C-044 Sp.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

C-044 Sp.Pdf 1 2 3 4 5 6 DOE RUN PERU LA OROY A DIVISION Doe Run Peru Report to the Minstr of Energy and Mines, 1998 Report to the Ministry of Energy and Mines on PAMA and, request for approval of changes in schedule, December 1998. EXECUTIVE SUMMARY Durig its first year of ownership, Doe Run Peru undeltook studies of all of the obligations and developed a plan for meeting those obligations. This report is intended to brief the Mistry on what has been accomplished with regard to the P and Doe Run Peru plan and current schedule of implementation. There are 16 projects outlined in the PAM which are reviewed here. Because the projects numbers 6, 7, 10, and 11 are an interrelated group of waste water issues, we wil review them as a group. The actual P AM related expenditures incurred by Doe Run Peru for the fiscal year 1998 have been approximately U$3 8 millon compared with US$ 2 7 millon included in the approved PAM - 1 - Doe Run Peru Report to the Mistr of Energy and Mines, 1998 PAM A Project #1 NEW SULFURIC ACID PLANTS. INTRODUCTION This project' s mai objectives are to mitigate the adverse effects of Sulfur Dioxide (S02) and pariculates contained in the stack gas emissions ftom the Doe Run Peru La Oroya Metallurgical complex operations, and to comply with emission regulations and air quality guidelines Misterial Resolution No. 315- EM/.estalished by M. , in accordance with Anexo 1 and 3 of TECHNICAL DESCRITION The original P AM proposes two double contact double absorption sulfuric acid plants in , Lead, and Zinc smelting conjunction with substantial process modifications of the Copper products using circuits to fi 89. 35% of the sulfur intake as sulfuric acid or sulfur contained in by- the following technologies, Teniente converter for Cu, Ausmelt technology for Pb and Lurgi technology for Zo.. The solution proposed by Doe Run Peru is generally the same as the P AMA with some techncal 1998: diferences which are further explained in the Fluor Danel Master Plan Report Sept One single contact, single absorption Sulfuric Acid plant with separate gas cleaning systems for , maitaining adequate the various smelting operations is preferred because of space requirements gas strength by mig gases, and economies of size and reducing duplication. The off gases of the oxy-fue1 copper reverberatory furnace are not considered suitable for sulfric acid recovery at this time. A new fluid bed copper roaster is proposed along with two larger Pierce Smith converters with Teniente gas tight hoods to achieve adequate sulfr capture in the copper circuit. An EI converter is not considered necessary at this time unless market conditions or concentrates supplies dictate diferently. It is proposed that gas recirculation in the existing Lead Sinter Plant is the preferred method to upgrade the off gases for treatment in the acid plant. The dross furnace and the lead blast furnace off gases would continue to be cleaned in the existing cottrell system. This wil result in fixation of 78% ofthe sulfr in the Lead circuit. At this time it is the opinion of Doe Run Peru that oxygen smelting of concentrates and secondar lead materials is unproven technology but is deserving of thorough study at a future - 2- Doe Run Peru Report to the Mistr of Energy and Mines, 1998 study. The date. $0. 5mm has been budgeted for the years 2000 and 2001 for a feasibilty AMA. outcome of this study would directly impact the design of the new acid plants and the P The stack testing shows particulate emission concentrations wil comply with the R.M. No. 315- 96 Anexos 2 through 5 however a combination of the additional gas cleaning associated with the new sulfuric acid plants and improved cleanng in the existing cottrell syste due to greatly particulate and metal reduced volumes and dust loading, wil significantly further reduce emissions ftom the plant. 1998 PROJECT ACTIVITY Doe Run Peru commssioned Fluor Daniel to produce a Ten Year Process Master Plan on April 1998, working closely with Doe Run Peru personnel, this report was to include the processing and the Zinc refinery. The Final Report was of SOz gases ftom the Copper, Lead smelters submitted in September, the work relating to the Pama Project 1 consisting of Establishig primary metals production goals Review of proven existing technologies, world wide Review of operations of the present smelter Varous metallurgical investigations , and off gases Varous samplig and testing program for metals and impurities, slags SOz gases, employing a combination of Establishing a compliant sulfur balance including existing, improved, and new processes Establishing a cost and budget schedule for the projects Reporting the findings and reco endations in the 10 year Master plan report 1998 