Density Dependent Groundwater Flow at the Island of Texel, the Netherlands

Total Page:16

File Type:pdf, Size:1020Kb

Density Dependent Groundwater Flow at the Island of Texel, the Netherlands DENSITY DEPENDENT GROUNDWATER FLOW AT THE ISLAND OF TEXEL, THE NETHERLANDS Gualbert H.P. OUDE ESSINK University of Utrecht; Inst. of Earth Sciences; Centre of Hydrology (ICHU); Dept. of Geophysics; P.O. Box 80021; 3508 TA Utrecht; The Netherlands; [email protected] ABSTRACT Salt water intrusion is investigated at Texel, which is a Wadden island in the northern part of The Netherlands with a surface area of approximately 130 km2. In this coastal groundwater system of Quatenary deposits, salinisation of the upper layers is taking place. At present, brackish water already occurs close to the surface of the low-lying polder areas at the eastern part of the island. Freshwater occurs up to –50 m M.S.L. in the sand-dune area at the western part. Density dependent groundwater flow in this system is modelled in three-dimensions by MOCDENS3D. The model is dimensioned 20 km by 29 km by 302 m depth, whereas about 125,000 active elements and one million particles simulate groundwater flow and salt transport during 500 years. The salinity in the top layer as well as the salt load at the surface of the polders will increase substantially during the next centuries. In addition, a relative sea level rise of 0.75 meter per century definitely intensifies the salinisation process, causing a further increase in salt load in the polders. As such, the increased salinisation of the top layer will affect the surface water system from an ecological as well as a socio-economical point of view. INTRODUCTION The lowest phreatic water levels can be measured in the so-called Prins Texel is the biggest Dutch Wadden Hendrik polder, with levels as low as island in the North Sea. It is often –2.0 m N.A.P.1 In addition, a dune called Holland in a nutshell (figure area called De Hooge Berg, which is 1a). The population of the island is situated in the southern part of the about 13,000, whereas in island in the polder area summertime, the number of people Dijkmanshuizen, has a phreatic can be as high as 60,000. A sand- water level of some +4.75 m N.A.P. dune area is present at the western The nature reserve ‘De Slufter’ in the side of the island, with phreatic water northwestern part of the island is a levels up to 4 metres above mean tidal salt-marsh. sea level. At the eastern side, four 1 low-lying polder areas with controlled N.A.P. stands for Normaal Amsterdams Peil. It water levels are present (figure 1b). roughly equals Mean Sea Level and is the reference level in The Netherlands. m Phreatic water level [m]: k < -4 m M.S.L. 0 . 0 -2.50 -4 - -2 - e -1.50 e 5 -2 - 0 nz . 2 e - -1.50 d - 0 - 2 Island of d -1.25 a 0 Texel . 2 -10 W s 5 -1.25 - - 10-20 -1.00 5 . element De Slufter -1.00 7 - 20-40 - ve -0.75 cti >40 0 . 1. Eijerland -0.75 0 ina a - 1 - -0.50 Se 5 North Sea . rth -0.50 2 - 1 0.00 Amsterdam - No 2. Waal en Burg/ 0 0.00 . Het Noorden - 5 0.50 1 - 0.50 Den Haag 5 lowest point: . 3. Dijkmanshuizen/ - 7 1.00 1 - -6.7 m M.S.L. a De Schans Rotterdam e 1.00 0 - ar . 1.50 0 De Hooge Berg e 2 Germany - n sea 1.50 u - d 5 . - 4. Prins Hendrik 2.00 2 d 2 ts - n polder 2.00 a - S 0 3.00 . 5 2 Belgium - 3.00 ive elemen - 4.00 5 . 7 inact 2 4.00 - - 0 25 50 75 100 km 6.50 highest point: 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 km a. +322 m M.S.L. b. Figure 1: a. map of The Netherlands: position of the island of Texel and ground surface of the Netherlands; b. map of the island of Texel: position of the four polder areas and sand-dune area as well as phreatic water level in the top aquifer at –0.75 m N.A.P. First, the computer code, which is by the MODFLOW module used to simulate variable density (McDonald and Harbaugh, 1988; flow in this groundwater system, is Harbaugh and McDonald, 1996). summarised. Second, the model of The advection-dispersion equation, Texel will be designed, based on which simulates the solute transport, subsoil parameters, model is solved by the MOC module using parameters and boundary the method of characteristics conditions. The numerical results of (Konikow and Bredehoeft, 1978; two scenarios of sea level rise are Konikow et al., 1996). Advective discussed in the next section, and transport of solutes is modelled by finally, some conclusions