In Vitro Reconstitution of the Molecular Mechanisms of Vesicle Tethering and Membrane Fusion

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Reconstitution of the Molecular Mechanisms of Vesicle Tethering and Membrane Fusion In vitro reconstitution of the molecular mechanisms of vesicle tethering and membrane fusion D I S S E R T A T I O N zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Enrico Daniele Perini Dottore in Biotecnologie Mediche Dottore Magistrale in Biotecnologie Mediche e Medicina Molecolare geboren am 9. Juli 1984 in Milano, Italien Gutachter: Prof. Dr. Bernard Hoflack, Biotechnologisches Zentrum, Dresden Prof. Dr. Marino Zerial, Max Planck Institut für Molekulare Zellbiologie und Genetik, Dresden Eingereicht am: 19. Oktober 2012 Tag der Verteidigung: 21. März 2013 Erklärung entsprechend §5.5 der Promotionsordnung Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigthabe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. Die Dissertation wurde im Zeitraum vom 3/11/2008 bis 19/10/2012 verfasst und von Prof. Dr. Marino Zerial , Max Planck Institut für Molekulare Zellbiologie und Genetik, Dresden betreut. Meine Person betreffend erkläre ich hiermit, dass keine früheren erfolglosen Promotionsverfahren stattgefunden haben. Ich erkenne die Promotionsordnung der Fakultät für Mathematik und Naturwissen- schaften, Technische Universität Dresden an. ______________________________ Date, Signature i Acknowledgements I would like to express my gratitude to Marino Zerial, with whom I share not only the passion for membrane trafficking, but also the one for bikes and football. He has been a fair boss, an excellent biker, an expert football opinionist. I am particularly grateful to him for the freedom he has given me in my work, and for the possibility of having a technician working on my side. This has been helpful not only to “free my hands from the bench” as he once said, but also to learn how to manage and organize the work of other people. I therefore sincerely acknowledge Ramona, who has been working with me for almost three years now. Her technical assistance has been invaluable for many aspects of this thesis. My thanks go to Marcus Jahnel, who has been and will be teaming with me on the optical tweezers. His motivation has been a great inspiration for me. A special mention goes to the members of my thesis advisory committee Bernard Hoflack and Stephen Grill, for their being supportive at all levels. I have to acknowledge Takeshi Ohya who, although only for a few months, introduced me to the harsh experimental work of the in vitro reconstitution. I am also enormously thankful to the people that have been teaching me or helping me on the experimental part: Uenal Coskun, Michal Grzybek, Julio Sampaio, and Christian Klose for the lipid work; David Drechsel, Barbara Borgonovo, and Regis Lemaitre for the protein production and purification; Anna Shevchenko for the Mass Spectrometry; Giovanni Marsico and Thierry Galvez for the image analysis. I am particularly grateful to Sunando Datta, Thierry Galvez, and Claudio Collinet, former members of the Zerial lab, for the scientific discussions that are fuel that spawns passion for this job. To be acknowledged are also all the members of the Zerial lab, but in particular Angelika Giner for her efficiency. I want to thank Marisa McShane and Alex Kalinka whom I asked to read this manuscript, for their critical comments. Finally I want to thank my wife Mara who has been always supporting, especially during the frustrating times of my work. She is like a ray of sunshine between clouds at the end of my day. Mara together with my friends Rashim, René, Alex, Iva, Labi, Paco, Giovanni, Jerome and many others made me have a wonderful time here in Dresden. ii Summary Eukaryotic cells are populated by membrane-enclosed organelles possessing discrete molecular and biochemical properties. Communication between organelles is established by shuttling vesicles that transport proteins and other molecules. Vesicles bud from a donor organelle, travel in the cytosol, and are delivered to a target organelle. All these steps are regulated to ensure that cargoes are transported in a specific and directed manner. The focus of this thesis is on the last part of the journey of a vesicle: the process of vesicle targeting. Two phases can be distinguished in this process: vesicle tethering, defined as the first interaction between the shuttling vesicle and the target membrane, and membrane fusion, which is the mixing of the lipid bilayers and of lumen content. Both phases are mediated by a minimal set of molecular components that include one member of the family of Rab GTPases, a vesicle tethering factor, a phosphoinositide lipid, and four SNAREs together with their regulatory proteins. While many studies have investigated the molecular details of how SNAREs mediate membrane fusion, the process of vesicle tethering is less well understood. The overall scope of my study is to describe the molecular details of vesicle tethering and how they can contribute to the general process of vesicle targeting. To address this question I developed an in vitro assay where I reconstitute in vitro the process of vesicle