PROJECT EXPENSES 130 932 AF-030- RFS-9101 Master Plan (Amount used by FD) 829 AFE-030- DRP Costs 000 Estimated Costs December 98 - 3 - Doe Run Peru Report to the Ministry of Energy and Mines, 1998 160 761 I Total CAPITAL COST ESTIMATE AND PROJECT SCHEDULE The estimated capital cost of the revised solution is US$ 104.6 millon to recover (fix) a total of 502.5 tonnes per day of a projected total of 591.7 tonnes per day of new sulfur intake. Project expenditures would begi in the year 2002 and completion is scheduled for the end of year 2006. - 4- Doe Run Peru Report to the Mistr of Energy and Mies, 1998 PAMA PROJECT #2 ELIMINATION OF FUGITIVE GASES FROM THE COKE PLANT OBJECTIVES The project objective is to eliminate the emissions to the atmosphere resulting ftom the incomplete distilation of coal in the coking process. At the time the P AM was approved, the 3 of gases per day cokig cycle was approxiately 18 hours, and emits 23 800 m DESCRIPTION In the La Oroya metallurgical complex, metallurgical coke is produced ftom bituminous coal in Curant Knowless furnaces. This coke is used as a fuel in the Lead Smelter sinter plant and blast furnaces. During the coking process, the coal is subjected to temperatures of approximately 1350 , in a free oxygen environment. The volatile compounds gasifY and are then treated in gas collectors and scrubbers, where, with the help of water, they are cooled and separated ftom the tar. The cleaed gases are then mied with pre-heated air and recycled as fuel to fire the coking furnace burners. Due to production increases in the lead smelter, the coke production has been increased to satisfY the feed requirements ofthe sinter plant and blast furnaces by reducing the coking cycle from 24 to 18 hours. This time is insuffcient for the complete combustion of the volatile material contaed in the bitumious coal. Consequently, when the coke is discharged afer an 18 hour coking cycle, there is a signficant emission of these gases to the environment. BACKGROUN Five alternatives were analyzed in the P AM: - Operate the furnaces with coking cycles of 24 hours. It is proposed to mitigate the fugitive , and emissions problem by operating the furnaces with coking cycles of 24 to 26 hours overcome the production defecit with imported coke. The anual coal and coke purchasing needs would be: Purchase 41 000 t of metalurgical cokig coal to produce 27 000 t of coke. Purchase 8 200 t of metalurgical coke from other coke producers. - 5 - Doe Run Peru Report to the Mistr of Energy and Mies, 1998 - Installation of ventilation systems (SVEL) The installation of ventilation systems to 3 of the gases emited daily when operating with 20 hour coking capture the 23 800 m cycles would require a major investment in equipment and accessories. The principal problems with this alternative are the high permanent maintenace cost of the equipment and the limited space avaiable in the coke plant. - Substitute totaly the purchase of coal with metallurgical coke. - Encourage a coke producer to locate near La Oroya. - Build a state of the art coke plant (totally enclosed vertical design) without by-products recuperation. AB a result of the evaluations, a decision was made to pursue the first alternative, to operate 24 hour cycles and to purchase 8 200 tonnes of metallurgical coke per year. ACTUAL SITUATION Since May 24 1998, a total of 8 800 tonnes of metallurgical coke has been imported. Of the total st of October 5% was coke consumed through the 31 , 1998, 20 5% was imported and 79 produced ftom coal imported from Bradford U. Increasing the coking cycle time (to an average of 22 hours) has improved the coke quality. The fixed carbon has increased ftom 86 7% to 88 , the net coke recovery has increased from 9% to 68 7% and the gross coke recovery has increased from 79 7% to 83 1%. Additionally, gas emissions to the environment have been reduced substantially to 6 100 m / day. th of AB can be appreciated, since the project was implemented on the 24 May 1998 approxiately 59% of the cokig cycles were extended to 22 hours. Cycles of 23 and 24 hours wil be developed progressively, in such way that it does not affect the production oflead bullon. The purchase of a 10 000 m.1. lot of metallurgical coke is foreseen for 1999. It is expected to arve in January 1999. 1998 PROJECT EXPENSES lead The expenses for the coke purchase are being charged to the operating account of the smelter. - 6- Doe Run Peru Report to the Mistry of Energy and Mies, 1998 CAPITAL COST ESTIMATE The origial P AM did not include the investment required for this project. PROJECT SCHEDULE th 1998. It is estimated that by January 1999 The 22 hour coking cycle was initiated on May 24 100% of the coke production wil be obtained using a 24 hour coking cycle and fugitive gas emissions wil be elimnated.
