WO 2016/026978 Al 25 February 2016 (25.02.2016) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/026978 Al 25 February 2016 (25.02.2016) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/026978 Al 25 February 2016 (25.02.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every Λ 61Κ 31/12 (2006.01) A61K 31/41 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/165 (2006.01) A61P 25/30 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/216 (2006.01) A61P 25/32 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/381 (2006.01) G01N 33/50 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/404' (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/EP20 15/069304 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 24 August 2015 (24.08.2015) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 14306304.8 22 August 2014 (22.08.2014) EP TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicants: UNIVERSITE NICE SOPHIA ANTIPOLIS LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, [FR/FR]; 28 avenue Valrose, 06103 Nice Cedex 2 (FR). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, CENTRE NATIONAL DE LA RECHERCHE SCIEN- GW, KM, ML, MR, NE, SN, TD, TG). TIFIQUE [FR/FR]; 3 rue Michel Ange, 75016 Paris (FR). INSERM (INSTITUT NATIONAL DE LA SANTE ET Published: DE LA RECHERCHE MEDIC ALE) [FR/FR]; 101 rue — with international search report (Art. 21(3)) de Tolbiac, 7501 3 Paris (FR). — before the expiration of the time limit for amending the (72) Inventors: SANDOZ, Guillaume; 8 avenue des Palmiers, claims and to be republished in the event of receipt of F-06160 Juan les Pins (FR). COMOGLIO, Yannick; amendments (Rule 48.2(h)) Quartier Plan Gast, 06450 Roquebilliere (FR). (74) Agent: CABINET BECKER ET ASSOCIES; 25, rue Louis le Grand, 75002 Paris (FR). 00 l © o- (54) Title: METHODS AND PHARMACEUTICAL COMPOSITIONS FOR TREATING DRUG ADDICTION (57) Abstract: The present invention relates to methods and pharmaceutical compositions for treating drug addiction, preferably al- coholism, ecstasy addiction or cocaine addiction, in a subject in need thereof. In particular, the present invention relates to a method for treating drug addiction in a subject in need thereof comprising administering the subject with a TREK agonist, particularly a TREK1 and/or TREK2 agonist. METHODS AND PHARMACEUTICAL COMPOSITIONS FOR TREATING DRUG ADDICTION FIELD OF THE INVENTION The present invention relates to methods and pharmaceutical compositions for treating drug addiction in a subject in need thereof. BACKGROUND OF THE INVENTION Addiction is a primary, chronic disease of brain reward, motivation, memory and related circuitry. Dysfunction in these circuits leads to characteristic biological, psychological, social and spiritual manifestations. This is reflected in an individual pathologically pursuing reward and/or relief by substance use and other behaviors. Addiction is characterized by inability to consistently abstain, impairment in behavioral control, craving, diminished recognition of significant problems with one's behaviors and interpersonal relationships, and a dysfunctional emotional response. Like other chronic diseases, addiction often involves cycles of relapse and remission. Without treatment or engagement in recovery activities, addiction is progressive and can result in disability or premature death (definition of the American Society of Addiction Medicine). Drug addiction is a chronic and relapsing condition with a multifactorial etiology that includes genetic, neurobiological, psychological and environmental components. For a long time, psychological and behavior therapies have been considered the most effective long-term treatments. However, understanding of neurobiological mechanisms now permits to envisage promising pharmacotherapies for drug addiction. Since some decades, the research of medications for treating addictive disorders has increased. Although there are now promising therapeutic approaches for drug addiction, only a few of medications are approved for use in human; these treatments show benefit effects only for a few population of patients and important side effects. Thus, there is a substantial need for innovative therapeutic strategies for drug addictions. Alcoholism is an example of drug addiction and constitutes a real health problem. The management of alcoholism is today still a stake for scientists and physicians, as the available treatments are not effective enough or involve important side effects. Baclofen is a GABAB agonist drug approved for muscle spasms and cerebral spasticity. The use of baclofen is proposed for alcohol withdrawal symptoms and