tethering. This bottom-up approach allows the molecular dissection of cellular processes outside of the complex context of the cell. With this assay I have characterized the vesicle tethering abilities of individual proteins involved in vesicle tethering on early endosomes. I show that a minimal vesicle tethering machinery can be formed by the concomitant interaction between one vesicle tethering factor and a phosphoinositide on the membrane of one vesicle, and by a vesicle tethering factor and a Rab GTPase on the membrane of another vesicle. These results provide an explanation for how vesicle tethering contributes to the specificity of vesicle targeting and to the directionality of cargo transport. In particular, specificity of vesicle targeting can arise from the specific interaction between a Rab and a vesicle tethering factor that is an effector of the Rab. I show that the asymmetric distribution of binding sites in the structure of a vesicle iii tethering factor can generate a heterotypic vesicle tethering reaction that can account for the directionality of cargo transport. The outcome of this thesis emphasizes the role that vesicle tethering factors have in the self-organized system of vesicle trafficking of eukaryotic cells. To identify novel Rab5 effectors implicated in vesicle tethering, I carried out a Rab5-chromatography on mouse liver. Amongst other novel Rab5 effectors, I identify a multi-subunit vesicle tethering complex that was not previously characterized in mammalian cells. The complex, named CORVET, is conserved from yeast to humans and plays a major role in cell physiology since its removal causes embryonic death in mice. I define its subunits composition, determine its subcellular localization, and elucidate its role in cargo transport. This finding reconciles a disharmony between findings in mammals and yeast regarding the molecular machinery responsible for the conversion from early to late endosomes. I also show that the newly identified subunit of the mammalian CORVET complex is the only Rab5 effector to localize to autophagosomes. I hypothesise that it is through the CORVET complex that Rab5 is involved in the formation and maturation of autophagosomes. iv Table of contents 1. Preface – Epistemology..................................................................... 1 2. Introduction ....................................................................................... 2 2.1 Part I – Membrane trafficking ............................................................................... 2 2.1.1 Origin of the eukaryotic endomembrane system..................................................2 2.1.2 Principles of membrane trafficking........................................................................4 2.1.3 Forces involved in membrane fusion.....................................................................6 2.2 Part II: Cellular machineries for vesicle targeting ............................................. 8 2.2.1 Rab GTPases specify compartment identity..........................................................8 2.2.2 SNARE proteins mediate vesicle fusion ..............................................................14 2.2.3 SM proteins facilitate SNARE complex assembly...............................................17 2.2.4 Phosphoinositides localize proteins to membranes............................................18 2.2.5 Vesicle tethering factors bind vesicles to the acceptor compartment................21 2.2.6 Current model of vesicle targeting.......................................................................23 2.3 Part III – Experimental methods and models to study vesicle targeting...... 25 2.3.1 In vitro approaches to study vesicle fusion.........................................................25 2.3.2 Early endosomes as a model for membrane fusion ............................................26 2.3.3 Machineries for early endosomes tethering in yeast ..........................................27 2.3.4 Machineries for early endosomes tethering in mammals ..................................30 2.4 Part IV - Molecular mechanics of the transition from vesicle tethering to membrane fusion...........................................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • High-Throughput Discovery of Novel Developmental Phenotypes
    High-throughput discovery of novel developmental phenotypes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dickinson, M. E., A. M. Flenniken, X. Ji, L. Teboul, M. D. Wong, J. K. White, T. F. Meehan, et al. 2016. “High-throughput discovery of novel developmental phenotypes.” Nature 537 (7621): 508-514. doi:10.1038/nature19356. http://dx.doi.org/10.1038/nature19356. Published Version doi:10.1038/nature19356 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32071918 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 March 14. Published in final edited form as: Nature. 2016 September 22; 537(7621): 508–514. doi:10.1038/nature19356. High-throughput discovery of novel developmental phenotypes A full list of authors and affiliations appears at the end of the article. Abstract Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms #Corresponding author: [email protected].
