignata, G, Piro, AL, Prentice, SJ, Reichart, DE, Rojas-Bravo, C, Smartt, SJ, Smith, KW, Sollerman, J, Stritzinger, MD, Sullivan, M, Taddia, F and Young, DR The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am http://researchonline.ljmu.ac.uk/8049/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Tartaglia, L, Sand, DJ, Valenti, S, Wyatt, S, Anderson, JP, Arcavi, I, Ashall, C, Botticella, MT, Cartier, R, Chen, TW, Cikota, A, Coulter, D, Valle, MD, Foley, RJ, Gal-Yam, A, Galbany, L, Gall, C, Haislip, JB, Harmanen, J, Hosseinzadeh, G, Howell, DA, Hsiao, EY, Inserra, C, Jha, SW, Kankare, E, LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. -
Arxiv:1210.3628V1 [Astro-Ph.CO] 12 Oct 2012
To be published in the A.J. Preprint typeset using LATEX style emulateapj v. 08/22/09 EXTENDING THE NEARBY GALAXY HERITAGE WITH WISE: FIRST RESULTS FROM THE WISE ENHANCED RESOLUTION GALAXY ATLAS T.H. Jarrett1,2, F. Masci1, C.W. Tsai1, 5, S. Petty3, M. Cluver4, Roberto J. Assef5,12, D. Benford6, A. Blain7, C. Bridge13, E. Donoso14, P. Eisenhardt5, B. Koribalski8, S. Lake3, James D. Neill13, M. Seibert9, K. Sheth10, S. Stanford11, E. Wright3 Accepted for Publication in the Astronomical Journal ABSTRACT The Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at mid-infrared wavelengths 3.4 µm, 4.6 µm, 12 µm and 22 µm. The mission was primarily designed to extract point sources, leaving resolved and extended sources, for the most part, unexplored. Accordingly, we have begun a dedicated WISE Enhanced Resolution Galaxy Atlas (WERGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalogue. Here we demonstrate the first results of the WERGA-project for a sample of 17 galaxies, chosen to be of large angular size, diverse morphology, and covering a range in color, stellar mass and star formation. It includes many well- studied galaxies, such as M 51, M 81, M 87, M 83, M 101, IC 342. Photometry and surface brightness decomposition is carried out after special super-resolution processing, achieving spatial resolutions similar to that of Spitzer -IRAC. The enhanced resolution method is summarized in the first paper of this two part series. In this second work, we present WISE, Spitzer and GALEX photometric and characterization measurements for the sample galaxies, combining the measurements to study the global properties. -
THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M . -
Planetary Nebulae
Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies. -
Central Coast Astronomy Virtual Star Party January 16Th 7Pm Pacific
Central Coast Astronomy Virtual Star Party January 16th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon is 3 days past new, which is really good for star gazing. Be sure to look at the moon tonight with your naked eyes and/or binoculars! Mercury is rising into the western sky and may be a good target near the end of the month. Mars is up high but is shrinking in size as the weeks progress. *Image credit: all astrophotography images are courtesy of NASA unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1. -
The Hot, Warm and Cold Gas in Arp 227 - an Evolving Poor Group R
The hot, warm and cold gas in Arp 227 - an evolving poor group R. Rampazzo, P. Alexander, C. Carignan, M.S. Clemens, H. Cullen, O. Garrido, M. Marcelin, K. Sheth, G. Trinchieri To cite this version: R. Rampazzo, P. Alexander, C. Carignan, M.S. Clemens, H. Cullen, et al.. The hot, warm and cold gas in Arp 227 - an evolving poor group. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2006, 368, pp.851. 10.1111/j.1365- 2966.2006.10179.x. hal-00083833 HAL Id: hal-00083833 https://hal.archives-ouvertes.fr/hal-00083833 Submitted on 13 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mon. Not. R. Astron. Soc. 368, 851–863 (2006) doi:10.1111/j.1365-2966.2006.10179.x The hot, warm and cold gas in Arp 227 – an evolving poor group R. Rampazzo,1 P. Alexander,2 C. Carignan,3 M. S. Clemens,1 H. Cullen,2 O. Garrido,4 M. Marcelin,5 K. Sheth6 and G. Trinchieri7 1Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy 2Astrophysics Group, Cavendish Laboratories, Cambridge CB3 OH3 3Departement´ de physique, Universite´ de Montreal,´ C. -
Cold Gas Accretion in Galaxies
Astron Astrophys Rev (2008) 15:189–223 DOI 10.1007/s00159-008-0010-0 REVIEW ARTICLE Cold gas accretion in galaxies Renzo Sancisi · Filippo Fraternali · Tom Oosterloo · Thijs van der Hulst Received: 28 January 2008 / Published online: 17 April 2008 © The Author(s) 2008 Abstract Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. H I observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by H I cloud complexes, tails and filaments. This suggests ongoing minor mergers and recent arrival of external gas. It may be regarded, therefore, as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M 31. (2) Considerable amounts of extra-planar H I have been found in nearby spiral galaxies. While a large fraction of this gas is undoubtedly produced by galactic fountains, it is likely that a part of it is of extragalactic origin. Also the Milky Way has extra-planar gas complexes: the Intermediate- and High-Velocity Clouds (IVCs and HVCs). (3) Spirals are known to have extended and warped outer layers of H I. It is not clear how these have formed, and how and for how long the warps can R. Sancisi (B) Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] R. -
