SETTING CONSERVATION and RESEARCH PRIORITIES for LARGER AFRICAN CARNIVORES Justina C

Total Page:16

File Type:pdf, Size:1020Kb

SETTING CONSERVATION and RESEARCH PRIORITIES for LARGER AFRICAN CARNIVORES Justina C WORKING PAPER NO. 24 DECEMBER 2005 SETTING CONSERVATION AND RESEARCH PRIORITIES FOR LARGER AFRICAN CARNIVORES Justina C. Ray, Luke Hunter, and Joanna Zigouris The Wildlife Conservation Society (WCS) is dedicated to saving wildlife and wildlands, to assure a future for threatened species like elephants, tigers, sharks, macaws, or lynx. That mission is achieved through a conservation program that protects some 50 living landscapes around the world, manages more than 590 field projects in 53 countries, and supports the nations largest system of living institutions—the Bronx Zoo, the New York Aquarium, and the Wildlife Centers in Central Park, Queens and Prospect Park. We are developing and maintaining pioneering environmental education programs that reach more than three million people in the New York metropolitan area as well as in all 50 United States and on six continents. We are working to make future generations inheritors, not just survivors. The WCS Working Paper Series represents preliminary results of basic and applied field work supported by the Wildlife Conservation Society. The purpose of WCS Working Papers is to distribute project reports, benchmark data sets of historical significance, and other timely technical material in its entirety, and with as little delay as possible. For a list of WCS Working Papers, please see the end of this publication. WORKING PAPER NO. 24 DECEMBER 2005 SETTING CONSERVATION AND RESEARCH PRIORITIES FOR LARGER AFRICAN CARNIVORES Justina C. Ray, Luke Hunter, and Joanna Zigouris This working paper was prepared for the Wildlife Conservation Society by Justina C. Ray, Luke Hunter, and Joanna Zigouris. WCS Working Papers ISSN 1530-4426 Copies of WCS Working Papers are available for download from http://www.wcs.org/science or by mailing a request to: Wildlife Conservation Society International Conservation 2300 Southern Boulevard Bronx, NY 10460-1099 USA Suggested citation: Ray, Justina C., Luke Hunter, and Joanna Zigouris. 2005 Setting Conservation and Research Priorities for Larger African Carnivores. WCS Working Paper No. 24. Wildlife Conservation Society, New York. Front cover photographs: © P. Henschel (African Golden Cat) © S. Williams (Ethiopian wolf) © L. Hunter/WCS Copyright: The contents of this paper are solely the property of the authors, and cannot be reproduced without the permission of the authors. ACKNOWLEDGEMENTS This project has been a two and a half-year project in the making, commenced in 2002 under the collaborative umbrella of the Global Carnivore and Africa Pro- grams of the Wildlife Conservation Society. We are thankful to Alan Rabinowitz, Howard Quigley, and Peter Howard for providing the support and enthusiasm necessary to kickstart this effort. They, together with Kathy Conforti, Monica Wrobel, and Graeme Patterson, provided key input in the design phases. James Deutsch joined in later, and has been a steady source of encouragement. Ear- lier drafts of the manuscript benefited greatly from the constructive comments brought forward by Pete Coppollilo, Josh Ginsberg, Graeme Patterson, Alan Rabinowitz, Kent Redford, Adrian Treves, Rosie Woodroffe, and Monica Wrobel. To all we are grateful for giving their valuable time. Gillian Woolmer provided important GIS support and Tim Ellis conducted several of the GIS analyses that appear here. Mary Van Sleeuwen did critical research to get this project off the ground and provided invaluable support during the first year of this project; Nicole Williams aided in the preparation of the manuscript. We are also thankful to all those listed in Appendix 4 for giving their time and energy in refining species distribution maps. We are very grateful to Philipp Henschel and Stuart Williams for the use of their photographs on the cover. We are indebted to Green Living Communications for their rapid and diligent work in the wonder- ful design and production of this report. Finally, we extend our profound thanks to our mentor George Schaller for his thoughtful remarks in the foreword. setting conservation and research priorities for larger african carnivores v vi wildlife conservation society TABLE OF CONTENTS Foreword, By George B. Schaller . 