are drawn. means of the method of particle tracking and dispersive transport by means of the finite difference CHARACTERISTICS OF THE method. A so-called freshwater head NUMERICAL MODEL If is introduced to take into account differences in density in the MOCDENS3D (Oude Essink, 1998), calculation of the head: which is the three-dimensional p computer code MOC3D (Konikow et I f z (1) al.,1996) but adapted for density U g differences, is used to simulate the f transient groundwater system as it where If is the freshwater head [L], occurs on the island of Texel. The Uf is the reference density, usually groundwater flow equation is solved the density of fresh groundwater at reference chloride concentration C0 convergence criterion for the [M L-3], p is the pressure [M L-1 T-2], groundwater flow equation and z is the elevation head [L]. See (freshwater head) is equal to 10-5 m. Oude Essink (1998, 1999, 2000) for The total simulation time is 500 a detailed description of the years. adaptation of MODFLOW to density differences. A linear equation of The groundwater system consists of state couples groundwater flow and permeable aquifers, intersected by solute transport: loamy aquitards and aquitards of U (C) U [1 E (C C )] (2) clayey and peat composite. The f C 0 system can be divided into six main where U(C) is the density of -3 subsystems. The top subsystem groundwater [M L ], C is the chloride (from 0 m to –22 m N.A.P.) and the -3 concentration [M L ], and EC is the second subsystem (from –22 m to – volumetric concentration expansion 62 m N.A.P.) have hydraulic gradient [L3 M-1]. MOCDENS3D conductivities kx of approximately 5 takes into account hydrodynamic m/d and 30 m/d, respectively. The dispersion. For a conservative solute third subsystem is an aquitard of 10 as chloride, the molecular diffusion m thickness and has hydraulic for porous media is taken equal to conductivities k which varies from -9 2 x 10 m /s. 0.01 to 1 m/d. The fourth subsystem (from –72 m to –102 m N.A.P.) and For the numerical computations the fifth subsystem (from –102 m to – following parameters are applied. 202 m N.A.P.) have hydraulic The groundwater system consists of conductivities kx of some 30 m/d and a 3D grid of 20.0 km by 29.0 km by only 2 m/d, respectively. The lowest 302 m depth. Each element is 250 m subsystem, number six, has a by 250 m long. In vertical direction hydraulic conductivity kx of the thickness of the elements varies approximately 10 m/d to 30 m/d. from 1.5 m at the top layer to 20 m Note that the first, second and fourth over the deepest ten layers. The grid subsystems are intersected by contains 213440 elements: nx=80, aquitards. ny=116, nz=23, where ni denotes the number of elements in the i direction. The following subsoil parameters are Due to the rugged coastline of the assumed: the anisotropy ratio kz/kx system and the irregular shape of equals 0.4 for all layers. The the impervious hydrogeologic base, effective porosity ne is 0.35. The only 58.8 % of the elements longitudinal dispersivity DL is set (125,554 out of 213,440) is equal to 2 m, while the ratio of considered as active elements. Each transversal to longitudinal element contains eight particles to dispersivity is 0.1. Note that no solve the advection term of the numerical 'Peclet' problems occurred solute transport equation. As such, during the simulations (Oude Essink some one million particles are used and Boekelman, 1996). On the initially. The flow time step 't to applied time scale, the specific recalculate the groundwater flow -1 storativity Ss [L ] can be set to zero. equation equals one year. The The bottom of the system as well as corresponding density of that saline the vertical sea-side borders are groundwater equals 1024.1 kg/m3. considered to be no-flux boundaries. At the top of the system, the mean DISCUSSION sea level is –0.10 m N.A.P. and is constant in time in case of no sea Numerical simulation of the period level rise2. A number of low-lying 1990-2000 AD areas is present in the system with a total area of approximately 124 km2. Density dependent groundwater flow The phreatic water level in the polder is not only determined by head areas differs significantly, varying differences but also by density from –2.05 m to +4.75 m N.A.P. (De differences. Variable density Hooge Berg) (figure 1b), and is kept groundwater flow simulated with a constant in time.