Warm Ionized Medium.Pdf
IVie. UJc^u-^ -Xo^^hl^ M^ckovx^ (covWVJ i- (o l<-) y SL-ock, io-^.lc^Vv^v A^-3 5"2?>, 2-Z3 \truvi A ^ TV, ^"4? (^ ^& ^^^ . Xr v^^ cU^c^^ £ cuTU. T- •*_. <r**VZ lfcS<B3 _\.fcS*i° ? \ i>\ \ ^-QA vv£W >jirv 3 <QD o ck: o-A- \^ cL^tv^*> c ^O - i. ; &*&>} ;w*.o _- _e^ - \r*e ^ 6t^M^^^ ^ tm t* ^*si**o uor^c- 2.\<^c c^.-vw^— <r*,> « O.C25 V O.ovb <a o— ^^-, LOvH E. K^ ', -»i -^ K^Qj&ff**'^ V"W. £^Q V^ J»S^\ C/V^ C,awvXv^^ >jl!laa.<A To oq ~TW ReM a^<£A* GLg>^ rto^wu^ C*o*«0 ; c^^rf^ , tV*\V^ ^"T^V^- ^^ z/zrr^ Lo^ (VV°'Z' AA o = e.fnA>«-1 » eV% i-'l »t- <T^ <r"° CJL. s"L^ »Wa4^ ^ A-»^f\JCL p-^OOe^ ©aj<oa(2o c^L 4-cJ5t^^ CI) <^©a^ • #0 ^T^a_j f^TU ^e^^cy <-(\eJU.s ~ ^^1 ;^.*pU£w^__ S~\ - 2 ^ /u^ lA erf T^ T^ *occ^fL HlT^^ T- <Lx^«^ 3Xj^ WoT A<S^7 "^v*-*-^^*&b ^vx.cUv-c^CA^ ^TW*n ^^ %^^>^e^s^N.^ . VW^ C^^o) Jh*~** C«^j ,vc Qa-^j—^JT '. 'p'^a-^^ovAJL VQ©£-4>>~-Cc . oJ vTtv &-a^ < 1i s 2T- t^H ^%U= o.ofe cm!3 = Woo K <u^ } ^^r A- uio^ -^ojt-v. Haj&la, OKiK CotOH , TUcis is* puAcT^i To occcaw. (—- TUa_ HeVc^-GV^VU^ CO\f\ at the UR des an distri- ^dium, 5 basic those atures solar *ate is stend- •out I , e.g., )f ion- log Ih. -
Application of the Global Modal Approach to Spiral Galaxies
Astronomy & Astrophysics manuscript no. paper˙1astroph July 20, 2021 (DOI: will be inserted by hand later) Application of the global modal approach to spiral galaxies V. Korchagin1,2, N. Orlova2, N. Kikuchi3, S. M. Miyama4 and A. Moiseev5 1 Yale University, New Haven, Connecticut 06520-8101, USA e-mail: [email protected] 2 Institute of Physics, Stachki 194, Rostov-on-Don, Russia e-mail: [email protected] 3 Earth Observation Research Center, National Space Development Agency of Japan, 1-8-10 Harurau, Chuo-ku, Tokyo 104-6023, Japan e-mail: [email protected] 4 National Astronomical Observatory, Mitaka, Tokyo 181–8588, Japan e-mail: [email protected] 5 Special Astrophysical Observatory of Russian AS, Nizhnij Arkhyz 369167, Russia e-mail: [email protected] received; accepted Abstract. We have tested the applicability of the global modal approach in the density wave theory of spiral structure for a sample of six spiral galaxies: NGC 488, NGC 628, NGC 1566, NGC 2985, NGC 3938 and NGC 6503. The galaxies demonstrate a variety of spiral patterns from the regular open and tightly wound spiral patterns to a multi-armed spiral structure. Using the observed radial distributions of the stellar velocity dispersions and the rotation curves we have constructed equilibrium models for the galactic disks in each galaxy and analyzed the dynamics of the spiral perturbations using linear global modal analysis and nonlinear hydrodynamical simulations. The theory reproduces qualitatively the observed properties of the spiral arms in the galactic disks. Namely the theory predicts observed grand-design spiral structure in the galaxy NGC 1566, the tightly-wound spirals in galaxies NGC 488 and NGC 2985, the two-armed spiral pattern with the third spiral arm in the galaxy NGC 628, and the multi-armed spiral structure in the galaxies NGC 3938 and NGC 6503. -
Torques and Angular Momentum: Counter-Rotation in Galaxies and Ring Galaxies
MNRAS 000, 000{000 (2016) Preprint 9 July 2018 Compiled using MNRAS LATEX style file v3.0 Torques and angular momentum: Counter-rotation in galaxies and ring galaxies N. G. Kantharia1? 1 National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune-411007, India Last updated; in original form ABSTRACT We present an alternate origin scenario to explain the observed phenomena of (1) counter-rotation between different galaxy components and (2) the formation of ring galaxies. We suggest that these are direct consequences of the galaxy being acted upon by a torque which causes a change in its primordial spin angular momentum first observed as changes in the gas kinematics or distribution. We suggest that this torque is exerted by the gravitational force between nearby galaxies. This origin requires the presence of at least one companion galaxy in the vicinity - we find a companion galaxy within 750 kpc for 51/57 counter-rotating galaxies and literature indicates that all ring galaxies have a companion galaxy thus giving observable credence to this origin. Moreover in these 51 galaxies, we find a kinematic offset between stellar and gas heliocentric velocities > 50 kms−1 for several galaxies if the separation between the galaxies < 100 kpc. This, we suggest, indicates a change in the orbital angular momentum of the torqued galaxies. A major difference between the torque origin suggested here and the existing model of gas accretion/galaxy collision, generally used to explain the above two phenomena, is that the torque acts on the matter of the same galaxy whereas in the latter case gas, with different properties, is brought in from outside.