1 Executive Summary . 3 Part I: Introduction . 9 Previous priority-setting . 11 The species focus . 12 The geographic focus . 12 Part II: Setting Species Priorities . 17 Introduction . 18 Methods . 18 Description of the species prioritization system . 18 Description of scoring categories and variables . 19 Results . 27 Overall . 27 Vulnerability . 32 Knowledge . 36 Threats . 42 Discussion . 44 Caveats and limitations of this exercise . 45 Species groupings . 46 Part III: Setting Geographic Priorities . 49 Introduction . 50 Methods . 50 Distribution maps . 50 Analyses . 51 Results . 51 Discussion . 63 Part IV: Species Conservation Profiles . 65 Introduction . 66 Felidae . 66 Lion (Panthera leo) . 66 Cheetah (Acinonyx jubatus) . 72 Leopard (Panthera pardus) . 77 setting conservation and research priorities for larger african carnivores vii African golden cat (Profelis aurata) . 81 Serval (Leptailurus serval) . 84 Caracal (Caracal caracal) . 87 Canidae . 90 Ethiopian wolf (Canis simensis) . 90 African wild dog (Lycaon pictus) . 94 Black-backed jackal (Canis mesomelas) . 98 Side-striped jackal (Canis adustus) . 100 Golden jackal (Canis aureus) . 103 Hyaenidae . 105 Aardwolf (Proteles cristatus) . 105 Brown hyena (Hyaena brunnea) . 108 Striped hyena (Hyaena hyaena) . 111 Spotted hyena (Crocuta crocuta) . 113 Mustelidae and Viverridae . 118 Spotted necked otter (Lutra maculicollis) . 118 Cape clawless otter (Aonyx capensis) . 120 Congo clawless otter (Aonyx congicus) . 124 Honey badger (Mellivora capensis) . 125 African civet (Civettictis civetta) . 128 Part V: Conclusions and Recommendations . 132 Literature Cited . 139 APPENDIX 1: Scoring details: Vulnerability category . 168 APPENDIX 2: Scoring details: Knowledge category . 180 APPENDIX 3: Scoring details: Threat category . 186 APPENDIX 4: References for African carnivore distribution maps . 191 APPENDIX 5: Biome classification . 194 APPENDIX 6. African carnivore species loss . 196 List of Working Papers . 201 LIST OF FIGURES Fig. 1.1 Georegion units of analysis . 14 Fig. 1.2 Biome units of analysis . 15 Fig. 1.3 Country units of analysis . 16 Fig. 2.1 Relationships among category scores for 20 carnivore species . 28 Fig. 2.2 Comparison of mean category scores by carnivore family and body size . 30 Fig. 2.3 Principal components analysis of species and vulnerability variables . 33 Fig. 2.4 Principal components analysis of species and fecundity variables . 33 Fig. 2.5 Mean score comparisons of vulnerability variables between carnivore families and body sizes . 35 Fig. 2.6 Principal components analysis of knowledge scores . 37 viii wildlife conservation society setting conservation and research priorities for larger african carnivores ix Fig. 2.7 Mean score comparisons of knowledge variables between carnivore families body sizes . 38 Fig. 2.8 A. Piechart depicting proportion of Web of Science papers (n=1714) on each of 20 carnivore species; B. Distribution of paper subjects into conservation/management, ecology, and other . 40 Fig. 2.9 Distribution of carnivore studies in Africa . 41 Fig. 2.10 Principal components analysis of threats scores . 43 Fig. 2.11 Number of species scoring A. more than 12 and B. more than 0 for each of 10 threats analyzed . 44 Fig. 3.1 Frequency distribution of proportional area from which large carnivore species (maximum 17) have been lost in Africa . 53 Fig. 3.2 Proportion of Africa in which 0-6 species occur for large carnivores (> 12 kg), Felids, Canids, and Hyenids . 54 Fig. 3.3 Number of sympatric carnivore species (maximum 17) occurring historically and currently, with percent species loss in Africa since 100-150 years ago . 55 Fig. 3.4 Number of sympatric large carnivore species (>12 kg; 7 species) occurring historically and currently, with percent species loss in Africa since 100-150 years ago . ..