Recommended publications
  • Wieringen, Een Boeiende Stuwwal
    Grondboor en Hamer, jrg. 42, no. 3/4, p. 88-96, 10 fig., juni/aug. 1988 WIERINGEN, EEN BOEIENDE STUWWAL Cees Laban * Er zijn weinig plaatsen in ons land waar, (ZAGWUN 1973). Het zich vanuit Scandinavië naast interessante geologische verschijnselen zo• naar het zuiden uitbreidende landijs zette hier veel geschiedenis, cultuur en landschap bewaard niet alleen plaatselijk hoeveelheden glaciale sedi• is gebleven als op het voormalige eiland Wierin- menten als keileem af, de Formatie van Drente gen. Pas in 1926 werd het "eiland af". In dat (ZAGWIJN 1961), het vervormde tevens de on• jaar is het door een 2.5 kilometer lange dijk door dergrond. Op de Veluwe zijn hoge stuwwallen het Amsteldiep, na vele eeuwen, opnieuw ver• gevormd door grote ijslobben die van de rand bonden met het vaste land. Toch is er na de van het landijs uitvloeiden en zich hierbij diep in "verlossing" uit het isolement niet eens zo veel het landschap ingroeven. De randen van de bek• veranderd. Zelfs zijn er stukken van de beroem• kens, die hierdoor ontstonden, zijn zowel zijde• de wierdijken bewaard gebleven, want ondanks lings als frontaal omhoog gestuwd. Ten noorden het feit dat de Wieringers bovenop het beste ma• van Arnhem, bij de Posbank bereikt de stuwwal teriaal voor de bouw van dijken woonden, een hoogte van maar liefst ruim 100 meter! In maakten ze ook gebruik van zeegras dat op de het oprukken van het landijs over ons land kun• kust aanspoelde. nen twee fasen worden onderscheiden waarbij bekkens en stuwwallen werden gevormd (fig.3). Tegenwoordig ligt Wieringen alleen nog vrij Het afsmelten van het landijs ging vermoedelijk aan de noordzijde, voor het grootste deel be• eveneens in een aantal fasen.
    [Show full text]
  • 2007 UNEP-WCMC Global List of Transboundary Protected Areas Lysenko I., Besançon C., Savy C
    2007 UNEP-WCMC Global List of Transboundary Protected Areas Lysenko I., Besançon C., Savy C. No TBPA Name Country Protected Areas Sitecode Category PA Size, km 2 TBPA Area, km 2 Ellesmere/Greenland 1 Canada Quttinirpaaq 300093 II 38148.00 Transboundary Complex Greenland Hochstetter Forland 67910 RAMSAR 1848.20 Kilen 67911 RAMSAR 512.80 North-East Greenland 2065 MAB-BR 972000.00 North-East Greenland 650 II 972000.00 1,008,470.17 2 Canada Ivvavik 100672 II 10170.00 Old Crow Flats 101594 IV 7697.47 Vuntut 100673 II 4400.00 United States Arctic 2904 IV 72843.42 Arctic 35361 Ia 32374.98 Yukon Flats 10543 IV 34925.13 146,824.27 Alaska-Yukon-British Columbia 3 Canada Atlin 4178 II 2326.95 Borderlands Atlin 65094 II 384.45 Chilkoot Trail Nhp 167269 Unset 122.65 Kluane 612 II 22015.00 Kluane Wildlife 18707 VI 6450.00 Kluane/Wrangell-St Elias/Glacier