as an abstinence-promoting agent in alcohol-dependent subjects although its benefit effects are controverted; this molecule is also used for the treatment of cocaine addiction. However, baclofen shows several types of side effects such as sedation, nauseas, muscular weakness and pain and depression. Thus, new therapeutic approaches that permit to increase the ratio benefit/side effect are still needed. In 2012, Sandoz et al. showed that TREKl contributes to the hippocampal GABAB response using baclofen (Sandoz et al, Neuron, 2012 June 21; 74(6): 1005- 1014). This document shows that TREKl is an indirect target of baclofen. However, it does neither show nor suggest that TREKl and/or TREK2 is a target of alcohol. SUMMARY OF THE INVENTION The present invention relates to a TREK agonist for use for treating drug addiction. In a preferred embodiment, the present invention relates to a TREK agonist for use for treating alcoholism, more preferably chronic alcoholism. In another preferred embodiment, the present invention relates to a TREK agonist for use for treating ecstasy or cocaine addiction. In a particular embodiment, said TREK agonist is a direct TREK agonist. Preferably, the TREK agonist is a TREKl and/or a TREK2 agonist, preferably a direct TREKl and/or TREK2 agonist. In another particular embodiment, the TREK agonist is not a GABAB agonist. In a further preferred embodiment, the TREK agonist does not bind a GABAB receptor. The invention further relates to a pharmaceutical composition comprising at least one TREK agonist of the invention for treating drug addiction, preferably alcoholism, ecstasy addiction or cocaine addiction. The invention also provides a method for screening candidate compounds useful for treating drug addiction, preferably alcoholism, ecstasy addiction or cocaine addiction comprising a step (a) of testing each of the candidate compounds for its ability to activate at least one TREK channel and a step (b) of positively selecting the candidate compound(s) capable of activatiing said at least one TREK channel. BRIEF DESCRIPTION OF DRAWINGS Figure 1. TREKl is inhibited by protracted but not acute primary alcohol application. (A, B) Effect of acute primary alcohol application on TREKl current. (A) Representative example of TREKl current stability following brief (~1 minute) primary alcohol application in HEK 293T cells. (B) Summary of effect of acute primary alcohol application on TREKl current. Current was elicited by voltage-ramps (from -100 to 50 mV, Is in duration). Inset, normalized TREKl current density after acute primary alcohol application. (C) Effect of protracted primary alcohol application on TREKl current in HEK 293T cells. Current was elicited by voltage-ramps (from - 100 to 50 mV, Is in duration). Inset, normalized TREKl current densities after acute primary alcohol application. (D) Effect of protracted butan-2-ol application. Insets, TREKl current densities before and after protracted butan-2-ol application are shown. (E) Summary of normalized TREKl current densities after protracted alcohol application. Student's t tests (*P < 0.05) shows the difference between TREKl and TREKl after ethanol, butan-l-ol or butan-2-ol application. The numbers of cells tested are indicated in parentheses. (F) Protracted ethanol application decreases native TREKl photocurrent in hippocampal neurons. Left, representative examples of TREKl photocurrent with (black trace) and without (gray trace) protracted (>1 hour) ethanol application. Right, average normalized TREKl photocurrent amplitudes with and without protracted ethanol application (>lhours). Figure 2. TREKl is potentiated by PLD2 in a PA-dependent manner (A, B) TREKl is potentiated by PLD2 co-expression. (A) Representative traces showing that PLD2 co-expression increases TREKl current. (B) Bar graph showing the TREKl current densities in the presence or absence of co-expression of PLD2. Student's itest *** 0.001) shows the difference between TREKl and TREKl co-expressed with PLD2. The numbers of cells tested are indicated in parentheses. (C-F) Primary alcohols and FIPI abolish the potentation of TREKl current by PLD2. Representative traces showing effects of protracted ethanol (C), butan-l-ol (D), or FIPI (E) application on TREKl current in the presence of PLD2. Insets, TREKl current densities before and after treatments. (F) Summary of normalized amplitude of TREKl current in the presence of PLD2 after protracted treatment with alcohol, FIPI or both. Student's t tests (*P < 0.05, **P < 0.01) show the difference between TREKl co-expressed with PLD2 and after ethanol, butan-l-ol or butan-2-ol application.