Recommended publications
  • SELF-DRIVE DIRECTIONS Driving Directions and Map Pg1-3 | Driving Times and Distances Pg3
    SELF-DRIVE DIRECTIONS Driving Directions and Map Pg1-3 | Driving Times and Distances Pg3 Lelapa Lodge, Kopano Lodge & Dithaba Lodge | Tel: +27 (0)18 350 9902 | Email: [email protected] MORE Family Collection - Reservations | Tel: +27 (0)11 880 9992 | Email: [email protected] www.more.co.za Access The driving time from Johannesburg to Madikwe Safari Lodge is about 4 to 4.5 hours. There are two routes to choose from: either via Abjaterskop Gate, which is the shorter way; or via Molatedi Gate, which is recommended if you are coming or going from Sun City and is the more scenic route. Also included are the directions to Marataba Game Reserve should you be transfering to Mountain Lodge or Safari Lodge. Pg 1 Driving Directions: From Johannesburg to Madikwe Safari Lodge Via Abjaterskop Gate Route (±4.5 to 5 hours) • From O.R. Tambo International Airport get on the R21 towards Pretoria up to the Exit to the N1 Polokwane (about 37km) • Get onto the N1 towards Polokwane and continue up to the N4 Rustenburg slipway (about 22km). Take the slipway onto the N4 towards Rustenburg (this is just after the Zambezi drive offramp). At Rustenburg continue on the N4 through Swartruggens towards Zeerust Please Note: The N4 is a toll road with four toll gates to Zeerust. Three before Rustenburg and one just after Swartruggens • In Zeerust make a RIGHT TURN at the ABSA bank in Main street, towards Gaborone/Madikwe. Refuel here as there is no fuel in the Madikwe Reserve • After aproximately 83km you will see the Abjaterskop Entrance into the reserve on your RIGHT • Once you enter the Park there is about 32km of dirt road to the lodge.
    [Show full text]
  • CHAPTER 1: Introduction 1
    University of Pretoria etd, Wilson K A (2006) Status and distribution of cheetah outside formal conservation areas in the Thabazimbi district, Limpopo province by Kelly-Anne Wilson Submitted in partial fulfilment for the requirements for the degree Magister Scientiae in Wildlife Management Centre for Wildlife Management Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J. du P. Bothma Co-supervisor: Prof. G. H. Verdoorn February 2006 University of Pretoria etd, Wilson K A (2006) STATUS AND DISTRIBUTION OF CHEETAH OUTSIDE FORMAL CONSERVATION AREAS IN THE THABAZIMBI DISTRICT, LIMPOPO PROVINCE by Kelly-Anne Wilson Supervisor: Prof. Dr. J. du P. Bothma Co-supervisor: Prof. Dr. G. H. Verdoorn Centre for Wildlife Management Faculty of Natural and Agricultural Sciences University of Pretoria Magister Scientiae (Wildlife Management) ABSTRACT The current status of the cheetah Acinonyx jubatus outside formal conservation areas in South Africa is undetermined. The largest part of the cheetah population in South Africa occurs on cattle and wildlife ranches. Conflict between cheetahs and landowners is common and cheetahs are often persecuted. Cheetah management and conservation efforts are hampered as little data are available on the free-roaming cheetah population. A questionnaire survey was done in the Thabazimbi district of the Limpopo province to collect data on the status and distribution of cheetahs in the district and on the ranching practices and attitudes of landowners. By using this method, a population estimate of 42 – 63 cheetahs was obtained. Camera trapping was done at a scent-marking post to investigate the marking behaviour of cheetahs. Seven different cheetahs were identified marking at one specific tree.
    [Show full text]
  • Civettictis Civetta (Schreber, 1776)
    Civettictis civetta (Schreber, 1776) The African civet, Civettictis civetta is native to and widely distributed in Africa. It was probably introduced to Sao Tome & Principe with the weasel Mustela nivalis to control rodents. African civets occupy a range of habitats including secondary forest, woodland, bush habitats as well as aquatic habitats. They are not common in interior forest habitats but thrive in degraded and deforested areas. They have been recorded at altitudes up to 5000 m asl on Mt Kilimanjaro The Guinea Lidless Skink (Afroablepharus africana) is classified as ‘Vulnerable (VU)’ in the IUCN Red List of Threatened Species. It is restricted to three locations on the islands of Sâo Tomé, Principé, and Rolas in the Gulf of Guinea. The main threats to this species are suspected to be loss of habitat through deforestation and predation Photo credit: Brianna Hackler by introduced mammals. Introduced mammals on these islands include the African civet, Norway rat (Rattus bocagei); the Sao Tome Canary (Neospiza concolor) and the norvegicus) ship rat (Rattus rattus), House mouse (Mus Sao Tome Fiscal (Lanius newtoni) are under threat of loss musculus), Mona monkey (Cercopithecus mona) and of habitat and potential predation by introduced mammals weasel. that include the African civet, ship rat, house mouse, Mona Declining populations of three endemic and ‘Critically monkey and weasel. Feral pigs (Sus scrofa) are also present Endangered (CR)’ birds the Sao Tome Ibis (Bostrychia and could be a threat. References: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2 ISSG 2012. Global Invasive Species Database Click here to view archives of previous weeks’ species.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Fiber-Associated Spirochetes Are Major Agents of Hemicellulose Degradation in the Hindgut of Wood-Feeding Higher Termites
    Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites Gaku Tokudaa,b,1, Aram Mikaelyanc,d, Chiho Fukuia, Yu Matsuuraa, Hirofumi Watanabee, Masahiro Fujishimaf, and Andreas Brunec aTropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan; bGraduate School of Engineering and Science, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan; cResearch Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; dDepartment of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607; eBiomolecular Mimetics Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634 Ibaraki, Japan; and fDepartment of Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, 753-8512 Yamaguchi, Japan Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved November 5, 2018 (received for review June 25, 2018) Symbiotic digestion of lignocellulose in wood-feeding higher digestion in the hindgut of higher termites must be attributed to termites (family Termitidae) is a two-step process that involves their entirely prokaryotic microbial community (5). endogenous host cellulases secreted in the midgut and a dense The gut microbiota of higher termites comprises more than bacterial community in the hindgut compartment. The genomes of 1,000 bacterial phylotypes, which are organized into distinc- the bacterial gut microbiota encode diverse cellulolytic and hemi- tive communities colonizing the microhabitats provided by the cellulolytic enzymes, but the contributions of host and bacterial compartmentalized intestine, including the highly differentiated symbionts to lignocellulose degradation remain ambiguous.
    [Show full text]
  • Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
    www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss.
    [Show full text]
  • Museum of Natural History
    p m r- r-' ME FYF-11 - - T r r.- 1. 4,6*. of the FLORIDA MUSEUM OF NATURAL HISTORY THE COMPARATIVE ECOLOGY OF BOBCAT, BLACK BEAR, AND FLORIDA PANTHER IN SOUTH FLORIDA David Steffen Maehr Volume 40, No. 1, pf 1-176 1997 == 46 1ms 34 i " 4 '· 0?1~ I. Al' Ai: *'%, R' I.' I / Em/-.Ail-%- .1/9" . -_____- UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA MUSEUM OF NATURAL HISTORY am published at irregular intervals Volumes contain about 300 pages and are not necessarily completed in any one calendar year. JOHN F. EISENBERG, EDITOR RICHARD FRANZ CO-EDIWR RHODA J. BRYANT, A£ANAGING EMOR Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor. Bulletin; Florida Museum of Natural Histoty, University of Florida P. O. Box 117800, Gainesville FL 32611-7800; US.A This journal is printed on recycled paper. ISSN: 0071-6154 CODEN: BF 5BAS Publication date: October 1, 1997 Price: $ 10.00 Frontispiece: Female Florida panther #32 treed by hounds in a laurel oak at the site of her first capture on the Florida Panther National Wildlife Refuge in central Collier County, 3 February 1989. Photograph by David S. Maehr. THE COMPARATIVE ECOLOGY OF BOBCAT, BLACK BEAR, AND FLORIDA PANTHER IN SOUTH FLORIDA David Steffen Maehri ABSTRACT Comparisons of food habits, habitat use, and movements revealed a low probability for competitive interactions among bobcat (Lynx ndia). Florida panther (Puma concotor cooi 1 and black bear (Urns amencanus) in South Florida. All three species preferred upland forests but ©onsumed different foods and utilized the landscape in ways that resulted in ecological separation.
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • 3. Aonyx Congicus Red List 2020
    Aonyx congicus - Lönnberg, 1910 ANIMALIA - CHORDATA - MAMMALIA - CARNIVORA - MUSTELIDAE - Aonyx - congicus Common Names: Congo Clawless Otter (English), Cameroon Clawless Otter (English), Kleinkrallen- Fingerotter (German), Kongo-Fingerotter (German), Loutre à joues blanches du Cameroun (French), Loutre à joues blanches du Congo (French), Nutria Inerme de Camerún (Spanish; Castilian), Paraonyx tacheté (French), Small-clawed Otter (English), Small-toothed Clawless Otter (English), Zaire Clawless Otter (English) Synonyms: No Synonyms Taxonomic Note: Allen (1924) and Davis (1978) treated A. capensis and A. congicus as being conspecific, arguing that they represent clinal variations of the same species. However, mainly based on tooth size and skin differences, Rosevear (1974), Van Zyll de Jong (1987), Wozencraft (1993), and Larivière (2001) considered A. capensis and A. congicus as separate species, but this remains debated, and Wozencraft (2005) did not retain A. congicus as a valid species, contrary to the opinion of the IUCN SSC Otter Specialist Group (www.otterspecialistgroup.org) (Jacques et al. 2009). The name Aonyx congica is often found in the literature but A. congicus is the correct spelling as Aonyx, from the Greek ‘onux’, is masculine (Van Bree et al. 1999). Red List Status NT, A3cde (IUCN version 3.1) Red List Assessment Assessment Information Date of Assessment: 31/01/2020 Reviewed: 27/02/2020 Assessor(s): Jacques, H., Reed-Smith, J., Davenport, L. & Somers, M.J. Reviewer(s): Hussain, S.A., Duplaix, N. Contributor(s): Hoffmann, M. Facilitators/Compilers: NA Assessment Rationale All of Africa's otter species are threatened by alteration and/or degradation of freshwater habitats and riparian vegetation which are the preferred settlements of human population.