Bay/Tatshenshini-Alsek 12200 WHC 31595.00 Tatshenshini-Alsek 67406 Ib 9470.26 United States Admiralty Island 21243 Ib 3803.76 Chilkat 68395 II 24.46 Chilkat Bald Eagle 68396 II 198.38 Glacier Bay 1010 II 13045.50 Glacier Bay 22485 V 233.85 Glacier Bay 35382 Ib 10784.27 Glacier Bay-Admiralty Island Biosphere Reserve 11591 MAB-BR 15150.15 Kluane/Wrangell-St Elias/Glacier Bay/Tatshenshini-Alsek 2018 WHC 66796.48 Kootznoowoo 101220 Ib 3868.24 Malaspina Glacier 21555 III 3878.40 Mendenhall River 306286 Unset 14.57 Misty Fiords 21247 Ib 8675.10 Misty Fjords 13041 IV 4622.75 Point Bridge 68394 II 11.64 Russell Fiord 21249 Ib 1411.15 Stikine-LeConte 21252 Ib 1816.75 Tetlin 2956 IV 2833.07 Tongass 13038 VI 67404.09 Global List of Transboundary Protected Areas ©2007 UNEP-WCMC 1 of 78 No TBPA Name Country Protected Areas Sitecode Category PA Size, km 2 TBPA Area, km 2 Tracy Arm-Fords Terror 21254 Ib 2643.43 Wrangell-St Elias 1005 II 33820.14 Wrangell-St Elias 35387 Ib 36740.24 Wrangell-St.
    [Show full text]
  • Routes Over De Waddenzee
    5a 2020 Routes over de Waddenzee 7 5 6 8 DELFZIJL 4 G RONINGEN 3 LEEUWARDEN WINSCHOTEN 2 DRACHTEN SNEEK A SSEN 1 DEN HELDER E MMEN Inhoud Inleiding 3 Aanvullende informatie 4 5 1 Den Oever – Oudeschild – Den Helder 9 5 2 Kornwerderzand – Harlingen 13 5 3 Harlingen – Noordzee 15 5 4 Vlieland – Terschelling 17 5 5 Ameland 19 5 6 Lauwersoog – Noordzee 21 5 7 Lauwersoog – Schiermonnikoog – Eems 23 5 8 Delfzijl 25 Colofon 26 Het auteursrecht op het materiaal van ‘Varen doe je Samen!’ ligt bij de Convenantpartners die bij dit project betrokken zijn. Overname van illustraties en/of teksten is uitsluitend toegestaan na schriftelijke toestemming van de Stichting Waterrecreatie Nederland, www waterrecreatienederland nl 2 Voorwoord Het bevorderen van de veiligheid voor beroeps- en recreatievaart op dezelfde vaarweg. Dat is kortweg het doel van het project ‘Varen doe je Samen!’. In het kader van dit project zijn ‘knooppunten’ op vaarwegen beschreven. Plaatsen waar beroepsvaart en recreatievaart elkaar ontmoeten en waar een gevaarlijke situatie kan ontstaan. Per regio krijgt u aanbevelingen hoe u deze drukke punten op het vaarwater vlot en veilig kunt passeren. De weergegeven kaarten zijn niet geschikt voor navigatiedoeleinden. Dat klinkt wat tegenstrijdig voor aanbevolen routes, maar hiermee is bedoeld dat de kaarten een aanvulling zijn op de officiële waterkaarten. Gebruik aan boord altijd de meest recente kaarten uit de 1800-serie en de ANWB-Wateralmanak. Neem in dit vaargebied ook de getijtafels en stroomatlassen (HP 33 Waterstanden en stromen) van de Dienst der Hydrografie mee. Op getijdenwater is de meest actuele informatie onmisbaar voor veilige navigatie.