Recommended publications
  • Some Problems and Potentials of the Study of Cupellation
    Some problems and potentials of the study of cupellation remains: the case of post-medieval Montbéliard, France Marcos Martinon-Torres, Nicolas Thomas, Thilo Rehren, Aude Mongiatti To cite this version: Marcos Martinon-Torres, Nicolas Thomas, Thilo Rehren, Aude Mongiatti. Some problems and po- tentials of the study of cupellation remains: the case of post-medieval Montbéliard, France. Archeo- sciences, revue d’Archéométrie, G.M.P.C.A./Presses universitaires de Rennes, 2008, pp.59-70. halshs- 00599974 HAL Id: halshs-00599974 https://halshs.archives-ouvertes.fr/halshs-00599974 Submitted on 19 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some problems and potentials of the study of cupellation remains: the case of early modern Montbéliard, France Problèmes et perspectives à partir de l’étude des vestiges archéologiques issus de la coupellation : l’exemple du site de Montbéliard (France) Marcos Martinón-Torres*, Nicolas Thomas**, Thilo Rehren*, and Aude Mongiatti* Abstract: Bone-ash cupels are increasingly identified in medieval and later archaeological contexts related to the refining of noble metals in alchemy, assaying, jewellery or coin minting. These small finds may provide information on metal refining activities, the technical knowledge of different craftspeople, and the versatility of laboratory practices, which often differed from the standard protocols recorded in metallurgical treatises.
    [Show full text]
  • Effects of Varied Process Parameters on Froth Flotation Efficiency: a Case Study of Itakpe Iron Ore
    Nigerian Journal of Technology (NIJOTECH) Vol. 39, No. 3, July 2020, pp. 807 – 815 Copyright© Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com http://dx.doi.org/10.4314/njt.v39i3.21 EFFECTS OF VARIED PROCESS PARAMETERS ON FROTH FLOTATION EFFICIENCY: A CASE STUDY OF ITAKPE IRON ORE S. Akande1, E. O. Ajaka2, O. O. Alabi3 and T. A. Olatunji4,* 1, 2, DEPARTMENT OF MINING ENGINEERING, FEDERAL UNIV. OF TECHNOLOGY, AKURE, ONDO STATE, NIGERIA 3, 4, DEPT. OF MET. & MATERIALS ENGINEERING, FEDERAL UNIV. OF TECHNOLOGY, AKURE, ONDO STATE, NIGERIA Email addresses: 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] ABSTRACT The dire need for Itakpe iron ore concentrates of appreciable iron content meets for smelting operation necessitated this study. Core samples of the iron ore sourced from Itakpe, Kogi State, Nigeria were prepared for petrological analysis followed by chemical and particle size analyses. Froth flotation was done using different collectors at varying particle sizes and pH values. Characterization studies carried out revealed that Itakpe iron ore is a lean ore assaying 36.18% Fe2O3 and contains predominantly quartz, sillimanite, and haematite. Its liberation size lies favourably at 75 µm. Processing the ore by froth flotation yielded appreciable enrichment. Optimal recovery (~92%) was achieved using potassium amyl xanthate (PAX) at pH 11 for fine feed sizes (<125 µm) yielding iron concentrate assaying 67.66% Fe2O3. Thus, processing at this set-of- conditions is recommended for the industrial production of more enriched Itakpe iron ore concentrates.