Recommended publications
  • Butenes Separation, Supp. A
    PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California 94025 Abstract Process Economics Program Report No. 71A BUTTLENES (October 1982) Demand is fast increasing for lsobutylene, especially that used in manufacturing methyl tertiary-butyl ether, and for high purity butene-1 to use as a copolymer in linear low density polyethylene. Because of their wide availability, mixed butane-butylene streams from oleflns plants and petroleum refineries are being increasingly fed to plants to separate butylenes for use in chemicals. This first supplement to Report No. 71 updates demand projections, production capacities, and separation techniques for high purity butene-1 and lsobutylene. The processes that are now available for separating and purifying both butene-1 and lsobutylene from mixed butyl- ene streams are evaluated and compared. Other procedures for obtaining butylenes, such as dehydrogenatlon, lsomerleatlon, and disproportion&ion, are not updated in this report. PEP’81 JLC Report No. 71A - BUTYLENES SUPPLEMENT A by JOHN L. CHADWICK I I October 1982 f-F0 0 A private report by the m PROCESS ECONOMICS PROGRAM 0 Menlo Park, California 94025 0 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. The CHEMICALECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLDPETROCHEMICALS Program covers major hkdrocarbons and their derivatives on a worldwide basis. In addition, the SRI DIRECTORYOF CHEMICALPRODUCERS services provide detailed lists of chemical producers by company, prod- uct, and plant for the United States and Western Europe. ii CONTENTS 1 INTRODUCTION . 1 2 SUMMARY .
    [Show full text]
  • Removal of NO and SO2 by Pulsed Corona Discharge Process
    Korean J. Chem. Eng., 18(3), 308-316 (2001) Removal of NO and SO2 by Pulsed Corona Discharge Process Young Sun Mok†, Ho Won Lee, Young Jin Hyun, Sung Won Ham*, Jae Hak Kim** and In-Sik Nam** Department of Chemical Engineering, Cheju National University, Ara, Cheju 690-756, Korea *Department of Chemical Engineering, Kyungil University, Hayang, Kyungbuk 712-701, Korea **Department of Chemical Engineering, Pohang University of Science & Technology, Pohang, Kyungbuk 790-784, Korea (Received 6 September 2000 • accepted 9 March 2001) − Abstract Overall examination was made on the removal of NO and SO2 by pulsed corona discharge process. The mechanism for the removal of NO was found to largely depend on the gas composition. In the absence of oxygen, most of the NO removed was reduced to N2; on the other hand, oxidation of NO to NO2 was dominant in the presence of oxygen even when the content was low. Water vapor was an important ingredient for the oxidation of NO2 to nitric acid rather than that of NO to NO2. The removal of NO only slightly increased with the concentration of ammonia while the effect of ammonia on the removal of SO2 was very significant. The energy density (power delivered/feed gas flow rate) can be a measure for the degree of removal of NO. Regardless of the applied voltage and the flow rate of the feed gas stream, the amount of NO removed was identical at the same energy density. The production of N2O increased with the pulse repetition rate, and the presence of NH3 and SO2 enhanced it.