    [Show full text]
  • On the Beach Nature Explained
    BOOK REVIEWS land disappeared under water, including viewing it as an indifferently designed work On the beach the legendary Rungholt, east of the of other purpose. The author's skills lie in present island of Pellworm. A second Donald J.P. Swift the collecting and ordering of information. Mandrdnke occurred on 11 October, Chapters that attempt to take an overview, 1694. But the main and partially enduring such as those on natural preconditions and The Morphodynamlcs of the Wadden land losses, resulting in the formation of barrier-island development, are not Sea. By Jurgen Ehlers. A.A. Balkema: Jade Bay, the Dollart and the Zuider Zee, altogether successful, although they are 1988. Pp.397. DM 185, £52. 75. did not occur as the result of single events, always interesting. On the other hand, the but gradually, through many smaller relentless procession of maps, aerial THE Wadden Sea is the intertidal zone of stages. These land losses were due to a photographs and, above all, photograph the German Bight of the North Sea. lack of technical infrastructure capable of after photograph at ground level, has a Varying in width from 10 to 50 km, it is an protecting the vast forelands from the hypnotic effect. Somewhere through the expanse of tidal channels, flats, inlets, destructive effects of later surges in later 393 figures, these vistas of misty dunes, flood and ebb deltas, barrier islands and decades. Land reclamation occurred, but beaches and marshes, and of tidal flats estuaries that extends from Den Helder only through projects that lasted for extending to the horizon, seep into the in the Netherlands to Blavandshuk in centuries.
    [Show full text]
  • Status, Threats and Conservation of Birds in the German Wadden Sea
    Status, threats and conservation of birds in the German Wadden Sea Technical Report Impressum – Legal notice © 2010, NABU-Bundesverband Naturschutzbund Deutschland (NABU) e.V. www.NABU.de Charitéstraße 3 D-10117 Berlin Tel. +49 (0)30.28 49 84-0 Fax +49 (0)30.28 49 84-20 00 [email protected] Text: Hermann Hötker, Stefan Schrader, Phillip Schwemmer, Nadine Oberdiek, Jan Blew Language editing: Richard Evans, Solveigh Lass-Evans Edited by: Stefan Schrader, Melanie Ossenkop Design: Christine Kuchem (www.ck-grafik-design.de) Printed by: Druckhaus Berlin-Mitte, Berlin, Germany EMAS certified, printed on 100 % recycled paper, certified environmentally friendly under the German „Blue Angel“ scheme. First edition 03/2010 Available from: NABU Natur Shop, Am Eisenwerk 13, 30519 Hannover, Germany, Tel. +49 (0)5 11.2 15 71 11, Fax +49 (0)5 11.1 23 83 14, [email protected] or at www.NABU.de/Shop Cost: 2.50 Euro per copy plus postage and packing payable by invoice. Item number 5215 Picture credits: Cover picture: M. Stock; small pictures from left to right: F. Derer, S. Schrader, M. Schäf. Status, threats and conservation of birds in the German Wadden Sea 1 Introduction .................................................................................................................................. 4 Technical Report 2 The German Wadden Sea as habitat for birds .......................................................................... 5 2.1 General description of the German Wadden Sea area .....................................................................................5
    [Show full text]
  • 14-687 AS Policies and Management Wadden Sea Final Draft Clean V2
    Alien species in the Dutch Wadden Sea: policies and management T.M. van der Have B. van den Boogaard R. Lensink D. Poszig C.J.M. Philippart Alien Species in the Dutch Wadden Sea: Policies and Management T.M. van der Havea B. van den Boogaarda R. Lensinka D. Poszigb C.J.M. Philippartb a b NIOZ, P.O.Box 59, 1790 AB Den Burg (Texel), The Netherlands Commissioned by: Common Wadden Sea Secretariat 29 June 2015 Report nr 15-126 Status: Final report Report nr.: 15-126 Date of publication: 29 June 2015 Title: Alien species in the Dutch Wadden Sea: policies and management Authors: dr. T.M. van der Have ir. B. van den Boogaard drs. ing. R. Lensink D. Poszig Dipl. Biol., M.A. dr. C.J.M. Philippart Photo credits cover page: Pacific oyster Crassostrea gigas, mantle cavity with tentacles, Joost Bergsma / Bureau Waardenburg Number of pages incl. appendices: 123 Project nr: 14-687 Project manager: dr. T.M. van der Have Name & address client: Common Wadden Sea Secretariat, dr. F. de Jong, Virchowstrasse 1, Wilhelmshaven, Germany Signed for publication: Team Manager Bureau Waardenburg bv drs. A. Bak Signature: Bureau Waardenburg bv is not liable for any resulting damage, nor for damage, which results from applying results of work or other data obtained from Bureau Waardenburg bv; client indemnifies Bureau Waardenburg bv against third- party liability in relation to these applications. © Bureau Waardenburg bv / Common Wadden Sea Secretariat This report is produced at the request of the client mentioned above and is his property. All rights reserved.