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells
    Published OnlineFirst May 6, 2011; DOI: 10.1158/1535-7163.MCT-10-1028 Molecular Cancer Therapeutic Discovery Therapeutics Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells Chunyu Zhang1, Abdel G. Elkahloun2, Hongling Liao3, Shannon Delaney1, Barbara Saber1, Betsy Morrow1, George C. Prendergast4, M. Christine Hollander1, Joell J. Gills1, and Phillip A. Dennis1 Abstract Activation of the serine/threonine kinase Akt contributes to the formation, maintenance, and therapeutic resistance of cancer, which is driving development of compounds that inhibit Akt. Phosphatidylinositol ether lipid analogues (PIA) are analogues of the products of phosphoinositide-3-kinase (PI3K) that inhibit Akt activation, translocation, and the proliferation of a broad spectrum of cancer cell types. To gain insight into the mechanism of PIAs, time-dependent transcriptional profiling of five active PIAs and the PI3K inhibitor LY294002 (LY) was conducted in non–small cell lung carcinoma cells using high-density oligonucleotide arrays. Gene ontology analysis revealed that genes involved in apoptosis, wounding response, and angiogen- esis were upregulated by PIAs, whereas genes involved in DNA replication, repair, and mitosis were suppressed. Genes that exhibited early differential expression were partitioned into three groups; those induced by PIAs only (DUSP1, KLF6, CENTD2, BHLHB2, and PREX1), those commonly induced by PIAs and LY (TRIB1, KLF2, RHOB, and CDKN1A), and those commonly suppressed by PIAs and LY (IGFBP3, PCNA, PRIM1, MCM3, and HSPA1B). Increased expression of the tumor suppressors RHOB (RhoB), KLF6 (COPEB), and CDKN1A (p21Cip1/Waf1) was validated as an Akt-independent effect that contributed to PIA-induced cytotoxicity. Despite some overlap with LY, active PIAs have a distinct expression signature that contributes to their enhanced cytotoxicity.
    [Show full text]
  • 1 Title 1 Loss of PABPC1 Is Compensated by Elevated PABPC4
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430165; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Title 2 Loss of PABPC1 is compensated by elevated PABPC4 and correlates with transcriptome 3 changes 4 5 Jingwei Xie1, 2, Xiaoyu Wei1, Yu Chen1 6 7 1 Department of Biochemistry and Groupe de recherche axé sur la structure des 8 protéines, McGill University, Montreal, Quebec H3G 0B1, Canada 9 10 2 To whom correspondence should be addressed: Dept. of Biochemistry, McGill 11 University, Montreal, QC H3G 0B1, Canada. E-mail: [email protected]. 12 13 14 15 Abstract 16 Cytoplasmic poly(A) binding protein (PABP) is an essential translation factor that binds to 17 the 3' tail of mRNAs to promote translation and regulate mRNA stability. PABPC1 is the 18 most abundant of several PABP isoforms that exist in mammals. Here, we used the 19 CRISPR/Cas genome editing system to shift the isoform composition in HEK293 cells. 20 Disruption of PABPC1 elevated PABPC4 levels. Transcriptome analysis revealed that the 21 shift in the dominant PABP isoform was correlated with changes in key transcriptional 22 regulators. This study provides insight into understanding the role of PABP isoforms in 23 development and differentiation. 24 Keywords 25 PABPC1, PABPC4, c-Myc 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430165; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • RAB9 Antibody (R32125)
    RAB9 Antibody (R32125) Catalog No. Formulation Size R32125 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide UniProt P51151 Applications Western blot : 0.1-0.5ug/ml Limitations This RAB9 antibody is available for research use only. Western blot testing of 1) rat brain, 2) mouse brain, 3) human HeLa and 4) human MCF7 lysate with RAB9 antibody. Expected/observed molecular weight: ~23 kDa. Description Ras-related protein Rab-9A, also called RAB9, is a protein that in humans is encoded by the RAB9A gene. This gene is mapped to Xp22.2. RAB9 has been localized to components of the endocytic/exocytic pathway and has been