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Corrosion of Refractories in Lead Smelting Reactors
    CORROSION OF REFRACTORIES IN LEAD SMELTING REACTORS By LINGXUAN WEI B.Sc, Wuhan University of Science & Technology, China 1986 M.Sc, University of Science & Technology Beijing, China 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF METALS AND MATERIALS ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH .UMB1A DECEMBER 2000 ©Lingxuan Wei, ZO0O UBC Special Collections - Thesis Authorisation Form http://www.library.ubc.ca/spcoll/thesauth.html In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. v 3 The University of British Columbia Vancouver, Canada Date lof 1 3/19/01 2:36 PM ABSTRACT Corrosion of refractories by slag is a complex phenomenon which, depending on the particular system, involves many processes, such as chemical wear (corrosion) and physical or mechanical wear (erosion), which may act synergistically. No single model can explain all cases of corrosion nor can it explain all corrosion mechanisms of a particular refractory in different environments, but the knowledge of the microstructure combined with the chemistry of the systems are necessary to understand the corrosion mechanism of a refractory material.
    [Show full text]
  • Table of Contents
    Table of Contents Preface ........................................... xi Chapter 1. Physical Extraction Operations .................... 1 1.1. Solid-solid and solid-fluid separation operations .............. 1 1.1.1. Flotation ................................... 1 1.1.2. Settling under gravity ........................... 3 1.1.3. Centrifugation ................................ 3 1.1.4. Filtration ................................... 4 1.2. Separation operations of the components of a fluid phase ........ 5 1.2.1. Condensation ................................ 5 1.2.2. Vacuum distillation ............................. 5 1.2.3. Liquation ................................... 6 1.2.4. Distillation .................................. 8 1.2.5. Extractive distillation ........................... 11 1.3. Bibliography ................................... 12 Chapter 2. Hydrometallurgical Operations .................... 15 2.1. Leaching and precipitation operations .................... 15 2.1.1. Leaching and precipitation reactors ................... 15 2.1.2. Continuous stirred tank reactor (CSTR) ................ 18 2.1.3. Models of leaching and precipitation operations ........... 20 2.1.4. Particle-size distribution (PSD) functions ............... 21 2.2. Reactor models based on particle residence time distribution functions ........................................ 24 2.2.1. Performance equations for a single CSTR ............... 24 2.2.2. Performance equations for multistage CSTRs ............. 28 2.3. Reactor models based on the population balance
    [Show full text]
  • Hg on Periodic Table
    Hg On Periodic Table Cameron never westernize any stairs carnalize externally, is Thomas unlovely and muddled enough? gloomingPeridermal backstage, Aubert regales: uncontrolled he globe-trots and coequal. his costrels contentiously and impassively. Martie buck her How is left over the california, on hg could melt quickly by electronic strain gauge sensors have very fine flakes of Mercury than the chemical element with symbol Hg and atomic no 0 Mercury was a transition metal A transition metal is feast of the elements found between Groups. Mercury news a naturally occurring element found an air, corps and soil. This website under most abundant elements into minamata bay, or out that immediately contained in a product can cause damage, as a highly poisonous. Starship like the plane? Mercury compound thimerosal is used to our wonder leave you. It has been shown significantly more about a periodic table is liquid form alloys, switches like from countries are kidneys damage a periodic table live in terms are there is. Mercury chemical symbol Hg is an liquid metallic element that historically was used in many medicines but has now restricted due for legitimate concerns about. Cinnabar was rubbed together with policy in paper clay dish. Glad you liked this one, Jordan! Some forms of tame are particularly potent poisons. Why take some elements on the Periodic Table represented by letters that have only clear connection to their names? Mif signatures in antiseptics, facts about being replaced by where did you think about chemical sedimentation may also. Doesn't the periodic table define it Not got is overcome an element.
    [Show full text]
  • Effects of Copper on the Cupellation of Silver
    Scholars' Mine Bachelors Theses Student Theses and Dissertations 1908 Effects of copper on the cupellation of silver Charles A. Baker Miles Sedivy Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Baker, Charles A. and Sedivy, Miles, "Effects of copper on the cupellation of silver" (1908). Bachelors Theses. 240. https://scholarsmine.mst.edu/bachelors_theses/240 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. bl.':~M J1IJ!(JWI.'.~1.. ""'~tlION T ,~~. ][VI'ECTS Ol~ COPP}1~H OU TIm CUPlilJJJAT Ion OF SI J~VER • Charles A. Baker Miles Sedivy. MSM til~ t~lCrlt. \lYj,M.cmloi\l (1) ::.:.. :.. : -~..-. : ...... "' .. " : .. ~ --- The ob~iect of this work is to rind--t-he effec't o~ coppa- in - .. = : : .... : - - .. tbe cupellation of silver. - .. Our Method of attack was: 1st. To find the effect of varying the amount of copper with constant lead and constant temperature. 2nd. Effect in cupel"' ation of varying the temperature and the lead in the presence of a constant amount of copper. 3rd. To detecnine the rate at which the copper is removed during cupellation. R.W.Lodge in his book on Assaying states,"If a lead button contains much copper,CuO will be formed with the PbO and this,when absorbed by the cupel,seems to take silver with it into the cupe1.· 2 ~ a....