    [Show full text]
  • Understanding the Interaction of an Ebb-Tidal Delta with Its Adjacent Coast
    Netherlands Journal of Geosciences — Geologie en Mijnbouw |96 – 4 | 293–317 | 2017 doi:10.1017/njg.2017.34 Dynamic preservation of Texel Inlet, the Netherlands: understanding the interaction of an ebb-tidal delta with its adjacent coast Edwin P.L. Elias1,∗ & Ad J.F. van der Spek2 1 Deltares USA, 8601 Georgia Ave., Silver Spring, MD 20910, USA 2 Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands ∗ Corresponding author: Email: [email protected] Manuscript received: 6 March 2017, accepted: 26 September 2017 Abstract Tidal inlets and the associated ebb-tidal deltas can significantly impact the coastal sediment budget due to their ability to store or release large quantities of sand. Nearly 300 million m3 (mcm) of sediments were eroded from Texel Inlet’s ebb-tidal delta and the adjacent coasts following the closure of the Zuiderzee in 1932. This erosion continues even today as a net loss of 77 mcm was observed between 1986 and 2015. To compensate, over 30 mcm of sand has been placed on the adjacent coastlines since 1990, making maintenance of these beaches the most intensive of the entire Dutch coastal system. Highly frequent and detailed observations of both the hydrodynamics and morphodynamics of Texel Inlet have resulted in a unique dataset of this largest inlet of the Wadden Sea, providing an opportunity to investigate inlet sediment dynamics under the influence of anthropogenic pressure. By linking detailed measurements of bathymetric change to direct observations of processes we were able to unravel the various components that have contributed to the supply of sediment to the basin, and develop a four-stage conceptual model describing the multi-decadal adaptation of the ebb-tidal delta.
    [Show full text]
  • Salfar Baseline Report
    WP3: Baseline Study Chapter 4: Mapping salinization intensity and risks in the North Sea Region Domna Tzemi1, Gary Bosworth1, Eric Ruto1, Iain Gould1 1 University of Lincoln, UK Contents 4 Introduction 4.1 Projected sea level rise in Europe 4.2 A review of previous salinization maps 4.3 The Extent of Irrigation 4.4 Case study regions SALFAR Project 1 4. Introduction While salinization is one of the major threats to agriculture worldwide, it is unevenly spread with the biggest impacts observed in arid and semi-arid zones as well as around low-lying delta areas. Each scenario brings a particular vulnerability. Arid regions are home to precarious communities for whom any further worsening of soils could lead to starvation. Delta regions, by contrast, traditionally have highly fertile soils, large populations and abundant food which has seen them develop international economies, supported by major transport infrastructure. However, fresh ground water resources have been intensively exploited for domestic, agricultural and industrial purposes (Van Weert et al., 2009), therefore, future fresh water exploitation is expected to increase due to population and economic growth, agricultural intensification and loss of surface water resources due to contamination (Ranjan et al., 2006). In this chapter we begin with a review of previous attempts to map salinization globally, and specifically in the European context. We then drill down to case study regions in the North Sea Region to examine more closely the of degrees of salinization and danger of degradation of farmland for coastal areas. Although the data is incomplete and not always comparable at the European level, local case studies are included to present examples of the nature of the threats across different regions facing different types of salinization threats.