    [Show full text]
  • Madikwe Game Reserve ~ Johannesburg~
    Tel: +27 (0)41 581 2581 Fax: +27 (0)41 581 2332 e-mail: [email protected] Website: www.pemburytours.com P.O. Box 13482, Humewood, Port Elizabeth, 6013, South Africa TAILORMADE ITINERARY PREPARED FOR GISELA D & FAMILY ~Madikwe Game Reserve ~ Johannesburg~ 16 to 23 October 2017 Your personal tour consultant: Anya Visser TAILOR-MADE ITINERARY Day 1: Sunday 16 October – Arrival in Johannesburg (1 night) Upon arrival at OR Tambo Airport in Johannesburg from your international flight EY604 arriving at 16h30, you are met by our representative and are taken to your Johannesburg Hotel for your 1 night stay. Transfer time: OR Tambo City Lodge to OR Tambo Airport: approx. 1 minute Accommodation: OR Tambo City Lodge Day 2: Monday 17 October - Arrival in Madikwe Game Reserve This morning you will be met by one of our representatives at 10h00 and transferred through the rolling hills of the North West province to your lodge in the Madikwe Game Reserve. Transfer time – Johannesburg to Madikwe: approx 4 hours Days 2 to 6: Monday 17 October to Friday 21 October - Madikwe Game Reserve (4 nights) The 76,000 hectare Madikwe Game Reserve is one of South Africa’s biggest wildlife sanctuaries and is home to the Big 5 and over 340 bird species. It is especially famous for its packs of African Wild Dog – and it is malaria-free. It is about 4 hours by road from Johannesburg. Madikwe is situated in the transition region between two vegetation types: Lowveld bushveld and Kalahari thornveld. As a result, the region is able to host to an incredible diversity of species.
    [Show full text]
  • Aspects of the Ecology of Spotted Hyena (Crocuta Crocuta) in Relation to Prey Availability, Land Use Changes and Conflict with Humans in Western Zimbabwe
    Aspects of the ecology of spotted hyena (Crocuta crocuta) in relation to prey availability, land use changes and conflict with humans in western Zimbabwe Mlamuleli Mhlanga Submitted in fulfilment of the academic requirements for the degree of DOCTOR OF PHILOSOPHY In the Discipline of Ecological Sciences In the School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg Campus 2018 ii ABSTRACT Patch selection by carnivores is affected by various factors including availability of prey and denning areas, extent of vegetation cover, competition from sympatric large carnivores and anthropogenic habitat change among other variables. Understanding the influence of such factors is fundamental in the management of the carnivores. The study investigated spotted (i) hyena occupancy and (ii) co-occurrence with mesocarnivores in Zambezi National Park, Matetsi Safari (hunting) Area and Dimbangombe Ranch (mixed livestock and wildlife) in western Zimbabwe during the dry and wet seasons of 2014 and 2015 using camera traps. First, habitat characteristics, potential major prey and possible disturbance factors were modelled using the occupancy modelling approach to quantify habitat occupancy of the spotted hyena. It was found that the spotted hyena mean site occupancy was high (ψ = 0.617, SE = 0.147 and ψ = 0.502, SE = 0.107 for wet and dry seasons respectively). Furthermore, spotted hyena habitat occupancy increased in clayey soil and grasslands in the national park and hunting area, a behaviour attributed to denning preferences and possibly prey movement. Management priorities should focus on improving habitats for wild prey outside protected areas while preserving clayey areas for enhanced productivity of the spotted hyena inside protected areas.
    [Show full text]