    [Show full text]
  • Effects of Flux Materials on the Fire Assay of Oxide Gold Ores
    Effects of Flux Materials on the Fire Assay of Oxide Gold Ores Haluk Ozden Basaran1, Ahmet Turan1,2*, Onuralp Yucel1 1Istanbul Technical University; Chemical Metallurgical Faculty, Department of Metallurgical and Materials Engineering; Maslak, Istanbul, 34469, Turkey 2Yalova University, Yalova Community College, 77100, Yalova, Turkey Abstract: Fire assay is the most accurate and widely used method for the determination of gold, silver and the PGM contents of ores and other solid materials. The technique has three steps; first step is the smelting of charge mixtures which consist of ground ore samples, acidic and basic fluxes, lead oxide and a carbon source. Isolation of precious metals which are collected in metallic lead phase as a result of the reduction of PbO is the second step and it is called cupellation. Obtained precious metals are analyzed by using wet analysis methods such as AAS (Atomic absorption spectrometry) and ICP (Inductively coupled plasma spectrometry) at the last stage. The aim of this study is the investigation of the effects of the acidic flux materials for the fire assay of oxide gold ores. Acidic fluxes, sodium borax decahydrate (Borax, Na2B4O7·10H2O) and quartz (SiO2), were individually and together added to the charge mixtures which contain oxide gold ore samples, sodium carbonate (Na2CO3) and lead oxide with flour as a carbon source. Acidic flux additions were performed in different amounts. Smelting stage of the experiments was conducted at 1100 °C in fire clay crucibles for a reaction time of 60 minutes by using a chamber furnace. After the cupellation step in the chamber furnace, gold containing beads were obtained.
    [Show full text]
  • Identifying Materials, Recipes and Choices: Some Suggestions for the Study of Archaeological Cupels
    IDENTIFYING MATERIALS, RECIPES AND CHOICES: SOME SUGGESTIONS FOR THE STUDY OF ARCHAEOLOGICAL CUPELS Marcos Martinón-Torres – UCL Institute of Archaeology, London, United Kingdom Thilo Rehren – UCL Institute of Archaeology, London, United Kingdom Nicolas Thomas – INRAP and Université Paris I, Panthéon-Sorbonne, France Aude Mongiatti– UCL Institute of Archaeology, London, United Kingdom ABSTRACT Used cupels are increasingly identified in archaeological assemblages related to coin minting, alchemy, assaying and goldsmithing across the world. However, notwithstanding some valuable studies, the informative potential of cupellation remains is not always being exploited in full. Here we present a review of past and ongoing research on cupels, involving analytical studies, experiments and historical enquiry, and suggest some strategies for more productive future work. The archaeological case studies discussed are medieval and later assemblages from France (Pymont and Montbéliard) and Austria (Oberstockstall and Kapfenberg), which have been analysed using optical microscopy, SEM-EDS, ED-XRF, WD-EPMA and ICP-AES. Using suitable analytical and data processing methodologies, it is possible to obtain an insight into the metallurgical processes carried out in cupels, and the knowledge and skill of the craftspeople involved. Furthermore, we can also discern the specific raw materials used for manufacturing the cupels themselves, including varying mixtures of bone and wood ash. The variety of cupel-making recipes raises questions as to the versatility of craftspeople and the material properties and performance of different cupels. Can we assess the efficiency of different cupels? Are these variations the results of different technological traditions, saving needs or peculiar perceptions of matter? KEYWORDS Lead, silver, cupellation, fire assay, technological choice, bone ash, wood ash INTRODUCTION Cupellation is a high-temperature oxidising reaction aimed at refining noble metals.