implicated in recycling of membrane receptors. It has been found that downregulation of RAB9A gene expression in HeLa cells induced severe cell vacuolation. RAB9A GTPase is directly bound by TIP47 in its active, GTP-bound conformation. Moreover, RAB9A increases the affinity of TIP47 for its cargo. What’s more, this gene may involved in the transport of proteins between the endosomes and the trans Golgi network. RAB9A has been shown to interact with RABEPK and TIP47. Application Notes Optimal dilution of the RAB9 antibody should be determined by the researcher. Immunogen Amino acids KDATNVAAAFEEAVRRVLATEDRSDHLIQTDTVNLHRK of human RAB9A were used as the immunogen for the RAB9 antibody. Storage After reconstitution, the RAB9 antibody can be stored for up to one month at 4oC.
    [Show full text]
  • Study of Human Regulatory Mutations Associated with Pancreatic Diseases
    Study of human regulatory mutations associated with pancreatic diseases by humanizing the zebrafish genome. Inês Maria Batista da Costa Mestrado em Biologia Celular e Molecular Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP) Orientador José Bessa, PhD, Instituto de Investigação e Inovação em Saúde (i3S) Coorientador Chiara Perrod, PhD, Instituto de Investigação e Inovação em Saúde (i3S) 2018/19 This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Todas as correções agreement No 680156 – ZPR). determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ Study of human regulatory mutations associated with pancreatic diseases by humanizing the zebrafish genome. Inês Maria Batista da Costa Mestrado em Biologia Celular e Molecular Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP) Orientador José Bessa, PhD, Instituto de Investigação e Inovação em Saúde (i3S) Coorientador Chiara Perrod, PhD, Instituto de Investigação e Inovação em Saúde (i3S) 2018/19 FCUP i Study of human regulatory mutations associated with pancreatic diseases by humanizing the zebrafish genome. Inês Maria Batista da Costa, BSc Mestrado em Biologia Celular e Molecular Departamento de Biologia Faculdade de Ciências da Universidade do Porto (FCUP) Rua do Campo Alegre s/n 4169-007 Porto, Portugal [email protected] / [email protected] Tel.: +351 917457361 Supervisor
    [Show full text]
  • Laser Capture Microdissection of Human Pancreatic Islets Reveals Novel Eqtls Associated with Type 2 Diabetes
    Original Article Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes Amna Khamis 1,2,11, Mickaël Canouil 2,11, Afshan Siddiq 1, Hutokshi Crouch 1, Mario Falchi 1, Manon von Bulow 3, Florian Ehehalt 4,5,6, Lorella Marselli 7, Marius Distler 4,5,6, Daniela Richter 5,6, Jürgen Weitz 4,5,6, Krister Bokvist 8, Ioannis Xenarios 9, Bernard Thorens 10, Anke M. Schulte 3, Mark Ibberson 9, Amelie Bonnefond 2, Piero Marchetti 7, Michele Solimena 5,6, Philippe Froguel 1,2,* ABSTRACT Objective: Genome wide association studies (GWAS) for type 2 diabetes (T2D) have identified genetic loci that often localise in non-coding regions of the genome, suggesting gene regulation effects. We combined genetic and transcriptomic analysis from human islets obtained from brain-dead organ donors or surgical patients to detect expression quantitative trait loci (eQTLs) and shed light into the regulatory mechanisms of these genes. Methods: Pancreatic islets were isolated either by laser capture microdissection (LCM) from surgical specimens of 103 metabolically phe- notyped pancreatectomized patients (PPP) or by collagenase digestion of pancreas from 100 brain-dead organ donors (OD). Genotyping (> 8.7 million single nucleotide polymorphisms) and expression (> 47,000 transcripts and splice variants) analyses were combined to generate cis- eQTLs. Results: After applying genome-wide false discovery rate significance thresholds, we identified 1,173 and 1,021 eQTLs in samples of OD and PPP, e respectively. Among the strongest eQTLs shared between OD and PPP were CHURC1 (OD p-value¼1.71 Â 10-24;PPPp-value ¼ 3.64 Â 10 24)and À À PSPH (OD p-value ¼ 3.92 Â 10 26;PPPp-value ¼ 3.64 Â 10 24).