    [Show full text]
  • Relationship Analyses Dutch
    Bot. March 95-109 Acta. Need. 37(1), 1988, p. Relationship analyses of the flora of the Dutch, German and Danish Wadden Islands *, J.H. Ietswaart R. Bosch* and E.J. Weeda+ *Biologisch Laboratorium, Vrije Universiteit, De Boelelaan 1087,1081 HV Amsterdamand \Rijksherharium, Postbus 9514, 2300 RA Leiden, The Netherlands SUMMARY Flora and vegetation of the Dutch, Germanand Danish Wadden Islands were compared with the aid of similarity computer programs. The Wadden District, often described as an exclusively Dutch phytogeographical entity, was found to cover the whole area. From a comparison with the floras ofthe neighbouring Dune and Half District and the more distant Kempen District, it was concluded that the Wadden District forms a distinct unity by its relatively large internal cohesion. Within the Wadden District three groups of islands could be discerned: a western group including the Dutch islands and Borkum, a of islands of central group German and a northern group partly German, partly Danish islands. Nordstrand, Pellworm and Skallingen showed similaritieswith the last Texel usually only slight group. was clustered sometimes with the northern group. Ecological differentiationchiefly determines the presence or absence of species in the islands, and thus the degree of (dis)similarity of theirfloras and vegetation types. Surface, position, soil structure and man mainly contribute to this ecological differentiation.Local climate plays a minor role. Key-words: flora, relationship analyses, vegetation, Wadden Islands. INTRODUCTION Van Soest (1924,1925,1929) introduceda phytogeographical divisionofThe Netherlands, that holds eleven districts: Wadden, Dune, Haff, Drenthe, Gelderland, Flanders, Subcentral European, Loess, Chalk, Kempen and Fluviatile District. Although he considered this division to be provisional, it has not been basically altered since.
    [Show full text]
  • Waddeneilanden Vlieland Terschelling Ameland Sc H Iermonn I Koog
    De Waddeneilanden Vlieland Terschelling Ameland Sc h iermonn i koog Bodemkaart van Schaal I : 50 000 Nederland uitgave 1986 Stichting voor Bodemkartering Bladindeling van de BODEMKAART van NEDERLAND verschenen kaartbladen, eerste uitgave verschenen kaartbladen, herziene uitgave deze kaartbladen Bodemkaart van Nederland Schaal l : 50 000 Toelichting bij de kaarten van de Waddeneilanden Vlieland Terschelling Ameland Schiermonnikoog door M.F. van Oosten Wageningen 1986 Stichting voor Bodemkartering Projectleider: Dr. Ir. M.F. van Oosten Medewerker: P.C. Kuijer Wetenschappelijke begeleiding en coördinatie: Ir. G.G.L. Steur Druk: Van der Wiel B. V., Arnhem Presentatie: Pudoc, Wageningen Copyright: Stichting voor Bodemkartering, Wageningen, 1986 ISBN: 90 220 0885 l Inhoud 1 Inleiding 9 l. l Opzet van de toelichting 9 1.2 Het gekarteerde gebied 9 1.3 Opname en gebruikte gegevens 9 2 Geologie 11 2.1 Geologische opbouw 11 2.2 Duinvorming 12 3 Historische geografie en bewoningsgeschiedenis 17 3.1 Vlieland 17 3.2 Terschelling 20 3.3 Ameland 29 3.4 Schiermonnikoog 35 4 Vegetatie en bodem 39 4. l Enkele bodemkundige gegevens 39 4.1.1 Textuur 39 4.1.2 Kalkgehalte 41 4.1.3 Het grondwater 42 4.1.4 Rijping van zeekleigronden 47 4.2 Vegetatie en bodemontwikkeling 48 4.2.1 Xe ros e r ie 49 4.2.2 Hygroserie 54 4.2.5 Haloserie 60 5 Bodemkundig-landschappelijke beschrijving 67 5.1 Vlieland 67 5.7.7 De Vliehors, de Kroon 's Polders en de Meeuwenduinen 67 5.7.2 Het middendeel van het eiland 68 5.7.3 Het oostelijke deel van het eiland 69 5.2 Terschelling 69 5.2.7 Het poldergebied 69 5.2.2 Het gebied ten westen van de oude kern 70 5.2.3 De oude kern van het eiland 71 5.2.4 ~De Groede en de Boschplaat 72 5.3 Ameland 74 5.