    [Show full text]
  • INF.20 Economic Commission for Europe Inland Transport Committee Definition Of
    INF.20 Economic Commission for Europe Inland Transport Committee Working Party on the Transport of Dangerous Goods 6 March 2012 Joint Meeting of the RID Committee of Experts and the Working Party on the Transport of Dangerous Goods Bern, 19–23 March 2012 Item 5(a) of the provisional agenda Proposals for amendments to RID/ADR/ADN: pending issues Definition of LPG Transmitted by the Government of Switzerland We have observed contradictions in the definition of LPG adopted by the Joint Meeting at its Autumn 2010 session (ECE/TRANS/WP.15/AC.1/120, Annex II) as well as in the German translation we have discussed in Erfurt during the Conference of translation and edition of the German ADR. The actual definitions in each language are the following: ""Gaz de pétrole liquéfié (GPL)", un gaz liquéfié à faible pression contenant un ou plusieurs hydrocarbures légers qui sont affectés aux numéros ONU 1011, 1075, 1965, 1969 ou 1978 seulement et qui est principalement constitué de propane, de propène, de butane, des isomères du butane, de butène avec des traces d’autres gaz d’hydrocarbures. “‘Liquefied Petroleum Gas (LPG)’ means a low pressure liquefied gas composed of one or more light hydrocarbons which are assigned to UN Nos. 1011, 1075, 1965, 1969 or 1978 only and which consists mainly of propane, propene, butane, butane isomers, butene with traces of other hydrocarbon gases. „Flüssiggas (LPG)*: Unter geringem Druck verflüssigtes Gas, das aus einem oder mehreren leichten Kohlenwasserstoffen besteht, die nur der UN-Nummer 1011, 1075, 1965, 1969 oder 1978 zugeordnet sind und das hauptsächlich aus Propan, Propen, Butan, Butan-Isomeren und Buten mit Spuren anderer Kohlenwasserstoffgase besteht.“ One important point is different between French from one side and English and German from the other side, that is that in French the repetition of the “de” in the enumeration of possible gases brings to the conclusion that the main constituent of the LPG is one of the listed gases.
    [Show full text]
  • Supplement of Compilation and Evaluation of Gas Phase Diffusion Coefficients of Reactive Trace Gases in the Atmosphere
    Supplement of Atmos. Chem. Phys., 15, 5585–5598, 2015 http://www.atmos-chem-phys.net/15/5585/2015/ doi:10.5194/acp-15-5585-2015-supplement © Author(s) 2015. CC Attribution 3.0 License. Supplement of Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations M. J. Tang et al. Correspondence to: M. J. Tang ([email protected]) and M. Kalberer ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. Table of Contents 1 Alkanes and cycloalkanes ............................................................................................ 1 1.1 CH 4 (methane), C 2H6 (ethane), and C 3H8 (propane) ............................................. 1 1.2 C 4H10 (butane, methyl propane) ............................................................................ 3 1.3 C 5H12 (n-pentane, methyl butane, dimethyl butane) ............................................. 5 1.4 C 6H14 (n-hexane, 2,3-dimethyl butane) ................................................................ 7 1.5 C 7H16 (n-heptane, 2,4-dimethyl pentane).............................................................. 9 1.6 C 8H18 (n-octane, 2,2,4-trimethyl pentane) .......................................................... 11 1.7 C 9H20 (n-nonane), C 10 H22 (n-decane, 2,3,3-trimethyl heptane) and C 12 H26 (n- dodecane) .................................................................................................................
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Plasma-Pd/Γ-Al203 Catalytic System for Methane, Toluene and Propene Oxidation: Effect of Temperature and Plasma Input Power
    22nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Plasma-Pd/γ-Al203 catalytic system for methane, toluene and propene oxidation: effect of temperature and plasma input power T. Pham Huu1, 2, P. Da Costa3, S. Loganathan1 and A. Khacef1 1 GREMI-UMR 6744, CNRS-Université d'Orléans, 14 rue d’Issoudun, P.O. Box 6744, FR-45067 Orléans Cedex 02, France 2 Institute of Applied Material Science, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi, HCMC, Vietnam 3 Sorbonne Universités, UPMC Paris 6, Institut Jean Le Rond d’Alembert, CNRS UMR 7190, 2 place de la gare de ceinture, FR-78210 Saint Cyr l’école, France Abstract: A pulsed non-thermal plasma and 1 wt% Pd/γ-Al2O3 catalyst was used to investigate the CH4, C3H6, and C7H8 oxidation in air. Effects of temperature and specific input energy on the VOCs conversion were studied. The plasma-catalyst interaction revealed the benefit effect on the VOCs oxidation even at low temperature leading to high CO2 selectivity. The synergistic effect of combining plasma with catalyst in one-stage configuration is observed only for toluene. Keywords: non-thermal plasma, Pd/γ-Al203, synergistic effect, methane, propene, toluene, oxidation 1. Introduction 2. Experimental Volatile organic compounds (VOCs) emitted from The plasma reactor is a cylindrical DBD gives the various industrial and domestic processes are important possibility to combine the catalyst with plasma reactor in sources of air pollution and therefore, become a serious single stage (IPC) or two-stage (PPC) configuration as problem for damaging the human health and the shown in Fig.