    [Show full text]
  • A Study on Reduction of Copper Smelting Slag by Carbon for Recycling Into Metal Values and Cement Raw Material
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 doi:10.20944/preprints202001.0177.v1 Peer-reviewed version available at Sustainability 2020, 12, 1421; doi:10.3390/su12041421 Article A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material Urtnasan Erdenebold and Jei-Pil Wang* Department of Metallurgical Engineering, School of Engineering, Pukyong National University, Busan 608- 739, Korea * Correspondence: [email protected]; Tel,: +82-51-629-6341 Abstract: Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag is generated annually in Korea. Oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe2O3), silica (SiO2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). Main oxides in copper slag, which iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since the copper smelting slag contains high content of iron, and copper and zinc. Common applications of copper smelting slag are the value added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc., as well as the some studies have attempted to recover metal values from copper slag. This research was intended to recovery Fe-Cu alloy, raw material of zinc and produce reformed slag like a blast furnace slag for blast furnace slag cement from copper slag. As a results, it was confirmed that reduction smelting by carbon at temperatures above 1400°С is possible to recover pig iron containing copper from copper smelting slag, and CaO additives in the reduction smelting assist to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag.
    [Show full text]
  • Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route
    metals Review Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route Ender Keskinkilic Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey; [email protected]; Tel.: +90-533-302-9510 Received: 16 July 2019; Accepted: 1 September 2019; Published: 3 September 2019 Abstract: The treatment of laterites has been a research hotspot in extractive metallurgy over the past decades. Industrially, the pyrometallurgical treatment of laterites is mostly accomplished with a well-established method, namely, the rotary kiln–electric arc furnace (RKEF) process, which includes three main operations—calcination, prereduction, and smelting—followed by further refining for the removal of impurities from the raw ferro-nickel. As indicated in many studies of the RKEF process, the major downside of this method is its high energy consumption. Efforts have been made to lower this consumption. Furthermore, several new processes have been proposed. Among these, low-grade ferro-nickel production is regarded as the most widely and industrially used process after traditional RKEF operation. Although not widespread, other alternative processes of industrial scale have been generated since the start of the millennium. Recently, certain innovative processes have been tested either in the laboratory or at pilot-scale. In this paper, a literature review related to the smelting of laterites is made, and an emphasis on new processes and some examples of new developments in the RKEF process are presented. Keywords: laterite; smelting; RKEF process; low-grade ferro-nickel 1. Introduction According to a review published by Diaz et al., oxide-type nickel ores accounted for 64% of land-based nickel ores, but more than 60% of nickel production was based on the matte smelting of sulfide ores in 1988 [1].
    [Show full text]
  • Integral Management of Arsenical Sludge, Treatment and Recovery of By-Products of Acid Waters from Smelter Plants
    MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS ULRIKE BROSCHEK, CECILIA VIDAL, LUIS BRAVO and GILDA ZUÑIGA Environmental Program, Fundación Chile Parque Antonio Rabat Sur 6165, Vitacura, Santiago, Chile; E-mail: [email protected] ABSTRACT Currently, the copper mining industry produces high amounts of sulfuric acid with low purity and high concentrations of arsenic and other metals. Most of these acid waters are neutralized in the copper smelting plants by using lime to raise the pH from 1 to 12 generating high amounts of arsenical sludge that has to be disposed on safety landfills because of its high toxicity. This has forced the mining companies to pay large sums of money for the disposal of significant volume of solid waste. Each copper smelting plant produces in average during this specific process more than 18,000 tons of arsenical sludge yearly, spending on the treatment and disposal stage more than US 2.8 million dollars per year where a 70 % of this cost corresponds to the disposal costs of the solid waste [1,2,3]. Different technologies for treating these acid wastewaters have been developed and patented worldwide. However, these treatments have focused on obtaining the separation of the arsenic from the effluent through physical-chemical precipitation using different basic components and cations that reacts with the contaminants and then precipitates in the solution [4]. These technologies have not been able to solve the problem because they are expensive, complex, not always efficient and still generates high amounts of arsenical sludge requiring high disposal costs; hence, mining companies have not implement them.
    [Show full text]