    [Show full text]
  • Introduction
    Introduction Arnold Boon Project coördinator Hydrogen Texel island • Islander SME input & involvement • Realistic and practical “islander” approach • External regional/national EU support • Plotting the strategic sustainable course together Frisian (Wadden) islands, The Netherlands Sustainable energy ambition Texel • Self sufficient in renewable energy by 2030 • Stimulate energy innovations “Test it on Texel” • Difficult to reach targets I • Largest Dutch Frisian island / 7 villages • In Unesco World Heritage Frisian (Wadden) Sea • Dunes National Park & Nature 2000 area’s • 160 km² / 13584 inhabitants / 6552 Households • Industries: Tourism, Agriculture and Fisheries • Appr. 2 Million visitors/yr (2,037,714 report 2016) • Ferry transport: 1.008.532 cars (2019) • 3.055,182 pass (2019) Regional Energy Strategy (Dutch Goverment) RES-Renewable Energy Location planning Municipality /Island heat vison/agenda Sustainability program Frisian islands • Intensivy Cross county cooperation • Prevent Grid congestion >>Planning • Learning by doing • TEST Blue print smart energy pilots • Copy on other island • Large scale nationaly Cooperation, Budget & planning INVEST IN PLANNING AHEAD • Local Energy scenarios • Local stakholders • Energy balance • INSULATION AND HEAT SOLUTION • SMART ISLAND GRIDS • LOCAL RENEWABLE ENERGY MIX • Local energy storage • Test it on islands • Apply it nationally on large scale RES-Texel (political) challenges Community initiatives get the job done! Energy neutral by island(er) power 1st Energy Coop in NL Support community
    [Show full text]
  • Terschelling Ameland Schiermonnikoog Vlieland Texel
    Delatbijdebeschermingsopgavevoordehelekustzeeligthoog:verbeteren Op9juniheefthetOverlegorgaanvanhetNationaalParkop Zeehonden rustenop vandekinderkamerfunctievoorvissen,terugkrijgenvaneenrijken SchiermonnikoogeennieuwBIP+(beheereninrichtingsplan) debijebdroogvallende gevarieerdbodemlevenmetondermeerschelpenbanken.Schelpdieren vastgesteld.AllebelangrijkemaatregelenvoorNatura2000,zoals plateninzee,zoalsop wordenopgedokenengegetendoorzwartezee-eenden eneiders.Deze begrazing vanduinen,zijninditplanopgenomen. deRichelbijVlieland. zee-eendenprofiterenzomeevanhetherstelvandezeebodem.Het terugdringenvanverstorendeeffectendoorvisserijendoordeuitvoering vanzandsuppletieszijndebelangrijkstesleutelsvoorditherstel. Naasthetnaaldbosbij hetdorpOost- Schiermonnikoog Vlielandwordtnat natuurlijkbos ontwikkeld. Ameland Opdeeilandengroep Rottumheeftdenatuur, indevormvanwateren wind,vrijspel.Hierdoor Terschelling kunnenduinen en kweldersontstaan,maar ookweerverdwijnen doorafslagof Kwelders verstuiving.Doordeze ongestoordedynamiekis Vanuitdehistorie langsde eropdelangeretermijn gegroeidmedegebruik, vastelandskusthebbente lijdenonderverruigingvande ruimtevoordiverse OpTexelwordtgewerkt zoalsrecreatiefstaand Dekolonie vegetatie.Beweidingmetvee duintypen. aanongestoorde wantvisserij,het stekenvan grotesterns iseengoedemaatregelom ontwikkelingvan jonge zee-aas enhetrapenvan opdeFûgelpôlle dezeontwikkelingtegente duinen doormiddel Vlieland schelpdierenvooreigengebruik, blijftbestaandoor gaanentezorgenvoormeer vanzonering.Hier blijftbinnenhetkadervande zoneringvande
    [Show full text]