    [Show full text]
  • Me2si(Benz[E]Indenyl)
    Propene Polymerization Using Homogeneous MAO-Activated Metallocene Catalysts: Me2Si(Benz[e]lndenyI)2ZrClu'MAO vs. Me2Si(2-Me-Benz[e]lndenyI)2ZrClu'MAO STEPHAN JUNGLlNG,t ROLF MULHAUPT,b UDO STEHLlNG/ HANS-HERBERT BRINTZINGER/ DAVID FISCHER/ and FRANZ LANGHAUSER3 'Institut fOr Makromolekulare Chemie and Freiburger Materialforschungszentrum der Albert-Ludwigs-Universitat Freiburg, 0-79104 Freiburg, Germany; 2Fakultat fOr Chemie, Universitat Konstanz, 0-78434 Konstanz, Germany; and 3BASF AG Abteilung ZKP, 0-67056 Ludwigshafen, Germany SYNOPSIS Propene was polymerized at 40°C and 2-bar propene in toluene using methylalumoxane (MAO) activated rac-Me2Si(Benz[elIndenyl)2ZrCI2 (BI) and rac-Me2Si(2-Me­ Benz[elIndenyl)2ZrCl2 (MBI). Catalyst BI/MAO polymerizes propene with high activity to afford low molecular weight polypropylene, whereas MBI/MAO is less active and produces high molecular weight polypropylene. Variation of reaction conditions such as propene concentration, temperature, concentration of catalyst components, and addition of hydrogen reveals that the lower molecular weight polypropylene produced with BI/MAO results from chain transfer to propene monomer following a 2,1-insertion. A large fraction of both me­ tallocene catalyst systems is deactivated upon 2,1-insertion. Such dormant sites can be reactivated by H2-addition, which affords active metallocene hydrides. This effect of H2- addition is reflected by a decreasing content of head-to-head enchainment and the formation of polypropylene with n-butyl end groups. Both catalysts show a strong dependence of activity on propene concentration that indicates a formal reaction order of 1. 7 with respect to propene. MBI/MAO shows a much higher dependence of the activity on temperature than BI/MAO.
    [Show full text]
  • 1-Butanol Dehydration and Dehydrogenation Over Vanadium Aluminium Oxynitride Catalysts
    ACADEMIA ROMÂNĂ Rev. Roum. Chim., Revue Roumaine de Chimie 2011, 56(2), 151-159 http://web.icf.ro/rrch/ 1-BUTANOL DEHYDRATION AND DEHYDROGENATION OVER VANADIUM ALUMINIUM OXYNITRIDE CATALYSTS Mihaela FLOREA,a* Stephanie DELSARTE,b Elisabeth van KEULENb and Paul GRANGEb** aDepartment of Chemical Technology and Catalysis, Faculty of Chemistry, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030018, Roumania bCatalyse et chimie des matériaux divisés, Université catholique de Louvain, Croix du Sud 2, Boite 17, Louvain-la-Neuve, 1348, Belgium Received July 5, 2010 Amorphous high surface area vanadium aluminium oxynitrides (VAlON) are prepared by nitridation of vanadium aluminium oxide precursors. The acid-base and redox properties of VAlON depend on their nitrogen content, as well as on the V/Al ratio of the reactive precursor. The influence of these parameters over the catalytic properties of VAlON for 1-butanol dehydration/dehydrogenation was studied. For the studied samples, the only detected products were 1-butene, butane and butanal. The presence of butane as a major product could be explained by a hydrogen transfer mechanism. INTRODUCTION∗ nitrogen species, may cause important differences in the catalytic behavior .6 Oxynitride systems become extensively studied The reactivity of 1-butanol over catalysts has as a new class of catalysts because of their been extensively used to evaluate the nature, the particular acid-base properties. Nitridation of strength and the concentration of the acid-base amorphous oxide precursors induces a decrease of sites 7-10 since the product selectivities are the number of acid sites and the creation of basic influenced by the acid-base properties of the centers as is shown for aluminophosphate catalysts.