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Diana Maria De Figueiredo Pinto Marcadores Moleculares Para A
    Universidade de Aveiro Departamento de Química 2015 Diana Maria de Marcadores moleculares para a Nefropatia Figueiredo Pinto Diabética Molecular markers for Diabetic Nephropathy Universidade de Aveiro Departamento de Química 2015 Diana Maria de Marcadores moleculares para a Nefropatia Diabética Figueiredo Pinto Molecular markers for Diabetic Nephropathy Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Bioquímica, ramo de Bioquímica Clínica, realizada sob a orientação científica da Doutora Maria Conceição Venâncio Egas, investigadora do Centro de Neurociências e Biologia Celular da Universidade de Coimbra, e da Doutora Rita Maria Pinho Ferreira, professora auxiliar do Departamento de Química da Universidade de Aveiro. Este trabalho foi efetuado no âmbito do programa COMPETE, através do projeto DoIT – Desenvolvimento e Operacionalização da Investigação de Translação, ref: FCOMP-01-0202-FEDER- 013853. o júri presidente Prof. Francisco Manuel Lemos Amado professor associado do Departamento de Química da Universidade de Aveiro Doutora Maria do Rosário Pires Maia Neves Almeida investigadora do Centro de Neurociências e Biologia Celular da Universidade de Coimbra Doutora Maria Conceição Venâncio Egas investigadora do Centro de Neurociências e Biologia Celular da Universidade de Coimbra Agradecimentos Em primeiro lugar quero expressar o meu agradecimento à Doutora Conceição Egas, orientadora desta dissertação, pelo seu apoio, palavras de incentivo e disponibilidade demonstrada em todas as fases que levaram à concretização do presente trabalho. Obrigada pelo saber transmitido, que tanto contribuiu para elevar os meus conhecimentos científicos, assim como pela oportunidade de integrar o seu grupo de investigação. O seu apoio e sugestões foram determinantes para a realização deste estudo.
    [Show full text]
  • A Trafficome-Wide Rnai Screen Reveals Deployment of Early and Late Secretory Host Proteins and the Entire Late Endo-/Lysosomal V
    bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A trafficome-wide RNAi screen reveals deployment of early and late 2 secretory host proteins and the entire late endo-/lysosomal vesicle fusion 3 machinery by intracellular Salmonella 4 5 Alexander Kehl1,4, Vera Göser1, Tatjana Reuter1, Viktoria Liss1, Maximilian Franke1, 6 Christopher John1, Christian P. Richter2, Jörg Deiwick1 and Michael Hensel1, 7 8 1Division of Microbiology, University of Osnabrück, Osnabrück, Germany; 2Division of Biophysics, University 9 of Osnabrück, Osnabrück, Germany, 3CellNanOs – Center for Cellular Nanoanalytics, Fachbereich 10 Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany; 4current address: Institute for Hygiene, 11 University of Münster, Münster, Germany 12 13 Running title: Host factors for SIF formation 14 Keywords: siRNA knockdown, live cell imaging, Salmonella-containing vacuole, Salmonella- 15 induced filaments 16 17 Address for correspondence: 18 Alexander Kehl 19 Institute for Hygiene 20 University of Münster 21 Robert-Koch-Str. 4148149 Münster, Germany 22 Tel.: +49(0)251/83-55233 23 E-mail: [email protected] 24 25 or bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]