    [Show full text]
  • Supplement of OH and HO2 Radical Chemistry in a Midlatitude Forest: Measurements and Model Comparisons
    Supplement of Atmos. Chem. Phys., 20, 9209–9230, 2020 https://doi.org/10.5194/acp-20-9209-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of OH and HO2 radical chemistry in a midlatitude forest: measurements and model comparisons Michelle M. Lew et al. Correspondence to: Philip S. Stevens ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Table S1: Characterization of measured compounds by various institutions (IU: Indiana University, UMass: University of Massachusetts, LD: IMT Lille Douai) into RACM2 groups. RACM2 VOCs Source RACM2 VOCs Source NO NO UMass HCHO Formaldehyde LD NO2 UMass Acetaldehyde LD NO2 ACD Water vapor IU Acetone LD H2O ACT HONO Nitrous Acid IU EOH Ethanol LD ACE Acetylene LD CH4 Methane est ISO Isoprene LD ETH Ethane LD MACR Methacrolein est* Propane, isobutene, butane, HC3 neopentane, 2,2-dimethylbutane, LD MEK Methyl ethyl ketone LD 2,2-diemthylpentane Isopentane, pentane, propyne, 2-methylpentane, 3-methylpentane, hexane, 2,4-dimethylpentane, HC5 LD MVK Methyl vinyl ketone LD 2,2,3-trimethylbutane, 3,3-dimethylpentane, 2,3-diemthylpentane, isooctane Butyne, cyclopentane + 2,3- diemthylbutane, cyclohexane, α-pinene, β-pinene, HC8 2-methylhexane, heptane, octane, LD API LD 3-carene nonane, undecane, dodecane, nC13, nC14 ETE Ethene LD ROH Borneol LD Propene, 1-butene, isobutene, OLT 3-methyl-1-butene, 1- pentene, LD BENZENE Benzene LD 2- methyl-1-butene, hexene Toluene, chlorobenzene,
    [Show full text]
  • UNITED STATES PATENT of FICE 2,40,149 STABLIZED 2-CHLOR-BUTENE-2 Clyde B
    Patented Sept. 3, 1946 2,40,149 UNITED STATES PATENT of FICE 2,40,149 STABLIZED 2-CHLOR-BUTENE-2 Clyde B. Gardenier, Belleviiie, N. J., assignor to Thomas A. Edison, Incorporated, West Orange, N.J., a corporation of New Jersey No Drawing. Application September 8, 1944, Serial No. 553,280 6 Claims. (C. 252-364) 2 This invention relates to novel compositions of pounds that may be added thereto for this pur matter and to methods for preparing the same. pose are alcohols, amines, chloroform and the More particularly this invention is directed to like. The compounds which are added either stabilized 2 chlor butene 2 and to ninethods for alone or in combination to the 2 chlor butene 2 preparing the Sane. 5 must be capable of forming a solution therewith In the production of butadiene, one of the by and may be in the liquid, Solid or gaseous state. product fractions contains 2 chlor buttene 2 in These alcohols may be primary, secondary or both the cis and trans forms, 3 chlor buttene 1, tertiary alcohols and they may be saturated or and 1 chlor butene 2 having the following ac unSaturated by having one or more acetylenic cepted formulas respectively, CH3CCI:CHCH3, () Or ethylenic linkage. These alcohols may be CH2:CHCHCCH3, and CH3CH:CHCH2Cl. This monohydric or polyhydric. The amines may be fraction containing Said compounds, is a black primary, Secondary, or tertiary amines. Among liquid when it is about two weeks old and to the Some of the specific compounds that are particu best of my knowledge has found no application larly Suitable for this purpose and may be used and consequently practically all of it is dumped either alone or in combination are methyl al as a waste product.
    [Show full text]
  • Soot Formation in Diluted Laminar Ethene, Propene and 1-Butene Diffusion Flames at Elevated Pressures
    Combustion and Flame 197 (2018) 378–388 Contents lists available at ScienceDirect Combustion and Flame journal homepage: www.elsevier.com/locate/combustflame Soot formation in diluted laminar ethene, propene and 1-butene diffusion flames at elevated pressures ∗ Elizabeth A. Griffin, Ömer L. Gülder University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario M3H 5T6, Canada a r t i c l e i n f o a b s t r a c t Article history: Soot formation characteristics of ethene, propene, and 1-butene, the most abundant unsaturated interme- Received 5 April 2018 diates in thermal decomposition of paraffinic hydrocarbons, were investigated in laminar diffusion flames Revised 4 June 2018 stabilized on a co-flow burner installed in a high-pressure combustion chamber with optical access. All Accepted 18 August 2018 three olefins were diluted with nitrogen to produce sooting but non-smoking diffusion flames at desired pressures. Pressure range was 1–2.5 bar with 1-butene, and 1–8 bar with propene and ethene. Upper Keywords: pressure limits of 1-butene and propene were established by their respective vapour pressure charac- High-pressure soot teristics. The spectral soot emission technique, in which radiation emitted by the soot within the flame Sooting propensity of propene was collected as line-of-sight intensity and spectrally resolved over the range 690–945 nm, was used Sooting propensity of 1-butene to measure radially-resolved temperature and soot volume fraction. The carbon mass flow rates of the Soot in olefin flame three fuels were kept constant at 0.505 mg/s to facilitate direct comparison among the fuels at elevated High-pressure laminar flames pressures.
    [Show full text]
  • Ethene, Propene, Butene and Isoprene Emissions from a Ponderosa Pine Forest Measured by Relaxed Eddy Accumulation
    Atmos. Chem. Phys., 17, 13417–13438, 2017 https://doi.org/10.5194/acp-17-13417-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation Robert C. Rhew1, Malte Julian Deventer1,*, Andrew A. Turnipseed2,*, Carsten Warneke3,4, John Ortega5, Steve Shen1, Luis Martinez6, Abigail Koss3,4, Brian M. Lerner3,4,a, Jessica B. Gilman3,4, James N. Smith5,b, Alex B. Guenther7, and Joost A. de Gouw3 1Department of Geography and Berkeley Atmospheric Sciences Center, University of California Berkeley, Berkeley, CA 94720-4740, USA 22B Technologies, Boulder CO 80301, USA 3Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder CO 80309, USA 4NOAA Earth System Research Laboratory, Boulder, CO 80305, USA 5Atmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research, Boulder, CO 80301, USA 6Ernest F. Hollings Undergraduate Scholarship program, NOAA, Boulder, CO 80305, USA 7Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA anow at: Aerodyne Research Inc., Billerica, MA 01821-3976, USA bnow at: Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA *These authors contributed equally to this work. Correspondence to: Robert C. Rhew ([email protected]) Received: 21 April 2017 – Discussion started: 4 May 2017 Revised: 9 September 2017 – Accepted: 28 September 2017 – Published: 10 November 2017 Abstract. Alkenes are reactive hydrocarbons that influence tober flux, based on measurements and modeling, averaged local and regional atmospheric chemistry by playing impor- 62, 52, 24 and 18 µg m−2 h−1 for ethene, propene, butene tant roles in the photochemical production of tropospheric and isoprene, respectively.
    [Show full text]